
FOCUS 14

Parallel Support Toolkit for AVS/Express
James Perrin

SVE Team, Manchester Computing, University of Manchester

Introduction

AVS/Express is a leading visualization and application
development package. It provides a visual programming
interface where the user connects together modules
from libraries of data readers, filters and visualization
techniques to create an AVS network (visualization
pipeline). AVS/Express is a general visualization package
though it is mainly aimed at scientific visualization for
engineering, medicine, geology, simulations and other
fields. Manchester Visualization Centre (MVC) has
extensive experience with the package; using it for many
projects and also hosting the International AVS Centre,
an internet
repository of user
submitted modules.

AVS/Express is a well
established piece of
software, however it
has always been
single processor
based. AVS took its
first step towards
HPC support with
the development of
Multi Pipe Express
(MPE) which takes
advantage of multiple
graphics pipes as
found on SGI Onyx
hardware to render
large datasets and
enable use in multiple
projector environments
such as Caves and
RealityCenters. MVC has designed and developed both
MPE and the soon to be released Graphics Cluster
Edition (GCE) for PC clusters, however, the
visualization computation is still performed on a single
CPU. Users obviously want to utilise the multi-
processor systems that they are running MPE/GCE on,
hence the conception of the Parallel Support Toolkit
for AVS/Express between MVC, AVS, KGT (Kubota
Graphics Technology Inc.) and JAERI (Japan Atomic
Energy Research Institute).

Bringing multi-processor performance to a leading visualization application

Overview

Unlike previous attempts to add parallel computation
to AVS/Express, such as VIPAR, parallel modules will
be aware of other parallel modules in the AVS network
so the computation nodes can pass data between
computation methods without the need to gather,
recompose, decompose and distribute the data as each
module is executed. Instead modules will pass tags
(meta information) between themselves. These parallel
modules can then be used with the standard serial
modules to create new AVS networks or integrated
into existing networks to enhance the performance of

the visualization
application.

PST is a multi
phased project to
run over a course
of two years. It will
p r o v i d e
developers with a
toolkit (API and
skeleton code) to
enable them to
build their own
parallel modules
for AVS/Express
and after the first
year a suite of
p a r a l l e l
v i s u a l i z a t i o n
modules will be

created to empower
the end user with the

ability to create AVS networks and applications that
harness the power of SMP and cluster based systems.
The second year will extend the parallelism paradigms
of AVS/Express, optimizing and integrating with current
rendering methods and MPE.

The project is currently in Phase 2, the design and
implementation phase of the basic PST framework. This
followed on from an initial feasibility stage that
demonstrated the benefits of parallelization for the

Figure 1: A simple AVS network exploiting the MPI version of
isosurface from the feasibility phase

FOCUS 15

Figure 2: Passing tags rather than data between modules is
an advantage over previous attempts to add parallel
computing to visualization applications.

pMagnitude

pIsosurface

Remote Nodes

Decompose & Distribute DATA 0 DATA 1 DATA NDATA

Parameters and Notify C0 C1 CNNOTIFY

Receive Tags T’0 T’1 T’NTAGS’

DATA

DATA’’

TAGS’

TAGS’

Parameters and Notify NOTIFY C’0 C’1 C’N

DATA’’ 0 DATA’’ 1 DATA’’ N

T’’ 0 T’’ 1 T’’ NReceive Tags TAGS’’

Collect &
Compose

DATA’’TAGS’’

Send Tags T0 T1 TNTAGS

DATA’ 0 DATA’ 1 DATA’ N

distributed to and from the first and last modules.

Task parallelism will be implemented at an AVS network
level where two or more modules share the same input.
Normally these would execute in a serial manner
controlled by the Object Manager (OM), but by getting
the first module to distribute the data and then return
control to the OM after initiating the computation, the
next module can start its computation and so on.

Note that each AVS network still executes one cycle
at a time, so after a module has executed it has to wait
for the remaining downstream modules to complete
and the scene to be rendered. By decoupling PST
module execution from the OM, when a module has
completed execution it can then re-execute if new data
is available or parameters have changed. Decoupling
modules from the OM enables this "pipeline parallelism"
as well as further parallel features and optimization.
These features will need to be balanced against the real
world advantages that they can provide and the feasibility
of adding these to a large and complex serial application
within a reasonable timeframe.

MPE Integration

A driving force behind this work has been users of MPE,
as well as increasing the computational performance of
MPE. Later phases will integrate PST with the rendering
methods of MPE, e.g. modules will be able to pass
geometry data directly to the rendering pipes bypassing
the re-composition and conversion stages that are used
currently.

Springer Style Final Thoughts

Though there has been much work done in creating
specific parallel techniques these have in general been
applied to isolated methods such as isosurfacing and
have been produced as research projects that only
benefit a small number of users. This project aims to
bring the fruits of these labours to a larger community
and to build on them to produce an end user parallel
visualization environment and to enhance the
extensibility of AVS/Express with a standardized
software toolkit.

Contacts

Paul Lever: paul.lever@man.ac.uk
James Perrin: james.perrin@man.ac.uk

http://www.sve.man.ac.uk/Research/PST/

standard isosurface module. PST is being developed
for SGI and PC cluster systems and it was originally
envisioned that both MPI and OpenMP (on SGI) would
be utilised but there are compatibility issues between
MPE and OpenMP. MPICH is being used for the PC
cluster version.

Parallelism, Lots of Parallelism

All the modules will be based on data parallelism. The
problem is that different modules may require different
decomposition methods; each module therefore has
an associated schema which specifies its desired
decomposition method (as well as other information
about how the module is to be executed). These
schema are then resolved to discern where re-
composition and distribution is required e.g. a module
that requires a domain border of N elements can pass
data to a module that doesn't require border elements
(assuming the data redundancy overhead being
outweighed by not needing to recompose and distribute
the data), however the reverse is not true and the
schema resolution will force the first module to
recompose its data before passing it to the second
module. If a set of modules should execute on the
same set of nodes, data will be cached on the nodes so
that module parameter changes don't require further
data distribution. Data only therefore needs to be

