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Looking Ahead: SGI’s Project Ultraviolet 
Project Ultraviolet will build on the multi-paradigm 
capabilities delivered with Altix.  The system architecture 
will be able to scale from a single node, all the way up 
to Petascale systems.  Key advances will include:

-  A new generation of interconnect, that will 
increase the global addressing reach, and implement 
communications protocols to increase the effi ciency 
of packet and message level data transport.

-  The incorporation of novel processing elements in 
addition to robust support for the next generation 
of Intel processors as the general purpose 
processing elements

-  A second generation of the SSP to provide even 
greater control to these devices to increase 
data transport efficiency within the system 
architecture. 

-  A new data transport capability to deal with 
algorithms that traditionally mapped onto a vector 
paradigm. This will be used to supplement the 
microprocessors when dealing with data items that 
don’t fi t the cache-line orientated designs that mass 
market processors use. 

Ultraviolet comprises a truly elegant combination of 

Summary

The HPC industry is facing new challenges as IC 
technology continues to deliver on Moore’s law 
growth of transistors, but cores used at the heart of 
many cluster based systems stall in the delivery of 
better single thread performance. Novel computing 
elements, such as FPGAs and highly parallel fl oating 
point accelerators, are offering new potential to drive 
application performance forward.  As we move towards 
Peta-scale computing, what will the programming 
models be to make effective use of such systems? SGI 
is taking a multi-paradigm approach, with its globally 
addressable memory architecture as the foundation, to 
build cost effective, scalable and versatile systems.  SGI 
is already delivering on this vision, with the technology 
to build innovative solutions that directly address the 
problems of building high performance, high productivity 
systems.
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both fl exibility and performance; one that can support 
everyday workload demands with a new level of 
productivity, while scaling up to power the next grand 
challenge problems which can’t afford the limitations 
of today’s clustered processor approach.
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Motivation and Background
HDF2AVS is a library of routines to write out data, in 
parallel, in the HDF5 (Hierarchical Data Format) [3,4] 
data format, for input into the visualization system AVS/
Express (Advanced Visual Systems) [1,2].  It is available 
as a Fortran 90 module and consists of various routines 
for writing out different types of array or coordinate 
data.

HDF uses a tree structure of groups and datasets.  A 
group consists of zero or more datasets and other 
groups, together with supporting metadata. Datasets 
contain multidimensional arrays of data elements.  The 
library is still in development at NCSA (National Center 
for Supercomputing Applications) [6].  We chose HDF 
for many reasons:

• it is a user defi ned format like XML

• it is a binary format that allows compression so 
drastically reducing the size of data fi les

• it is a format with longevity (NetCDF4 [7] is to be 
implemented on top of it)

• there is a dump facility that allows users to 
investigate the contents of binary fi les easily

• there is a reader for HDF already within AVS/
Express

• parallel IO is supported.

There are many advantages to writing out data in 
parallel.  On parallel machines there are two traditional 
approaches to writing data.  One is to collect all data to 
one processor and then write this to disk.  This obviously 
creates a communication overhead and can be slowed 
down further if there is not enough local memory on 
this master processor to hold the entire data set.  These 
problems can be avoided by the other standard approach 
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of having each 
processor write 
to its own file. 
This introduces 
a post processing 
overhead, and 
also limits you 
to read the files 
back in on the 
same number 
of processors. 
Para l le l  HDF 
is built on top 
of MPI-IO [5] 
which a l lows 
s imu l taneous 
access to the 

same file, thus removing all of the problems above.

The HDF files are in binary.  In fact, MPI-IO itself only 
supports binary data. Binary (and compressed binary) 
files are much smaller than ASCII files, easily by a 
factor of 3 or 4.  Our experience shows that many 
computational scientists write ASCII data, as they are 
human readable, and binary files, of course, are not. 
However, HDF supply the excellent utility, h5dump, to 
dump to the screen all or part of a binary HDF file, thus 
removing any disadvantages of binary data.  Figure 1 
shows the visualization of some FEA data [7].  Stored as 
ASCII the total file size for this data is 57MB.  Converted 
to HDF format the size is 20MB and a further reduction 
can be obtained by converting to a compressed HDF 
format giving a file size of 13MB.  Although this is a small 
example, the potential in reducing file sizes is obvious 
for very large datasets.

We chose to write the HDF2AVS wrapper library for 
many reasons. Firstly, the AVS reader requires much 
metadata; for example the dataset requires metadata for 
the data type, its dimensions and the grid used.  In fact, 
to write out a 2 dimensional array, in a form that the 
AVSreader understands, requires 87 HDF subroutine 
calls! However, only one call to HDF2AVS. 

Also, some of the concepts in HDF are not 
straightforward, with data and file spaces, property 
lists and unique data types. But to use our library the 
user is not required to understand any of these.

Using HDF2AVS

example consider 
w r i t i n g  a  2 
dimensional array. 

Figure 2 shows 
a possible data 
distribution for 
the local arrays 
distributed over 
blocks of rows of 
the global array. 
The dimension of 
the global array 
is m x n, and the 
process here owns 
t rows of data, the 
first of which is 
in row s of the 
global array.  Note 
HDF numbers its 
coordinates from 
zero.

There is no constraint in where or how big the local 
array is.  For instance, local arrays can overlap, and need 
not span the whole width and not all of the global array 
needs to be written to.  We do, however, check that you 
don’t try to write outside of the global array, which is 
not permitted in HDF.

PROGRAM using_hdf2avs
USE MPI
USE HDF2AVS
.
! Could be REAL etc
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: my_data .
INTEGER(KIND = 8), DIMENSION(2) :: global_dims 
INTEGER(KIND = 8), DIMENSION(2) :: local_dims 
INTEGER(KIND = 8), DIMENSION(2) :: global_origin 
.
global_dims = (/m,n/)
! Data split in rows
local_dims = (/t,n/)
global_origin = (/s,0/)
ALLOCATE( my_data(t,n) )
.
CALL MPI_INIT(error)
.
CALL HDF2AVS_WRITE_2D_ARRAY(my_data, global_dims, 
&
           local_dims, global_origin, ‘filename.
h5’ ) .
CALL MPI_FINALIZE(error)
END PROGRAM using_hdf2avs

Figure 3:  A code fragment, in Fortran, calling HDF2AVS to write 
out a 2D array.

Figure 1:  The results of an FEA soil 
excavation and subsidence experiment 
using an inhomogeneous soil model, 

generated by a random field generator.

To write out an array in HDF2AVS you just need to 
pass the dimensions of your global data, and the part 
of that global data owned by the calling process.  For 

Figure 2:  An example data distribution 
for HDF2AVS. The global array has m 
rows and n columns of data. The local 
array has t rows of data, and is shown 

shaded.
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Performance
In writing the library we were not driven by performance 
issues.  We have concentrated on functionality rather 
than performance.   We wanted to help users to write 
their data out easily to a useful visualization format.  It 
is not intended to replace your bespoke IO routines. 

Consider the example where you have data on each 
processor and you wish for this data to be written to 
a single file.  We have 1GB of data on each process, 
so the more processors used, the larger the file.  We 
can write out the data using HDF2AVS with a single 
collective call.  Alternatively, a master process receives 
the arrays from each of the other processors and writes 
them individually to the file.

Figure 4 shows the time to write the HDF file and also 
the time to receive and write the individual files in a 
binary format.  Note that the time taken to write ASCII 
data is very much increased, and it not shown.  You can 
see that the times vary enormously for different runs, 
up to a factor of 10.  There are many issues that affect 
the performance at a particular time: how busy the 
machine is, where the processors are on the machine, 
whether there is enough memory available to buffer the 
data before writing and what other codes running are 
demanding OS services etc.  We used the CSAR machine 
Newton for these timings, which was heavily loaded.

Further Work and Information

The library is still under development, planned 
improvements include:

• Support for cell data for FEA applications.
• Optional arguments for altering the metadata.
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Figure 4: Comparison of HDV2AVS and gathering data on one 
process to write to a single file, for a 2D array.  Each colour 

relates to the same 16 processors for both methods run 
concurrently. HDF2AVS is shown solid and gathering dashed.

• MPI-IO optimizations.
• Routines for reading files.
• Other data distributions.
• Documentation.

The aim of this article is to gauge interest. The 
development can be driven by user requirements.

If you think this library could be useful to your 
applications please contact either Craig Lucas or Joanna 
Leng.  We can advise on how the library could be used 
or adapted for your application and dataset.

In Figure 3 we give a code fragment, in Fortran, that 
calls the HDF routine HDF2AVS_WRITE_2D_ARRAY.  
Note the generic routine name for our supported data 
types: integer, real and real*8.

The routine takes just five arguments:

• my_data is the local data on the process
• global_dims is the dimension of the global 

dataset distributed over all processes
• local_dims are the dimensions of my_data
• global_origin gives the position of the local 

data in the global array
• the file name is also required.

This is a collective call made by all processes. 


