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Teaching Newton to speak: Using CSAR services to speed the 
training of a neural network that models human language processing

Stephen Welbourne and Matthew Lambon Ralph
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Introduction

Neural networks are now well established tools in the 
study of language processes (Dell, Schwartz, Martin, 
Saffran, & Gagnon, 1997; Harm & Seidenberg, 2004; 
Plaut, 1996; Plaut, McClelland, Seidenberg, & Patterson, 
1996; Seidenberg & McClelland, 1989; Welbourne & 
Lambon Ralph, 2005).  These networks are attractive 
as models because they process information in a 
similar way to the human brain; using a large number 
of simple information processing units, in parallel, to 
map representations across domains.  In the case of the 
brain these processing units are neurons whereas in the 
models they are artificial neurone-like constructs, built 
from code that runs on a serial processor (usually a PC). 
In both cases learning occurs as a result of modification 
to the weights (synaptic strengths) of the connections 
between units, with these modifications occurring 
slowly over a large number of repeated trials. 

The main limiting factor in the use of these models is 
the computational resource that is required to train 
them. Unlike the brain, these models cannot truly 
process information in a parallel manner, but have to 
simulate parallelism by cycling through the units serially. 
In addition, the kind of language tasks that are interesting 
to model tend to require training on large corpuses 
of words, typically thousands of items.  As a result it is 
not unusual for these models to require weeks or even 
months of processing. 

The purpose of this Class 3 project was to test 
the feasibility of using parallel supercomputers to 
significantly reduce the processing time required for 
this kind of model.  Ultimately we would like to model 
speech, verbal comprehension and reading behaviours 
simultaneously, within the same generalised language 
model.  However, for the purposes of this simulation, 
we elected to concentrate solely on the mapping from 
meaning to phonology (speech). 

Simulation Details

The training corpus consisted of 2998 monosyllabic 
words with phonological representations taken from 
Plaut et al. (1996).  The semantic representations 

were constructed by generating unique random 
binary vectors of length 100 with an average of 20 
units set to 1 and 80 set to 0.  This ensured that we 
preserved two important features of human semantics: 
firstly, that semantic representations are relatively 
sparse, and secondly, that the mapping between 
semantics and phonology is not in any way systematic.

Figure 1 shows the architecture of the recurrent 
network that was used for these simulations with 
semantic and phonological layers connected by hidden 
layers consisting of 1500 units.  Where layers of units 
are shown as connected it was always the case that 
every unit in the sending layer was connected to 
every unit in the receiving layer.  Activation functions 
for the units were logistic with time integrated 
inputs.  The network was trained using standard 
backpropogation through time with a learning rate 
of 0.05 and momentum of 0.9, applied only when 
the gradient of the error slope was less than 1.
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Figure 1:  Network Architecture.
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Parallelisation Method
In this task there are two obvious approaches to 
parallelisation. Either one can parcel out the units 
between processors, or one can replicate the entire 
network on each processor and divide the training batch 
by processor.   We elected to adopt the latter approach 
and, with the extensive help of the CSAR support team, 
we adapted our existing network simulator code to 
run on Newton. 

Results
For the purposes of this feasibility study, we were not 
interested in how well the network could perform 
the task, but merely in how long it took to accumulate 
the weight updates for one pass of the entire training 
corpus (1 epoch of training).  In, particular we were 
interested in how the speed of training would scale 
with the number of processors.  Accordingly, we ran 
trials of 2 epochs of training over increasing numbers 
of processors up to a maximum of 176.  Figure 2 shows 
the results of this investigation.  For convenience the 
y scale is expressed in multiples of single processor 
speeds (measured on a standalone Pentium 4 3.2Ghz PC 
running windows XP).   When using only one processor 
Newton actually runs the code more slowly than on 
a standalone PC (speedup=0.76).  However, the speed 
of processing scales reasonably linearly all the way up 
to 100 processors (speedup≈40).  After this processing 
speed continues to improve slightly up to about 140 
processors.  Beyond that adding extra processors 
actually reduces processing speed.

Discussion

This project set out to test the feasibility of using 
supercomputing services to speed the training of 
neural networks modelling linguistic processes.  Using 
a typical network setup, modelling the mapping from 
semantics to phonology, we have demonstrated that 
speedup factors in excess of 40 are achievable. Time 
constraints prevented us from conducting further 
empirical investigations; it would be interesting to 
know how the network parameters (number of units 
and batch size) would affect the scaling performance. 
Nevertheless, we have clearly shown that this approach 
has considerable potential to reduce the time required 
to train these kinds of networks.
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Figure 2:  Showing how speed of training scales with number of 
processors compared to a desktop PC.
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