
 FOCUS 27

Looking Ahead: SGI’s Project Ultraviolet
Project Ultraviolet will build on the multi-paradigm
capabilities delivered with Altix. The system architecture
will be able to scale from a single node, all the way up
to Petascale systems. Key advances will include:

- A new generation of interconnect, that will
increase the global addressing reach, and implement
communications protocols to increase the effi ciency
of packet and message level data transport.

- The incorporation of novel processing elements in
addition to robust support for the next generation
of Intel processors as the general purpose
processing elements

- A second generation of the SSP to provide even
greater control to these devices to increase
data transport efficiency within the system
architecture.

- A new data transport capability to deal with
algorithms that traditionally mapped onto a vector
paradigm. This will be used to supplement the
microprocessors when dealing with data items that
don’t fi t the cache-line orientated designs that mass
market processors use.

Ultraviolet comprises a truly elegant combination of

Summary

The HPC industry is facing new challenges as IC
technology continues to deliver on Moore’s law
growth of transistors, but cores used at the heart of
many cluster based systems stall in the delivery of
better single thread performance. Novel computing
elements, such as FPGAs and highly parallel fl oating
point accelerators, are offering new potential to drive
application performance forward. As we move towards
Peta-scale computing, what will the programming
models be to make effective use of such systems? SGI
is taking a multi-paradigm approach, with its globally
addressable memory architecture as the foundation, to
build cost effective, scalable and versatile systems. SGI
is already delivering on this vision, with the technology
to build innovative solutions that directly address the
problems of building high performance, high productivity
systems.

©2005 Silicon Graphics, Inc. All rights reserved

both fl exibility and performance; one that can support
everyday workload demands with a new level of
productivity, while scaling up to power the next grand
challenge problems which can’t afford the limitations
of today’s clustered processor approach.

HDF2AVS - A Simple to Use Parallel IO Library
for Writing Data for AVS

Craig Lucas and Joanna Leng
Manchester Computing, University of Manchester

Motivation and Background
HDF2AVS is a library of routines to write out data, in
parallel, in the HDF5 (Hierarchical Data Format) [3,4]
data format, for input into the visualization system AVS/
Express (Advanced Visual Systems) [1,2]. It is available
as a Fortran 90 module and consists of various routines
for writing out different types of array or coordinate
data.

HDF uses a tree structure of groups and datasets. A
group consists of zero or more datasets and other
groups, together with supporting metadata. Datasets
contain multidimensional arrays of data elements. The
library is still in development at NCSA (National Center
for Supercomputing Applications) [6]. We chose HDF
for many reasons:

• it is a user defi ned format like XML

• it is a binary format that allows compression so
drastically reducing the size of data fi les

• it is a format with longevity (NetCDF4 [7] is to be
implemented on top of it)

• there is a dump facility that allows users to
investigate the contents of binary fi les easily

• there is a reader for HDF already within AVS/
Express

• parallel IO is supported.

There are many advantages to writing out data in
parallel. On parallel machines there are two traditional
approaches to writing data. One is to collect all data to
one processor and then write this to disk. This obviously
creates a communication overhead and can be slowed
down further if there is not enough local memory on
this master processor to hold the entire data set. These
problems can be avoided by the other standard approach

FOCUS 28

of having each
processor write
to its own file.
This introduces
a post processing
overhead, and
also limits you
to read the files
back in on the
same number
of processors.
Para l le l HDF
is built on top
of MPI-IO [5]
which a l lows
s imu l taneous
access to the

same file, thus removing all of the problems above.

The HDF files are in binary. In fact, MPI-IO itself only
supports binary data. Binary (and compressed binary)
files are much smaller than ASCII files, easily by a
factor of 3 or 4. Our experience shows that many
computational scientists write ASCII data, as they are
human readable, and binary files, of course, are not.
However, HDF supply the excellent utility, h5dump, to
dump to the screen all or part of a binary HDF file, thus
removing any disadvantages of binary data. Figure 1
shows the visualization of some FEA data [7]. Stored as
ASCII the total file size for this data is 57MB. Converted
to HDF format the size is 20MB and a further reduction
can be obtained by converting to a compressed HDF
format giving a file size of 13MB. Although this is a small
example, the potential in reducing file sizes is obvious
for very large datasets.

We chose to write the HDF2AVS wrapper library for
many reasons. Firstly, the AVS reader requires much
metadata; for example the dataset requires metadata for
the data type, its dimensions and the grid used. In fact,
to write out a 2 dimensional array, in a form that the
AVSreader understands, requires 87 HDF subroutine
calls! However, only one call to HDF2AVS.

Also, some of the concepts in HDF are not
straightforward, with data and file spaces, property
lists and unique data types. But to use our library the
user is not required to understand any of these.

Using HDF2AVS

example consider
w r i t i n g a 2
dimensional array.

Figure 2 shows
a possible data
distribution for
the local arrays
distributed over
blocks of rows of
the global array.
The dimension of
the global array
is m x n, and the
process here owns
t rows of data, the
first of which is
in row s of the
global array. Note
HDF numbers its
coordinates from
zero.

There is no constraint in where or how big the local
array is. For instance, local arrays can overlap, and need
not span the whole width and not all of the global array
needs to be written to. We do, however, check that you
don’t try to write outside of the global array, which is
not permitted in HDF.

PROGRAM using_hdf2avs
USE MPI
USE HDF2AVS
.
! Could be REAL etc
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: my_data .
INTEGER(KIND = 8), DIMENSION(2) :: global_dims
INTEGER(KIND = 8), DIMENSION(2) :: local_dims
INTEGER(KIND = 8), DIMENSION(2) :: global_origin
.
global_dims = (/m,n/)
! Data split in rows
local_dims = (/t,n/)
global_origin = (/s,0/)
ALLOCATE(my_data(t,n))
.
CALL MPI_INIT(error)
.
CALL HDF2AVS_WRITE_2D_ARRAY(my_data, global_dims,
&
 local_dims, global_origin, ‘filename.
h5’) .
CALL MPI_FINALIZE(error)
END PROGRAM using_hdf2avs

Figure 3: A code fragment, in Fortran, calling HDF2AVS to write
out a 2D array.

Figure 1: The results of an FEA soil
excavation and subsidence experiment
using an inhomogeneous soil model,

generated by a random field generator.

To write out an array in HDF2AVS you just need to
pass the dimensions of your global data, and the part
of that global data owned by the calling process. For

Figure 2: An example data distribution
for HDF2AVS. The global array has m
rows and n columns of data. The local
array has t rows of data, and is shown

shaded.

 FOCUS 29

Performance
In writing the library we were not driven by performance
issues. We have concentrated on functionality rather
than performance. We wanted to help users to write
their data out easily to a useful visualization format. It
is not intended to replace your bespoke IO routines.

Consider the example where you have data on each
processor and you wish for this data to be written to
a single file. We have 1GB of data on each process,
so the more processors used, the larger the file. We
can write out the data using HDF2AVS with a single
collective call. Alternatively, a master process receives
the arrays from each of the other processors and writes
them individually to the file.

Figure 4 shows the time to write the HDF file and also
the time to receive and write the individual files in a
binary format. Note that the time taken to write ASCII
data is very much increased, and it not shown. You can
see that the times vary enormously for different runs,
up to a factor of 10. There are many issues that affect
the performance at a particular time: how busy the
machine is, where the processors are on the machine,
whether there is enough memory available to buffer the
data before writing and what other codes running are
demanding OS services etc. We used the CSAR machine
Newton for these timings, which was heavily loaded.

Further Work and Information

The library is still under development, planned
improvements include:

• Support for cell data for FEA applications.
• Optional arguments for altering the metadata.

References

[1] Advanced Visual Systems Inc. AVS/Express
Developer’s Reference, Release 3.1.

[2] Advanced Visual Systems Inc. Homepage: http://
www.avs.com/

[3] HDF Homepage: http://hdf.ncsa.uiuc.edu/index.
html

[4] HDF5 API Specification Reference Manual

[5] MPI Forum Documentation: http://www.mpi-forum.
org/docs/docs.html

[6] NCSA Homepage: http://www.ncsa.uiuc.edu/

[7] NetCDF Homepage: http://www.unidata.ucar.edu/
software/netcdf/

[8] Smith I.M., Leng J. and Margetts L., Parallel Three
Dimensional Finite Element Analysis of Excavation,
ACME, Sheffield, March 2005.

Figure 4: Comparison of HDV2AVS and gathering data on one
process to write to a single file, for a 2D array. Each colour

relates to the same 16 processors for both methods run
concurrently. HDF2AVS is shown solid and gathering dashed.

• MPI-IO optimizations.
• Routines for reading files.
• Other data distributions.
• Documentation.

The aim of this article is to gauge interest. The
development can be driven by user requirements.

If you think this library could be useful to your
applications please contact either Craig Lucas or Joanna
Leng. We can advise on how the library could be used
or adapted for your application and dataset.

In Figure 3 we give a code fragment, in Fortran, that
calls the HDF routine HDF2AVS_WRITE_2D_ARRAY.
Note the generic routine name for our supported data
types: integer, real and real*8.

The routine takes just five arguments:

• my_data is the local data on the process
• global_dims is the dimension of the global

dataset distributed over all processes
• local_dims are the dimensions of my_data
• global_origin gives the position of the local

data in the global array
• the file name is also required.

This is a collective call made by all processes.

