
FOCUS 22

Optimising Linear Algebra on SGI
Orig ins

In this article I outline some optimisation
work that I have carried out for a user group, and
how we intend, with information from the user
community, to survey the use of linear algebra
libraries with the intention of improving their
performance.

ScaLAPACK, BLAS and Scalability

The code that was passed to me by Patrick
Briddon from Newcastle University Physics was
dependent upon a ScaLAPACK routine that
affected scalability to the extent that a complete
revision of the techniques was necessary.
Scalapack is regarded as the standard distributed
linear algebra library, so to deviate from this
tradition is perhaps surprising, but if we take a
look at the history of Scalapack and its
emergence then we can perhaps see some
validation in the decision. Many of the Scalapack
authors are familiar names that created the BLAS
and LAPACK (e.g. Dongarra, Demmel) and the
package is infused with those features that are
characteristic of BLAS. The PBLAS (Parallel BLAS)
were designed to act as parallel version of Levels
1,2 and 3 BLAS whilst the BLACS (Basic Linear
Algebra Communication Subprograms) were
developed as the communications layer on which
the PBLAS would operate.

It seems to me that the field of High
Performance Computing has developed hugely
since Scalapack was unearthed and that the term
scalable is seen in a different light. Whilst a
numerical analyst may require a code to be
parallelised over a number of processors, his
main concerns are the numerical stability and error
propagation within the resultant code.

Adrian Tate
CSAR Applications Support, University of Manchester

In the field of High Performance Computing,
as the number of processors of production
machines increases and as the availability of
resources is more carefully administered, the
overriding concerns are to produce truly scalable
codes that can be used effectively on any number
of processors. Hence, the use of ScaLAPACK
routines for such purposes could well be
described as an over-extension of its original
design purpose. Benchmark f igures for
ScaLAPACK (see [1] ,[2] or [3]) reveal sub-linear
scaling to be a generic feature since the ratio of
communication/computation is very high. Thus, if
we are to improve the scaling potential of
Scalapack it is not by improving the computational
efficiency but by reducing the time spent in
communications.

Routine PBDTRNV

To continue we must imagine a large array
(matrix) held on a distributed environment. The
distribution in ScaLAPACK is always block-cyclic
[4]. Figure 3 shows a 5x5 matrix distributed over
a 2x2 BLACS process grid. The benefits of 2-d
block cyclic storage lay in the feature of row
elements remaining as row elements and column
elements remaining as column elements. The
code in question uses various ScaLAPACK and
PBLAS routine to operate on this distributed
process grid.

FOCUS 23

a1 1 a1 2 a1 3 a1 4 a1 5
a2 1 a2 2 a2 3 a2 4 a2 5

a3 1 a3 2 a3 3 a3 4 a3 5

a4 1 a4 2 a4 3 a4 4 a4 5

a5 1 a5 2 a5 3 a5 4 a5 5

 0 1
 a11 a12 a15 a13 a14
 0 a21 a22 a25 a23 a24
 a51 a52 a55 a53 a54

 1 a31 a32 a35 a33 a34

 a41 a42 a45 a43 a44

Figure 1. 2-d block cyclic distribution as used in Scalapack

To be brief, much of the lack of performance
in the code was found to be due to Scalapack
routine named PBDTRNV. This routine performs a
seemingly simple operation upon a vector held
in a process grid. Looking at the 3x3 process
grid of Figure 4, we can visualize the transposition.

 or

 Figure 2. Transpose on a 3x3 process Grid

Though this operation appears simple, routine
pbdtrnv is intricate and complex. The
corresponding vector segments are extracted
from the array within which they are
contained, condensed (if not held
contiguously), copied to a WORK array, sent
to the appropriate processor (using the MPI
BLACS), re-stretched and then copied into the
appropriate array. Optionally the transposed
vector is then copied across all process
columns (or rows).
The problem here lays in the use of MPI as
the message passing primitive on which the
operations are performed. Though a simple
operation, the two sided communications

represent a) a natural overhead in terms of latency
b) an over complication in terms of the linear
algebra involved. In the case in question, the vector
was never held within a two-dimensional array, so
the extraction element of the routine was
unnecessary, additionally the arrays were
contiguous and required no condensing/stretching.
This vastly simplifies the necessary options,
especially if we can use one-sided communications.

Shmem point-to-point calls are tremendously
efficient in comparison to their MPI counterparts.
Figure 3 shows the relative performance of BLACS,
MPI and shmem point-to-point data transfers.
BLACS comms are via MPI so the figures for these
are not surprising, but their inclusion in this data is
important since they form the communication layer
of Scalapack.

FOCUS 24

Vector length MPI(SEND) BLACS(DGERV2D) SHMEM(GET)
100 0.221 0.249 0.0085
500 0.356 0.385 0.0379
1000 0.576 0.649 0.0602
1500 0.867 0.902 0.0884
2000 1.122 1.175 0.1180

Figure 3. Relative
performance of point to
point comms (based on
10000 data transfers)

The resultant replacement to pbdtrnv used
shmem 1-sided communications to directly extract
the necessary blocks of data for each processor.
The work is thus reduced to 1) calculating the
necessary target processor, and 2) using
shmem_get calls to directly obtain the vector
segment from the processor’s memory. There are
synchronization issues which will prevent the full
performance gain one may expect from the data
in figure 3, but with careful coding there is still a
notable performance increase. We will present
the results for this specific study at the CUG
conference in May.

The natural conclusion to draw from this work
is that there should be some work going into
ScaLAPACK and its use of MPI_BLACS. Cray
developed a shmem implementation of the
BLACS some years ago, though on the Origins it
remains standard to use the MPI version. There
is scope to develop an opt imised
communications layer to existing ScaLAPACK
routines specifically on Origins. One option would
be, as with the Cray version to entirely use shmem
comms. A problem with this is shmem’s
dependency upon powers of two numbers of
processors for its collective routines (stride in
collective routines are declared using log2 stride).
I’m addressing this issue and hope to create a
shmem ‘branch’ broadcast [5] that can be used
on any grid size and which will still outperform
MPI_BCAST or the BLACS routine DGEBSD2D.
This should improve the code mentioned above
significantly for process grids that don’t have the
desirable grid lengths, whilst otherwise the normal
shmem_bcast can be used (which outperforms
MPI_BCAST by figures comparable to those in
Figure 3.

Further, as we have proved with PBDTRNV,
1-sided comms can improve things at the
routinelevel so there is a real possibility of CSAR

staff being able to optimize specific library routines
in this way. Further work will be to utilise the virtual
shared-memory aspect of the Origin. Using careful
data placement, remote data may be accessed
and copied, thus reducing further the latency in
data transfer). So, a library of high-performance
replacements to commonly used routines will be
developed.
 .To aid us in this work it would be very beneficial
to survey the CSAR community’s relationship and
dependency of ScaLAPACK or of any other
distributed libraries, if you have got this far through
this article you have some interest in this, so
please contribute by letting us know if you have
any kind of ScaLAPACK dependency in your code,
what it is, and if it is causing performance problems.
Please send your useful (or critical) comments to
adrian.tate@man.ac.uk.

References

[1] NCSA Scalapack Origin 2000 Benchmarks:
http://www.ncsa.uiuc.edu/People/sirpa/all.html

[2] UCLA Scalapack benchmarks http://
w w w . a t s . u c l a . e d u / a t / b e o w u l f / p a r a l l e l /
parallel_benchmarks.htm#SCALAPACK%20Benchmark

[3]Lemans Scalapack benchmarks
http://weblotus.univ-lemans.fr/w3lotus/

node15.html

[4] Scalapack users guide http://
w w w . n e t l i b . o r g / s c a l a p a c k / s l u g /
node75.html#SECTION04431000000000000000

[5] A branching algorithm applied to a
process grid of length n will require log 2 n
shmem_put/get operations, as such it is likely that
such a routine will out-perform the MPI_BCAST and
BLACS_BROADCAST routines. Further work would
be necessary to generalize shmem_barrier calls
that are similarly dependent upon log2 strides.

