
CSAR Focus, Edition 5, Summer 2000.10

Dr Ben Jesson,
CSAR Optimisation Support

CASTEP: Quantum Mechanical
Atomistic Simulation Code

¬ ¬

May 2000 saw the release to the UK academic community of version 4.2 of the quantum mechanical

atomistic simulation computer code, "CASTEP". The release of this code, which has been keenly awaited

by many CSAR users, is the result of an extensive collaboration, over several months, between the

academic developers of the code, the Daresbury HPCI centre, and the CSAR applications and

optimisation support teams.

"CASTEP" (CAmbridge Serial Total Energy

Package), originally written in the 1980's by Mike

Payne at Cambridge University, is now developed

by the UK Car-Parrinello (UKCP) consortium of

academic research groups [1] and a commercial

partner, Molecular Simulation Inc (MSI) [2]. MSI

markets and sells the code to commercial users

world-wide, but under the terms of a UKCP-MSI

agreement, CASTEP is available for free to all UK

universities (CSAR users wanting to use CASTEP

should contact Dr. Phil Lindan at the Daresbury

Laboratory [3]).
For a fuller description of the purpose of

CASTEP, its functionality and the science that

underpins it, the reader is referred to the web pages

referenced in the footnotes, and the publications

listed therein.

In essence, however, CASTEP uses density

functional theory (DFT) (specifically, using plane-

waves and pseudopotentials) to solve

approximately the Schrodinger equation for

periodic systems of atoms, yielding the total energy,

atomic forces and internal stresses in the system,

as well as interesting electronic properties (the

electron wavefunction, charge density distribution,

density of electronic states, etc).

CSAR's role

The development and optimisation support

provided by CSAR for CASTEP was carried out by

Ben Jesson and Stephen Pickles from the CSAR

team, working in conjunction with Rob Allan and

Ian Bush of the Daresbury HPCI centre, who have

previously worked substantially on the CASTEP

code.

The first task of this team was the parallelisation

of some key parts of the CASTEP code. CASTEP is a

large and complex piece of software, consisting

of approximately 120,000 lines of Fortran 77/90. It

has been developed over more than a decade

by a number of people, and during that time much

of the older parts of the code have been

parallelised using the Message Passing Interface

(MPI) library. However, some of the most important

new functionality of the previous CASTEP release,

version 3.9 (including the 'density mixing' electronic

minimiser and the abi l i ty to use 'ultrasoft '

pseudopotentials), had not been parallelised,

dramatically limiting the utility of CASTEP for CSAR

users.

Further, even when this parallelisation work

was complete, it was still not immediately possible

to perform the very large CASTEP calculations that

members of the UKCP were hoping to run on the

CSAR T3E. This was due to the memory usage of

some CASTEP parallel algorithms, which was such

that, regardless of the number of processors, the

memory required on each one would always

exceed that available (ie 256 Mb on the CSAR T3E).

..

CSAR Focus, Edition 5, Summer 2000.11

The second phase of CSAR's development

work was therefore to address this problem,

specifically for the Cray T3E (the other CSAR

computers, an Origin2000 and VPP300, have more

memory available to each processor and so do not

suffer so acutely from these problems).

Final ly, the substantial and in-depth

knowledge of the CASTEP code that has been

gained through this development work has been

applied to the optimisation of the code, particularly

aimed at the Cray T3E.

Results

It is rather hard to illustrate the results of the

initial parallelisation work performed by CSAR since,

for example, the precise parallel speed-ups

obtained will depend strongly on the nature of the

calculation performed and, in any case, will be

affected by the ongoing optimisation work.

Nevertheless, good parallel performance was

obtained for the test case calculations used in the

work.

The improvement in the memory usage of the

paral lel code was acheived through the

implementation of a number of alternative parallel

algorithms for which the memory requirement

could be scaled down by using more processors.

In the case of some of CASTEP's file input and output

routines, this necessitated the use of certain Cray-

specific I/O routines. The results of this work are

illustrated for one medium-sized test case, a 37-

atom simulation of an aluminium impurity in silica,

in figure 1.

As can be seen, the memory usage per

processor, even when many processors are used,

tends to a particular lower limit below which it

cannot further be reduced. For large systems, this

lower l imit was greater than the 256 Mbytes

available on the T3E.

Figure 1 : Per-processor memory usage for a

typical medium-sized CASTEP calculation. Squares

and crosses show memory usage before and after

the CSAR work.

However, following the implementation of

alternative parallel algorithms, the limiting memory

usage has been substantially reduced. For larger

systems it is likely that this reduction will be even

more dramatic than that shown here, and indeed

much larger CASTEP calculations can now be

performed on the Cray T3E than were hitherto

possible.

The development work already described has

been aimed primarily at getting the latest CASTEP

functional ity working on the T3E for large

calculations. Now that this has largely been

achieved, we are beginning to turn our attention

to the optimisation of the code, so that these

calculations can be performed as efficiently as

possible. This task is complicated by the fact that

optimisation needs of the code depend strongly

on the nature of the calculation being performed.

However, some initial optimisation results have been

obtained, which can be expected to make some

significant improvement to the performance of the

code for a wide range of calculations.

¬ ¬C A S T E P

Article Cont.-

2 4 8 16 32
Number of processors

0.0

50.0

100.0

150.0

200.0

M
em

or
y

us
ag

e
(M

by
te

s
pe

r
pr

oc
.)

CSAR Focus, Edition 5, Summer 2000.12

These particular optimisations focus on the

implementation of the Fast Fourier Transform (FFT)

algorithm in the code, which for many calculations

can account for a very significant part of the total

execution time. CASTEP uses a three-dimensional

FFT on a distributed data grid, which involves three

sets of non-distributed one-dimensional FFTs,

interspersed with intra-processor and inter-

processor data copy operations.

Various optimisations have been applied to

this part of the code, the results of which are

indicated in figure 2. This plot shows CPU times per

FFT, for a range of grid sizes, before and after

optimisation. The squares indicate timings taken

from the original unoptimised routine, and the

crosses show the result of applying a rather general

cache-based optimisation to the 1-D FFT part of the

code, which should show a s similar benefit an all

cache-based computer architectures (including,

for example, an SGI Origin2000 such as fermat). The

diamonds show timings obtained using a Cray-

specific library routine for the 1-D FFT, and the

triangles show the effect of also using a Cray-

specific routine for the intra-processor data copy

operations. These results illustrate rather well the

Figure 2 : CPU times per FFT as a function of

grid size, before and after various optimisations as

described in the text.

general principle that, while some generic

optimisations can make a very s ignif icant

difference to the performance of a piece of code,

often vendor-specific library routines can provide

much greater performance for relatively little

programmer effort.

The timings shown in figure 2 focus exclusively

on the FFT routine, and therefore in a real example

the improvement in performance may not be quite

as dramatic as it suggests. However, for the

medium-sized calculation described above, the

overall execution time of the code on 16 processors

drops from 312 seconds with the original FFT to just

183 seconds when using the Cray-specific routines,

a 70% improvement in performance!

Conclusions

The parallelisation and optimisation support

provided by CSAR to the UKCP consortium in

connection with the CASTEP code is clearly of an

unusually extensive and in-depth nature. However,

it serves as a good illustration of the enormous

benefits that can accrue from such a relationship.

For example, although CSAR's support for CASTEP

has continued over a number of months, the

optimisation work described above took place over

only a small fraction of that time, and it is not

unreasonable to expect that other codes could

similarly benefit from the investment of just a few

support tokens!

Footnotes

[1] http://www.cse.clrc.ac.uk/Activity/UKCP

[2] http://www.msi.com/materials/cerius2/

castep.html

[3] e-mail: ukcp@dl.ac.uk

¬ ¬C A S T E P

Article Cont.-

0 50000 100000 150000 200000
FFT Grid points

0.0

100.0

200.0

300.0

400.0

500.0

C
P

U
 ti

m
e

pe
r

F
F

T
 (

m
s)

