
FOCUS 9

Figure 1: Improving the Performance of MPI_Allgather using MPI
One-Sided Communication.

Jon Gibson
HPC Consultant, Manchester Computing, University of Manchester

Improving Parallel Performance Using MPI One-
Sided Communication and MPI-IO

Two major bottlenecks for codes running on HPC
machines are communication time and time to do I/O.
Both of these are becoming more significant with time,
given that processor speed is increasing relative to
communication speed, and as the trend is to run jobs
on larger and larger numbers of processors. In this
article, we consider how the MPI 2 standard provides
techniques for improving performance in these two
areas.

In the communication model assumed by the MPI-1
standard, each processor has its own local memory,
whose contents can only be modified by the process
running on that particular processor. Hence, in order
to change the memory associated with a remote
processor, there must be explicit send and receive
calls by the processes involved. This requirement for
both a sender and receiver is referred to as two-sided
communication. Although this approach works very
well for many problems, it is not always ideal for a given
algorithm. For example, it requires both the sender and
receiver to know how many messages are being sent, as
well as the type and amount of data. It may also need an
excessive amount of synchronization, especially where
a large number of small messages are involved.

For codes with a communication bottleneck, alternative
approaches need to be considered. If the code is using
blocking communication, then a move to non-blocking
calls allows greater overlapping of communication
and computation, so reducing the synchronization
overhead. However, further improvements can be
made with a move to one-sided communication. As
the name suggests, one-sided communication allows a
given process to directly access the memory of another
for the purposes of reading and writing. This leads
to both a reduction in the synchronisation overhead
and possible algorithmic simplification, in that only the
process making the remote memory access needs to
know the type and amount of data. Although there
are a number of one-sided communication models (e.g.
SHMEM, LAPI, Co-array Fortran), for portable code, as
with message-passing generally, the MPI paradigm is the
one to choose.

Programming one-sided MPI communication does

require a new way of thinking, with the programmer
having to decide what bits of memory should allow
remote access and at what times. There are also new
types of bug to be avoided. Since we don’t have the space
to go into the details of using one-sided communication
here, we’ll illustrate its potential with a simple
example. CSAR’s Kevin Roy has re-implemented the
MPI_Allgather function using one-sided communication
and compared its performance with the standard two-
sided implementation. Figure 1 shows the significant
improvement in performance this provides. A further
improvement in performance is expected with improved
synchronisation within this algorithm.

As we’ve already mentioned, I/O can also be a major
bottleneck on parallel machines. In fact it is often said
that “a supercomputer is a device for converting a
compute-bound problem into an I/O bound problem.”
Any code that uses a single process to perform I/O
on behalf of all processes is serialising that part of the
application and hence limiting the overall scalability
according to Amdahl’s law. Alternatively, if the I/O can
be performed in parallel on a parallel file system, then
the performance and scalability of the code can be
greatly increased. A simple approach to parallelising
I/O could be to get each process to output one file.
However, this restricts the ability to change the number
of processes and the separate output files may still have
to be combined in some way in order to post-process
or analyse the data. Parallel access to individual files is

FOCUS 10

really what we want. There are a number of I/O libraries
that can provide this, two popular ones being NetCDF
and HDF5. Both of these have parallel versions of the
serial libraries and allow architecture-neutral fi les to be
created. However, the parallel versions of these libraries
are still at the developmental stage. They are built on top
of MPI-IO and it is necessary to understand aspects of
MPI-IO in order to use the libraries effectively.

MPI-IO allows the input and output of binary fi les
using all the processes within an MPI group and offers
the advantage of output to a single fi le. File access is
performed using MPI derived datatypes, allowing fast I/O
using collective operations. Data is packed into a fi le in a
manner consistent with a serial program and so data can
be read out on any number of processors and hence fi les
are re-usable on a given machine. There are in fact three
different format options for writing data: native, internal

and external32. The fi rst of these is the native format
of the machine; internal is understood by the whole MPI
environment, even if it happens to be heterogeneous;
and external32 is a completely portable, machine-
independent format. Unfortunately, external32 is not
currently available on Altix machines but once it is, it
will make MPI-IO an even more attractive option.

Again, the details of using MPI-IO are beyond the scope
of this article. However, if your appetite has been
whetted, then we’d like to point you in the direction
of our “MPI One-Sided Communication and MPI-IO”
course. In this one day course, we delve into the
mysteries of these important features of the MPI-2
standard and explain how they can be used to improve
the performance and scaling of your code. A course is
likely to be scheduled in the near future. Please contact
jon.gibson@manchester.ac.uk to register your interest
now, as places are likely to be limited.

Technical Symposium on Reconfi gurable
Computing with FPGAs, 21-22 February 2005

Kevin Roy and Mike Pettipher
Research Support Services, Manchester Computing, University of Manchester

In February 2005, the University of Manchester hosted
a 2 day symposium on Reconfi gurable Computing with
FPGAs (Field Programmable Gate Arrays). This meeting
was sponsored by Cray and SGI, and supported by
the Ohio Supercomputer Center (OSC), who hosted
a similar meeting in October 2004. The focus of the
symposium was the use of FPGAs for High Performance
Computing.

For people that have not come across FPGAs before,
they are essentially hardware that can be programmed
to do whatever they are tasked with. The millions of
logic gates on the chip allow a fl ow of data or bits;
fl ows can be constructed into algorithms to solve
complex problems. The real benefi t is that, because
of their reconfi gurability, an algorithm written for an
FPGA allows you to create a processor to solve your
particular problem rather than using the main CPU
which has a rather rigid structure (set numbers of
fl oating point units, integer units, loads/stores per cycle
etc). This benefi t is highlighted by one of their main uses
in prototyping digital circuit designs.

Two of the major HPC vendors are now actively
pursuing this technology - Cray have been marketing

a HPC system with (optional) FPGAs, the Cray XD1,
and SGI are soon to be offering optional FGPA bricks
that can be accommodated in an Altix.

Other vendors from the FPGA market are also
targeting the HPC community – the symposium had
speakers from XIlinx on the underlying hardware and
future chips, Nallatech who spoke on the history and
commercial realities of FPGAs, Celoxica who spoke
about implementing algorithms in FPGAs, Mitrion who
spoke on programming for FPGAs and Star Bridge
systems who spoke about development environments
for FPGAs.

This is not the new area it seems as was highlighted
by many talks from the research community, including
the University of Durham, University of Saarland and
NASA.

It was clear from the event that FPGAs have a long way
to go to achieve a more widespread adoption in the HPC
community. The potential benefi t for some applications
seems impressive but this is less clear for fl oating point
arithmetic, and the development environments seem
immature with algorithms needing to be coded in lower

