
FOCUS 7

before submitting their proposal to a Research Council.
Secondly,  applicants who have not used CSAR or HPCx
before will be asked to submit a draft case for support,
together with code and test data, to both the HPCx
and CSAR services.  The services will run the test code
and will report back to the applicant on the suitability
of their service and will provide the technical
assessment.  As necessary, discussions can follow
between the applicant and the centres to determine
which service (or possibly services) is best for their

research and what resources are required.  The applicant
will then decide which service they wish to use and
finalise their research proposal.

Experienced HPC users, confident of the service they
require, will not be required to submit test code to
both services,  but it is hoped that obtaining a technical
assessment of their proposal before submission will
open up a dialogue between the service and applicant
and allow fine tuning of the proposal.
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Why are some of the world’s leading experts in
parallel finite element analysis (FEA) coming to

Manchester this summer?  Over the past year, there
has been growing interest in Manchester’s parallel FEA
work.  So much so that some of the leading names
from America, Europe and Japan are going to be teaching
here at a week long Summer School jointly organised
by the National Science Foundation (NSF) of America
and the University of Manchester.

The story starts around 1995 when Ian Smith of the
Manchester School of Engineering first approached Mike
Pettipher about parallelising one of the programs from
his book ‘Programming the Finite Element Method’.  By
this time, the Domain Decomposition techniques
popularised in the late 1980’s by Farhat with his ‘Greedy
Algorithm’, had grown in maturity.  Despite this, the
Domain Decomposition approach to parallel FEA never
seemed to hit the mainstream, remaining until this day
a largely specialist activity.  Perhaps the algorithms,
basically centred on matrix condensation or tearing the
finite element mesh apart and distributing the pieces,
were too difficult to master.

Ian Smith focused his attention on an alternative solution
strategy whereby the pieces to be distributed are the
finite elements themselves.  The ‘element-by-element’
or ‘mesh free’ approach can be solved by purely iterative
strategies.  No mesh is ever assembled and consequently
does not require tearing apart.  The technique is basically
the same as ‘explicit’ methods which have long been
considered ‘embarrassingly’ parallel.

Figure 1:  Finite element mesh of a buttress dam used to
evaluate the structural response to earthquakes.  The mesh
is distributed across processors as illustrated by the colouring.

In 1998, EPSRC agreed to fund a joint research project
between Manchester Computing and the Manchester
School of Engineering.  At this time, Lee Margetts joined
the team to study for his PhD under the supervision of
Ian Smith.  The objective was to develop a parallelisation
strategy that could easily be applied by a non-specialist
to any general finite element problem.

By the end of 2002, the parallelisation strategy first
implemented by Mike Pettipher had been successfully
generalised and all the MPI coding was hidden away
into a library of FORTRAN callable subroutines.  This
library was used to create a suite of ten example
programs covering the three main types of problem
found in Engineering:  Static equilibrium; dynamics (or
time dependent problems) and eigenvalues.
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In March this year, a UKHEC workshop introduced the
work to non-specialists in parallel computing.   As the
parallel programs retain the same structure and style
of the original serial programs taken from Ian Smith’s
book, a researcher already familiar with serial
FORTRAN programming and finite element analysis
should be able to develop his or her own parallel codes.
This was the philosophy behind the teaching and
practical sessions at the workshop.

An article about parallel computing would not be
complete without some performance figures!  All the
programs scale extremely well over large numbers of
processors and for the results presented here, CSAR’s
512 processor Origin3000, Green, was used.   To give
an impression of the scalability, our program for the
direct numerical solution of the Navier Stokes equations
boasts a speed up of 256 on 256 processors, whilst
sustaining an impressive 30% of the machine’s peak
performance (see table 1).  Similar performance is
achieved for an elastoplasticity problem as illustrated
in table 2.  In this case, efficient use of up to 500
processors is clearly demonstrated.   To name another
example, an 8,000,000 equation eigenvalue analysis
recently run on 256 processors found the first 100
eigenvectors in 460 seconds.   Programs written to solve
problems in heat conduction, dynamical systems and
coupled processes such as magnetohydrodynamics show
similar results.

ratio is so low that the technique also works well on
networks of PCs connected by Ethernet.   This has been
recently demonstrated by some collaborative work with
the Civil Engineering department at the Universidad
Politecnica de Madrid.

Although the parallel programs enable the solution of
3D problems with millions of degrees of freedom,
understanding the results can itself present further
challenges.  Collaboration between the project and staff
of the Manchester Visualisation Centre (MVC), in
particular Joanna Leng, enabled the development of a
powerful and convenient way of presenting and
interpreting the results of the simulations.  Using the
AVS Express toolkit,  Joanna produced an application
that allows the user to view and manipulate the results
of the simulations in stereo, in a virtual immersive
environment such as an SGI Reality Centre.  To
interactively manipulate the largest data sets, ~
10,000,000 variables, the multi-pipe edition of AVS
developed by MVC was required.   At Manchester this
was run on an SGI Onyx300 with 6 dedicated graphics
pipes.

These are exciting times.  With the efficient use of
powerful HPC resources and advanced visualization
tools, scientists and engineers are not only able to
investigate more complex models and systems, they are
also able to explore their models intuitively and
collaboratively through virtual reality visualization.
In the future, we will highlight the merits of parallel
FEA from another perspective.  The same solution
strategies can be applied to solve smaller problems very
quickly – so fast that the engineer or scientist may be
able to interact with their model in real time.  This is
the aim of the Advanced Virtual Prototyping Research
Centre’s Virtual Prototyping project in which
Manchester are contributing their parallel finite element
expertise.

Finally,  if you would like to know more,  please feel free
to contact the authors or better still, enrol on the
Summer School - it’s free to CSAR users!

Why is this method so successful?  To cover the three
problem types mentioned earlier, three different
iterative solvers are used:  PCG (preconditioned
conjugant gradients) for symmetric positive definite
problems;  BiCGStab(l) for non-symmetric systems and
Lanczos for eigenvalue problems.  These all have at their
core matrix-vector products and other simple vector
operations.  Most of the communication and
computation may be overlapped.  The only possible
downside is the unavoidable presence of a few global
communications,  such as dot products, which on some
systems are known to limit scalability.  If the problems
are large enough,  the communication to computation

Figure 2:  An example of magnetohydrodynamics:  The flow of an
electrically conducting fluid through an insulated rectangular duct
under the influence of an externally applied magnetic field.

Reynolds 
Number 

256 processors Serial % Peak 

10 20 minutes 2-3 days 29 
100 47 minutes 8-9 days 29 
1000 180 minutes > 1 month 29 

 
Table 1:  Direct Numerical Solution of the Navier-Stokes 

equations – 4,500,000 equations 
 
 

Processors PCG(s) MFlops % Peak 
4 2786 999 31 

256 43.4 64190 31 
500 23.9 116500 29 

 
Table 2:  Elastoplasticity – 6,000,000 unknowns 


