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1 Overview

Wise2 is a package focused on comparisons of biopolymers, commonly DNA
sequence and protein sequence. There are many other packages which do this,
probably the best known being BLAST package (from NCBI) and the Fasta
package (from Bill Pearson). There are other packages, such as the HMMER
package (Sean Eddy) or SAM package (UC Santa Cruz) focused on hidden
Markov models (HMMs) of biopolymers.

Wise2’s particular forte is the comparison of DNA sequence at the level of
its protein translation. This comparison allows the simultaneous prediction of
say gene structure with homology based alignment. There is currently no other
package that I know of that contains this type of algorithm with a full blown
gene prediction model and a hidden Markov model of a protein domain.

Wise2 also contains other algorithms, such as the venerable Smith-Waterman
algorithm, or more modern ones such as Stephen Altschul’s generalised gap
penalties, or even experimental ones developed in house, such as dba (see section
6.1). The development of these algorithms is due to the ease of developing such
algorithms in the enviroment used by Wise2.

Wise2 has also been written with an eye for reuse and maintainability. Al-
though it is a pure C package you can access its functionality directly in Perl.
Parts of the package (or the entire package) can be used by other C or C++
programs without namespace clashes as all externally linked variables have the
unqiue identifier Wise2 prepended. Java and CORBA ports are being consid-
ered - see 7 the API section

Finally Wise2, although implemented in C makes heavy use of the Dynamite
code generating language. Dynamite was written for this project, by Ewan Bir-
ney. There is a separate documentation for Dynamite found at http://www.sanger.ac.uk/Software/Dynamite.

1.1 Authors

The Wise2 package was principly written by Ewan Birney, who wrote the main
genewise and estwise programs. The protein comparison database search pro-
gram was written by Richard Copley using the underlying Wise2 libraries.
Wise2 also uses code from Sean Eddy for reading HMMs and for Extreme value
distribution fitting.

However the authorship of Wise2 should be more fairly distributed between
the main authors and the wonderful alpha testers on wise-alpha. Special mention
goes to Gos Micklem and Niclas Jareborg and for their work at testing and their
patience in my coding over the last couple of years. Other notables are (in no
apparent order) - Erik Sonnhammer, Doug Rusch, Steve Jones, Ian Korf, Iftach
Nachman, George Hartzell and Lars Arvestead. I believe that program writing is
a 50-50 partnership between the coders and the testers or developers, and these
people have actively helped me make a much better package. The URL for
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Wise2 development is http://www.sanger.ac.uk/Software/Wise2/Programming
and there is a mailing list to keep people up to date.

Please join us!
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2 Introduction for the impatient

It may well be that you want to understand Wise2’s functionality now, without
bothering with the concepts or the installation instructions. This section is
designed for you.

Wise2 has four main executable programs using sequence inputs which are
designed to provide access to the main algorithms sensibly. The algorithms you
are interested in is genewise - compare protein information to genomic DNA
and estwise - compare protein information to EST/cDNA DNA.

These are the programs which you might use for this.

genewise a single protein vs a single genomic dna sequence

genewisedb a database of proteins vs a database of genomic dna sequences

estwise a single protein vs a single EST/cDNA sequence

estwisedb a database of proteins vs a database of EST/cDNA sequences

If you see error messages like

Warning Error
Could not open human.gf as a genefrequency file

Warning Error
Could not read a GeneFrequency file in human.gf

...

This means that the enviroment variable WISECONFIGDIR has not been set
up correctly. You need to find where the distribution was downloaded to (a
directory called something like wise2.1.16b) and inside that directory should be
the configuration directory wisecfg. You need to setenv WISECONFIGDIR to
that directory.

In each of the programs the protein can either be a protein sequence or a
protein profile HMM, as made by the HMMER package (both version 1 and
version 2 HMMs can be read). Any of the databases can have one entry (in
which case more efficient routines are used), and databases of profile HMMs,
such as those provided by Pfam, can be used.

The simple running of a protein sequence (drosophila) vs a human genomic
sequence, using genewise is given below. The output comes on stdout, which in
normal unix notation can be redirected to a file.

adnah:[/birney/search]<98>: genewise road.pep hngen.fa
genewise (unreleased release)
This program is freely distributed under a GPL. See source directory
Copyright (c) GRL limited: portions of the code are from separate copyright
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Query protein: roa1_drome
Comp Matrix: blosum62.bla
Gap open: 12
Gap extension: 2
Start/End local
Target Sequence HSHNRNPA
Strand: forward
Gene Paras: human.gf
Codon Table: codon.table
Subs error: 1e-05
Indel error: 1e-05
Model splice? model
Model codon bias? flat
Model intron bias? tied
Null model syn
Algorithm 623
Find start end points: [25,1387][346,3962] Score 87719
Recovering alignment: Alignment recoveredExplicit read offone 94%
genewise output
Score 253.10 bits over entire alignment
Scores as bits over a synchronous coding model

Warning: The bits scores is not probablistically correct for single seqs
See WWW help for more info

roa1_drome 88 AQKSRPHKIDGRVVEPKRAVPRQ DID
A +RPHK+DGRVVEPKRAV R+ D
AMNARPHKVDGRVVEPKRAVSRE DSQ

HSHNRNPA 1867 gaagaccagggagggcaaggtagGTGAGTG Intron 2 TAGgtc
ctacgcaataggttacagctcga<0-----[1936 : 2083]-0>aca
tgtagacggtaatgaagatccaa tta

roa1_drome 114 SPNAGATVKKLFVGALKDDHDEQSIRDYFQHFGNIVDINIVIDKETGKK
P A TVKK+FVG +K+D +E +RDYF+ +G I I I+ D+ +GKK
RPGAHLTVKKIFVGGIKEDTEEHHLRDYFEQYGKIEVIEIMTDRGSGKK

HSHNRNPA 2093 acggctagaaatgggaaggaggcccagttgctgaaggagaaagcgagaa
gcgcatctaatttggtaaacaaaatgaataaagatattattcaggggaa
aatccatgagatttctaactaatcaatttagtaatagtacgtcactcga

roa1_drome 163 RGFAFVEFDDYDPVDKVV QKQHQ
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RGFAFV FDD+D VDK+V QK H
RGFAFVTFDDHDSVDKIV L:I[att] QKYHT

HSHNRNPA 2240 agtgtgatggcgtggaagAGTAAGTA Intron 3 TAGTTcatca
ggtcttctaaaactaatt <1-----[2295 : 2387]-1> aaaac
gctctactcctccgtgtc gactt

roa1_drome 187 LNGKMVDVKKALPKQNDQQGGGGGR
+NG +V+KAL KQ R
VNGHNCEVRKALSKQEMASASSSQR G:G[ggt]

HSHNRNPA 2405 gagcatggaagctacgagagttacaGGTATGCT Intron 4
tagaagatgactcaaatcgcccgag <1-----[2481 : 2793]
gtccctataacgagaggtttaccaa

...truncated

The output is as follows

• Parameters of the comparison used (it used default parameters)

• The alignment of a combined homology + gene prediction alignment

The pretty alignment shows the protein sequence on the first line, followed by
a line indicating the similarity level of the match followed by 4 lines representing
the DNA sequence. The DNA sequence in the exons descending in triplets, each
triplet being a codon. The translation of each codon is shown above it. Between
the two protein sequences a line indicating the similarity of the match is printed.
In introns the DNA sequence is not shown but for the first 7 bases (making
the 5’ splice site) and the last 3 bases of the 3’ splice site. The intervening
sequence is indicated in the square brackets. Above each intron, for phase 1
and 2 introns (ones that split a codon) the implied protein to conceptual gene
match is displayed, with the codon in square brackets.

Generally the defaults of the options are reasonably sensible, and for the
main part you should trust them until you become familar with the package.

The following commands show how to run the other programs in a variety
of different modes

2.1 Common running modes

Running modes for genewise (genomic to protein comparisons).
NB, the order of the -options are not important, but the protein file must

be before the dna file

genewise protein.pep cosmid.dna
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• compares a protein sequence to a DNA sequence (same as the example
above)

genewise -hmmer pkinase.hmm cosmid.dna

• compares a protein profile HMM to a DNA sequence

genewisedb protein.pep human.fa

• compares a single protein sequence to a database of DNA sequences

genewisedb -hmmer pkinase.hmm human.fa

• compares a single protein profile HMM to a database of DNA sequences

genewisedb -prodb protein.pep -dnas cosmid.dna

• compares a database of protein sequences to a single dna sequence

genewisedb -pfam Pfam -dnas cosmid.dna

• compares a database of protein profile HMMs to a single dna sequence

genewisedb -prodb protein.pep human.fa

• compares a database of protein sequences to a database dna sequences -
beware, this will take a while!

genewisedb -pfam Pfam human.fa

• compares a database of protein profile HMMs to a database of single
sequences - beware, this will take a while

The estwise (protein to est/cDNA comparisons) have precisely the same
running modes. Listed for completeness below

estwise protein.pep singleest.fa

• compares a protein sequence to a DNA sequence (same as the example
above)

estwise -hmmer pkinase.hmm singleest.fa

• compares a protein profile HMM to a DNA sequence

estwisedb protein.pep est.fa

• compares a single protein sequence to a database of DNA sequences

estwisedb -hmmer pkinase.hmm est.fa

• compares a single protein profile HMM to a database of DNA sequences

estwisedb -prodb protein.pep -dnas singleest.fa

• compares a database of protein sequences to a single dna sequence

estwisedb -pfam Pfam -dnas singleest.fa

• compares a database of protein profile HMMs to a single dna sequence
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estwisedb -prodb protein.pep est.fa

• compares a database of protein sequences to a database dna sequences -
beware, this will take a while!

estwisedb -pfam Pfam est.fa

• compares a database of protein profile HMMs to a database of single
sequences - beware, this will take a while

2.2 Common options to change

There are a number of common options that can be used. Options can be issued
anywhere on the command line.

-help help on options

-version show version and build date (useful for bug reporting)

-quiet remove update line on stderr and informational messages

-silent suppress all messages to stderr

-report number for database searching, issue a report on stderr every number
of comparisons (useful to ensure it is actually running)

-trev genewise and estwise - use the reverse strand of the DNA

-both genewise and estwise - use both strands of the DNA

-u position The start point in the DNA sequence for the comparison

-v position The end point in the DNA sequence for the comparison

-init [default/global/local/wing] (see section 4.3.3) For protein sequences the
default is to be local (like smith waterman). For protein profile HMMs,
the default is read from the HMM - the HMM carries this information
internally. The global mode is equivalent to to the ls building option (the
default in the HMMer2 package). The local mode is equivalent to to the
fs building option (-f) in the HMMer2 package. The wing model is local
on the edges and global in the middle.

-gene file change gene model parameters. Currently we have either human
(human.gf) or worm (worm.gf)

-genes Output option for genewise algorithms - show an easy to read gene
structure report

-trans Output option for genewise algorithms - provide an automatic transla-
tion of the predicted gene as a fasta format
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-cdna Output option for genewise algorithms - provide an automatic construc-
tion of the spliced dna sequence as a fasta format

-ace Output option for genewise algorithms - provide an ACeDB subsequence
model output

2.3 Common gripes, Cookbook and FAQ

2.3.1 It hasn’t given me a complete gene prediction

The genewise algorithm does not attempt to predict an entire gene, from Met to
STOP. It tries to predict regions which are justified with the protein homology
and no more.

This does mean you can be confident of the predictions that genewise makes

2.3.2 How can I get rid of the annoying messages on stderr?

Some people like them. use -quiet

2.3.3 It goes far too slow

Well... I have always had the philosophy that if it took you over a month
to sequence a gene, then 4 hours in a computer is not an issue. However, in
particular for times when people are using genewise simply to confirm that
the a gene prediction is correct with respect to a protein sequence (sometimes
the notional translation!) it is taking too long. In many cases you will know
the rough region to compare the sequence to - if so use the -u and -v options
to truncate your DNA at the correct points (the output will remain in the
coordinates of the full length sequence).

For database searching there is the option of using SMP boxes efficiently
with the pthreads port.

There are also a number of heurisitcs that use the BLAST program to pro-
vide the speed. These heuristics are found in the perl/scripts directory, called
halfwise and blastwise. The scripts have extensive installation instructions, and
I completely expect people to edit them for their system.

There is functionality for providing a heurisitic bound to the space the al-
gorithm explores in the alignment. This is done via the potential gene option
in genewise. It is not well tested out.

2.3.4 I have a new cosmid. What do I do?

One thing to do is to use the halfwise script available in the perl/scripts package.
Another is to use the blastwise script.
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2.3.5 segmentation fault = bottle of champagne

You’ve found a bug? I am really keen to hear from you. I want to hear about the
problems you’ve got. Each year I award my best tester with a prize. This year
(1998/99) it will be a bottle of champagne. Send a mail to birney@sanger.ac.uk
for your prize!

2.3.6 Can I modify or use the Wise2 source code?

Of course you can - it is Open Source code, licensed under the Gnu Public
Licensed (GPL’d), like emacs or gcc. For more information on this License read
the GNULICENSE file in the distribution.

As well as using the source code, you can if you like contribute directly back
into the Wise2 source code. Get in contact with me if you would like to do this.

2.3.7 Making a single gene prediction on the basis of a close homolog

This is perhaps the easiest use of genewise. The basic formulation is

%genewise protein.fasta dna.fasta

To get out computer parsable formats of the gene prediction try -genes or -gff
or -ace. To get out the protein translation in one go use -trans

2.3.8 Using non human/worm/fly genomic DNA

At the moment, genewise only has gene frequency files for human and worm
sequences. The production of these files are based around somewhat annoying
and non portable script. In any case, making a dataset requires alot of effort as
it needs to be clean

The consequence of all this is that the species that you are comparing against
(eg, hamster) may not have a gene frequency (.gf) file. In which case you
basically have two options

• Use a close species - ie, for hamster, use human or rat

• Use -splice flat -intron tied which switches the splice model to “start at
GT, finish at AG” with no other information

2.3.9 Working with non spliced (bacterial) genomic DNA

Use genewise with the -alg 333 or -alg 333L options. This has all the outputs
of genewise but does not consider introns. The -gene option and -intron, -splice
options are all pointless. The only options to worry about is the -subs and -indel
for substitution and insertion and deletion errors respectively.
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2.3.10 Working with ESTs

Use the estwise/estwisedb programs

2.3.11 Getting out the protein translation

You have three approaches for getting out protein translations

• -pep available on all programs, provides the translations moving over
frameshifts and introns

• -trans available on genewise/genewisedb provides the translations across
introns but breaks on frameshift errors. This means that the translations
can be correctly placed on the genomic DNA provided

• -mul available only on estwisedb when a HMM is used, provides a protein
multiple alignment of all the DNA hits derived against the HMM match

2.3.12 Using Pfam

Pfam can be used with the genewisedb or the estwisedb program with the -pfam
flag. Usually you want to also use the -dnas (single DNA sequence flag) as well.
An example run would be

genewisedb -pfam Pfam -dnas myseq.fa

If you have set up the HMMER package to work with Pfam using the enviroment
variable HMMERDB, Wise2 will also pick that up as well.

2.3.13 Optimising alignment speed

Wise2 assummes you have a rather small amount of memory (20 MBytes).
When it is making an alignment, if it cannot make the explicit matrix in that
size (being length of query × length of target × state number) it has to move to
linear memory (length of query × state number). The linear memory is much
slower (it is the one that starts with “Find start end points”).

If you have more memory than 20 Mbytes, then it is really sensible to up
the number, using the -kbyte option. For a machine with say 64Mbytes physical
memory I would suggest putting an upper limit of 50Mbytes with -kbyte. This
does assumme you are not using it for anything else.

You can change the compile time default in basematrix.h if you can’t be
bothered to remember to change it every time

13



2.3.14 Optimising search speed

Make sure you have compiled with optimisation. If you are using the make all
from the top level you have.

If you have a large SMP box, you can compile with pthread support. The
searches work on SGI/Compaq alpha/Suns. There are some issues about some
architecture ports, which I need to expand somewhere in the docs, but first off,
just try compiling with pthreads (see section later) and using pthreads in the
search.

For real, order-of-magnitude speed ups, you are going to have to use a heuris-
tic stage before the actual database search - in other words, using BLAST. I
dislike this, but it is fact of life, and there are two scripts in perl/scripts, halfwise
and blastwise, which help you do this. Both scripts use Steve Chervitz excellent
perl Blast parser, which is available in bioperl.

• halfwise is for the Pfam search. You need to pick up the halfwise database
(done for a specific release of Pfam) from the ftp site.

• blastwise is for post processing blast results. It uses the Wise2 perl port
to do this, so you have to go make perl at the top level

halfwise is a pretty sensible, self contained script. blastwise I expect people
to modify heavily to get to work as wished on their systems. Please read it,
and add in your own heuristics (eg, figuring out start/end points). I am very
interested in better heuristics in this area.
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3 Installation

Installation is quite easy as long as you are au fait with standard UNIX util-
ities. You should ftp to ftp.sanger.ac.uk, log in as anonymous and move to
pub/birney/wise2. You can then pick up the release - I would pick up the latest
numbered in that directory. (NB, if you want to be working in the development
release, go to the pub/birney/wise2/alpha directory, but be sure to read the
html help at http://www.sanger.ac.uk/Software/Wise2/Programming).

3.1 Building the executables

The release is distributed as a gzipped, tar file. To unzip and untar in a single
command you can type

%zcat wise2.1.12b.tar.gz | tar -xvf -

This will untar into a directory called ’wise2.1.12b’ (of course, your version
of Wise2 might be different).

Once you have made the tar file, it should build completely cleanly as long
as you have an ANSI C compiler. If in doubt, just assumme that it is, but
in particular sun users might want to use gcc (gnu cc) as the sun cc compiler
installed by default is often non-ANSI. To change the cc compiler you only need
to edit the line in the top level makefile called CC = cc to CC = gcc.

To build the package type

%cd wise2.1.12b
%make all
%make bin

The executable files will now be in wise2.1.12b/bin
I am interested in all compiler errors, and consider most of them to be bugs

(which means if you report them you could be on the champagne list!)

3.2 Environment set up

The Wise2 package needs to know where a number of files are (eg, the gene
predicition statistics). These files are in the directory called wisecfg/. You will
need to setenv WISECONFIGDIR to this directory (you can of course move the
directory elsewhere, and set WISECONFIGDIR to it).

3.3 Building with thread support (for SMP machines)

To build with pthread support you must switch on some extra compile time
options before you type make all. These are found at the top of the makefile in
the top directory, and it is pretty clear from the makefile what to do. See the
section 5.5 for information on how to run pthreaded code.
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3.4 Building Perl port

To build with Perl support you need to go

make perl

at the top level. This should build everything correctly. The only problem is if
you have a Solaris or *BSD box. If so you need to compile with -fpic or -fPIC
depending on your compiler. This needs to go into the top level CFLAGS line.
In addition, in the out-of-the box perl distribution for solaris they built it with
a different compiler to the one it comes with (idiots!), so the perl generated
makefile has the wrong -fpic option. You need to edit that by hand.
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4 Concepts and conventions

The algorithms used in Wise2 have a strong theoretical justification, which is
useful, though not necessary to understand. For example to understand what
most of the options do in the gene model part of genewise you need to understand
the algorithm.

4.1 Technical Approach

You can miss this section which describes some of the theoretical background of
the work. The algorithms are based around a ’Bayesian’ formalism that has been
established in Bioinformatics by such people as David Haussler, Gary Churchill,
Anders Krogh, Richard Durbin, Sean Eddy and Graeme Mitchinson, as well as
many others. In this formalism there is assumed to be a generative model of the
process that you are observing, which has probabilities to generate a number
of different observations. Deciding whether this model fits a previously unseen
piece of data or not is the first decision to make. Given that the data fits, a
second question is what actual processes were the most likely to produce the
observed data. Both these questions fit naturally into a Bayesian framework
where the result is a posterior probability having seen the data.

For people coming from a bioinformatics/biology background where the last
paragraph may seem very confusing, it is only because this a different (and well
established) field with their own terminology to describe the algorithms. In fact
the methods a very close to standard techniques presented in bioinformatics.
The generative models that we use are the models that are implied by the
standard bioinformatics tools. For example, the Smith-Waterman algorithm
implies a process of evolution with certain probabilities for seeing say an Leucine
to Valine substitution and certain probabilities for creating and extending a
insertion (gap). As you can see you can almost replace the word ’probability’
with ’score’ to return to the standard method, and mathematically it is almost
that easy: the score is related to the log of the probability.

Perhaps a better known example is the relationship between the old profile
technology, as developped by Gribskov and Gibson along with others, and its
probabilistic partner, profile Hidden Markov Models (profile HMMs). In terms
of the actual algorithm these two methods are very similar: it is simply that
the profile HMM has a strong probabilistic model underlying it, allowing well
established techniques to be used in its generation.

4.2 Introduction to Models in Wise2

Wise2 contains a number of algorithms, each of which are based around one of
two biological models.

genewise comparison of a related protein to genomic DNA
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estwise comparison of a related protein to cDNA (or ESTs)

This models themselves are built up from two component models, one for
how protein residues are matched, and one for the gene prediction process. For
the model of protein residues I have taken the established models of profile
HMMs. The model of splicing and translation we developed with an eye to
biology. It has many of the features of the GenScan model [chris Burge]. The
model of translation (for estwise) is simple.

4.3 Model

The main model to understand is the genewise model (called genewise 21:93 for
reasons discussed below). It is this model which the other models are based on -
for the estwise models, by removing the intron generating part of the models, and
for the other genewise algorithms by making approximations to genewise21:93.

A diagramatic representation of genewise21:93 is shown in the file genewise21.ps
The central part of the model is the Match-Insert-Delete trio common to

both profile HMMs (such as HMMER models) and the smith waterman model.
This trio of states is one model ’position’ in the profile HMMs, where each model
position contains a Match, Insert and Delete states. This means to interpret the
figure of the model in the way the profile HMM models are usually displayed,
you have to imagine a series of these states concatonated together. I imagine
the model growing as stack of pages out from the figure, each new page being a
new position in the profile HMM.

The first addition to the model are the frameshifting transitions, shown in
with x4 boxes above them. These occur whenever there is a transition which
produces a codon: in effect all transitions that terminate at either match or
insert states. There are four frameshifting transitions in each Notice that there
are frameshifting transitions from Delete to Match, which is equivalent to saying
that a frameshift occurs on the codon just after a run of deletions in the model.
It is these sorts of frameshifts that are not well modelled by other algorithms.

The second addition involves the intron emitting states found in the green
boxes. Each intron is modelled by having 5 regions, two of which are fixed
length. The five regions are

• 5’SS The splice site consensus region at the 5’ end of the intron. Fixed
length

• The central part of the intron that constitutes the major part of the intron

• The polypyrimidine tract (a region of C/T bias upstream of the 3’SS)

• an optional joining region between the poly-py tract and the 3’SS

• 3’SS The splice site consensus region at the 3’ end of the intron. Fixed
length
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Notice that there is no branch site, because we could not produce a good
enough statistical model for it.

This model can be modelled using 3 states, with the fixed length regions
being accommodated using transitions which emitted the appropiate length of
sequence.

Each of the intron models must be duplicated 3 times to account for the 3
different phases of introns (each phase being a different placement of the intron
relative to the codon), so we need to duplicated these 3 states at least 3 times.
In addition, if this intron lies in an insert state, ie, the surrounding protein
sequence in the exons are being produced by an insert state in the underlying
protein profile HMM, so we have to maintain that information across the intron.
This means that we need to duplicate the intron states 6 times in total: 3 times
for the different phases and twice on top of that for the different protein states
this intron could lie in.

4.3.1 Parameterisation of the model

The model presented above seems biological sensible, but how on earth are we
going to parameterise it? Are we honestly going to let a user try to juggle the
forty odd parameters inherent to this model? Clearly not. The approach we
have taken to this is to provide set statistics derived from a maximum likelhood
approach from known genes - this requires virtually no training - and then
give switches to the user to turn on and off a variety of different parts of the
algorithm.

The model is parameterised as probabilities, but actually calculated in log
space. If you look in the code you would find that there is alot of switching
between the two spaces: these are provided by the functions Probability2Score
and Score2Probability (notice that the ’Score’ here is very specific to the Wise2
package - you can’t put any old score into Score2Probability to get a probability
out as it depends on how that Score was converted into Log space).

4.3.2 The protein model

For the emissions of the actually underlying amino acids when we have a profile
HMM, we are lucky - we can take the probabilies defined in the HMMer2 models.
This is completely natural and means I don’t have to worry about deriving
probabilities for the profile HMMs

In the case where we have a protein sequence, I somehow have to get to a
profile HMM type representation. Thankfully the smith waterman algorithm in
terms of architecture is very close to a profile HMM, and so the only problem is
mapping the usual scores used in the smith waterman algorithm to probabilites.
This is quite hard to do correctly, but I’ve hacked it by knowing that the blo-
sum62 matrix is given in half bits, in other words using a 2*log2 mapping from
probability space to the give scores in the matrix. By reversing this process one
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can get pretty good emission probability for the amino acids. I now assumme
that the gap penalities are as if they were written in half bits. A certain amount
of normalisation is required to make sure things add to one, and eh voila - one
profile HMM from a single sequence.

4.3.3 Start End points

One interesting issue about the protein model is how the start end points work.
For proteins it is obvious that for distant homology, it needs to be local - ie can
start or finish anywhere in the sequence. For protein HMMs it is less clear. If a
HMM really represents a single domain then global start end points are correct.
However, many times local start end points are useful.

The HMMer2 models internally carry whether this HMM is has global or
local (or indeed any type) of start end policy.

However, the genewise algorithm is quite dependent on the models being
global to effectively predict introns in domains, when the looping algorithm
(multiple copies of the domain) is present. This is because nearly always in a
local HMM, an intron can be better modelled as the end of the domain half
way through and the start of a new domain half way through, further down the
sequence, thus not predicting the intron. To get clean intron prediction, one
needs to go to global mode. However, using global mode forces the start and end
point of the model to be really correct, and in some cases (in particular some
Pfam models) this makes very incorrect results on the edges of the domain. To
combat this another type of start end policy is introduced - wing. This has a
local start mode for the first 15 model positions and end mode for the last 15
model positions, but global in the central part of the model.

In the programs one can set four types of start end policy

• default local for protein, and the HMM default for HMMs

• local local

• global global

• wing local on the edges, global in the middle

4.3.4 The gene model

For the emissions of the gene model we had to do more work. What we did was
to make a database of known genes, with annotated gene structure. These genes
then provided a raw set of counts for particular parts of the gene structure. It
is these raw counts which are stored in the .gf files. (we store the raw counts
because one might want to do something clever for deriving the probabilities
of certain things using these counts. Counts are the basis for the probability
derivations, not frequencies).
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The only issue here is what to do with the splice sites. We were well aware
that the information in the splice sites is considerably more than just the simple
position matrix. We chose to use a single branching (biased) decision tree, in
which each branch either carried along the main trunk of the tree or ended
in a leaf, each leaf representing a consensus build from A,T,G,C or N for any
character. This decision tree could be easily constructed by chosing the most
common consensus (where N is allowed where a position is better represented
by N than any specific residue), and then removing that consensus from the
list of observed consensi, and then repeating the process. This also gave us the
same basis (counts) for each consensus used in the splice sites.

One additional twist came about in the splice site development. The splice
sites overlap between their consensi and the coding sequence region. These
overlaps need to be treated correctly: the problem is that probabilistically we
have two processes wanting to account for the same DNA bases. This was
solved by assumming conditional independence between the two processes. A
more formal mathematicall approach can be found in the documented called
’probappendix’.

4.3.5 The NULL model

The probability of the model has to compared to an alternative model (in fact
to all alternative models which are possible) to allow proper Bayesian inference.
This causes considerable difficulty in these algorithms because from a algorith-
mical point of view we would probably like to use an alternative model which
is a single state, like the random model in profile-HMMs, where we can simply
’log-odd’ the scored model, whereas from a biological point of view we probably
want to use a full gene predicting alternative model.

In addition we need to account for the fact that the protein HMM or protein
homolog probably does not extend over all the gene sequence, nor in fact does
the gene have to be the only gene in the DNA sequence. This means that
there are very good splice sites/poly-pyrimidine tracts outside of the ’matched’
alignment can severely de-rail the alignment.

Basically we are in trouble with the random model parts of this problem.
The solutions is different in the genewise21:93 compared to the genewise 6:23

algorithms

• In 6:23 we force the external match portions of the homology model to be
identical to the alternative model, thus cancelling each other out. This is a
pretty gross approximation and is sort of equivalent to the intron tie’ing.
It makes things algorithmically easier... However this means a) 6:23 is
nowhere near a probabilistic model and b) you really have to used a tied
intron model in 6:23 otherwise very bad edge effects (final introns being
ridiculously long) occur.

• In 21:93 we have a full probabilistic model on each side of the homology
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segment. This is not reported in the -pretty output but you can see it in
the -alb output if you like. Do not trust the gene model outside of the
homology segment however. By having these external gene model parts
we can use all the gene model features safe in the knowledge that if the
homology segments do not justify the match then the external part of the
model will soak up the additional intron/py-tract/splice site biases.

However this still does not solve the problem about what to compare it to.
There are two approaches to the comparison

flat The homology model is scored against a single state 0.25 emission model.
This is effectively ’how likely is this DNA segement has any genes some
with this homologous protein/HMM in it’ for 21:93. It is, unsurprisingly,
a massive ’yes’ for nearly all biological DNA, and though a valid number
in terms in bayesian inference pretty biologically uninteresing. There is
also no decent interpretation of partial scores (ie, scores per domain).

syn For synchronous model pretends that there is an alternative model of a
complete gene which is dragged into the coding part of the gene when
the homology model is in the coding part. This is not probabilistically
valid, but gives better results and interpretable scores for partial regions,
ie domain by domain. (in fact, very similar scores to protein sequences).
However I’m worried about what I am doing It would be much better to
get some mathematically justification for this.

4.4 Algorithms

The algorithms are then based around this central model, but have a variety
of features removed from it progressively, either due to biological constraints
(bacterial sequences have no introns, so there is no need to model them) or to
speed up the the algorithm.

Algorithms are named in two parts, descriptive-word state-number:transition-
number. The descriptive word indicates the biological model. At the moment
there are 2 such biological models in the package

genewise comparisons of protein information to genomic DNA

estwise comparisons of protein information to cDNA/bacterial DNA (no in-
trons)

There are many other models being worked on in development

sywise comparisons of genomic DNA to genomic DNA

parawise comparions of cDNA to cDNA
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The state-number:transition-number is the number of states in the model
followed by the number of transitions. GeneWise 21:93 is the most complicated
model, with 21 states and 93 transitions. The number of states is directly
proportional to the memory usage of the program. The number of transitions
is roughly proportional to the CPU time of the algorithm. For comparison the
standard smithwaterman algorithm is a 3:7 algorithm (3 states, 7 transitions).
These numbers are per compared residue - so as genomic DNA is some 1,000
fold longer than protein sequences on average, there is an additional massive
CPU load.

Finally the algorithms can be looping or not. A Looping algorithm is one
in which the protein information can be repeated in the DNA target sequence.
This could either be due to mutliple copies of the gene in the DNA sequence or
multiple copies of a domain in a single gene. Looping algorithms are given a ’L’
tag. By default, when you use profile-HMMs you use a looping model

For the genewise family the following algorithms are available.

genewise 21:93 The largest genewise algorithm which also contains a complex
flanking model to prevent inappropiate gene predictions

genewise 21:93L The same algorithm with a looping mode. This allows a
protein HMM (nearly always a HMM) to match multiple times a DNA
sequence. This could be due to multiple domains in a single gene or
multiple genes in a DNA sequence with the domain. The algorithm doesn’t
distinguish between these possibilities.

genewise 6:23 This is a smaller, (and so faster) algorithm. The approxi-
mations made compared to genewise 21:93 are that there is no poly-
pyrimidine tract in the intron, and that introns from match states are
not distinct from introns in insert states.

A side effect of these approximations is that 6:23 is much more robust
with respect to unmasked repeats and strange composition effects found
in the DNA sequences.

genewise 6:23L The same algorithm as 6:23 but in looping mode

genewise 4:21 The smallest algorithm in the genewise family, with an addi-
tional approximation of not distinguishing between introns of different
phases. This has been compiled for short protein sequences only - effec-
tively only profile-HMMs.

For the estwise family the following algorithms are available

estwise 3:33 The largest estwise algorithm, modelling potential insertion or
deletions throughout the alignment of the protein information to the DNA
sequence.

estwise 3:33L The same algorithm but in looping mode.
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estwise 3:12 A slimmer algorithm designed for faster db searching. The algo-
rithm models enough insertions or deletions of DNA bases to ’ride through’
a indel region without too much penalty, even if it doesn’t model the most
correct one.

4.5 Scores

The scoring system for the algorithms, as eluded to earlier is a Bayesian score.
This score is related to the probability that model provided in the algorithm
exists in the sequence (often called the posterior). Rather than expressing this
probability directly I report a log-odds ratio of the likelhoods of the model
compared to a random model of DNA sequence. This ratio (often called bits
score because the log is base 2) should be such that a score of 0 means that
the two alternatives it has this homology and it is a random DNA sequence are
equally likely. However there are two features of the scoring scheme that are
not worked into the score that means that some extra calculations are required

• The score is reported as a likelhood of the models, and to convert this to a
posterior probability you need to factor in the ratio of the prior probabili-
ties for a match. Because you expect a far greater number of sequences to
be random than not, this probability of your prior knowledge needs to be
worked in. Offhand sensible priors would in the order of probability that
there is a match being roughly proportional to the database size.

• The posterior probability should not merely be in favour of the homol-
ogy model over the random model but also be confident in it. In other
words you would want probabilities in the 0.95 or 0.99 range before being
confident that this match was correct.

These two features mean that the reported bits score needs to be above
some threshold which combines the effect of the prior probabilities and the
need to have confidence in the posterior probability. In this field people do not
tend to work the threshold out rigorously using the above technique, as in fact,
deficiencies in the model mean that you end up choosing some arbitary number
for a cutoff. In my experience, the following things hold true: bit scores above
35 nearly always mean that there is something there, bit scores between 25-35
generally are true, and bit scores between 18-25 in some families are true but in
other families definitely noise. I don’t trust anything with a bit score less than
15 bits for these DNA based searches. For protein-HMM to protein there are a
number of cases where very negative bit scores are still ’real’ (this is best shown
by a classical statistical method, usually given as evalues, which is available from
the HMMer2 package), but this doesn’t seem to occur in the DNA searches.

I have been thinking about using a classical statistic method on top of the bit
score, assumming the distribution is an extreme value distribution (EVD), but
for DNA it becomes difficult to know what to do with the problem of different
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lengths of DNA. As these can be wildly different, it is hard to know precisely
how to handle it. Currently a single HMM compared to a DNA database can
produce evalues using Sean Eddy’s EVD fitting code but, I am not completely
confident that I am doing the correct thing. Please use it, but keep in mind
that it is an experimental feature.
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5 Principle Programs

The main programs are genewise, genewisedb, estwise, estwisedb. These all
have basically the same running mode

%genewise protein-file dna-file

A number of options are common to these programs from the point of view
of how they run

-help verbose help of all options

-version show version and compile info

-silent No messages on stderr, whether reports or warnings

-quiet No reports or information messages on stderr

-erroroffstd No warning messages to stderr, but reports are still issued

-errorlog [file] Log warning messages to file (useful for sending to me)

You will probably want to read the 2.1 common modes of usage section as
well

5.1 genewise

Genewise compares a protein sequence or a protein profile HMM to a dna se-
quence

5.1.1 genewise - options: dna/protein

-u start position in dna

-v end position in dna

-trev Compare on the reverse strand

-tfor (default) Compare on the forward strand

-both Both strands

-tabs Report positions as absolute to truncated/reverse sequence

-s start position in protein - has no meaning for HMMs

-t end position in protein - has no meaning for HMMs

-gap [no] default [12] gap penalty to use for protein comparisons. This is used
to estimate a probability per gap
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-ext [no] default [2] extension penalty to use for protein comparisons. This is
used to estimate a probability for an extension of a gap

-matrix default [blosum62.bla] Comparison matrix. Must be in half-bit units
(blosum62 is in half bits). This is used to estimate a probability of amino
acid comparisons

-hmmer Protein file is HMMer 2 HMM

-hname Use this as the name of the HMM.

-init [default/global/local/wing] (see section 4.3.3) For protein sequences the
default is to be local (like smith waterman). For protein profile HMMs,
the default is read from the HMM - the HMM carries this information
internally. The global mode is equivalent to to the ls building option (the
default in the HMMer2 package). The local mode is equivalent to to the
fs building option (-f) in the HMMer2 package. The wing model is local
on the edges and global in the middle.

5.1.2 genewise - options: gene model

-codon [codon.table] Codon file. The default is for the universal code, but you
can supply your own

-gene [human.gf] Gene parameter file. Provide statistics for different gene mod-
els. Current human.gf and worm.gf are provided. The statistics are basi-
cally too complicated to explain here.

-subs [1e-05] Substitution error rate, ie the assummed probability of base sub-
stitutions in the sequencing reaction/assembly that provided the DNA
sequence. The substituion error is what dominates the penalty for stop
codons - a higher error rate implies a smaller penalty for stop codons

-indel [1e-05] Insertion/deletion error rate, ie the assummed probability of in-
del events in the sequencing reaction/assembly that provided the DNA
sequence. The indel rate is what provides the penalty for frameshift er-
rors. A higher error rate implies a smaller penalty for indels.

-cfreq [model/flat] Using codon bias or not? [default flat] - a reasonably point-
less option now, as it only applies when using -syn flat. If codon bias is
modelled, then common codons score more than uncommons one for the
same amino acid.

-splice [model/flat] Using splice model or GT/AG? [default model] - use the
full blown model for splice sites, or a simplistic GT/AG. Generally if you
are using a DNA sequence which is from human or worm, then leave this
on. If you are using a very different (eg plant) species, switch it off.
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-intron [model/tied] Use tied model for introns [default tied] - whether intron
base distribution effects the parse. Because varying GC content and/or
repeats can seriously drag the algorithm away from correct parses when
intron base distribution is used, this is usually switched off.

-null [syn/flat] Random Model as synchronous or flat [default syn] - whether to
use a null model which is a simple base distribution (called flat), or imagine
that the viterbi path is being compared to a gene based null model that
is making all the same gene exon/intron boundaries (synchronous). The
latter is basically a hack which demphaises the gene prediction machinery
and tries to trust the homology machinery. (not ideal!)

-pg [file] Potential Gene file (heurestic for speeding alignments). The potential
gene file should look like

pgene # stands for potential gene
ptrans # stands for potential transcript
pexon <start-in-dna> <end-in-dna> <start-in-protein> <end-in-protein>
pexon <start-in-dna> <end-in-dna> <start-in-protein> <end-in-protein>
...
endptrans
<another ptrans if you like>
endpgene

When this file is read in, it provides a series of start/end in dna and protein
sequences around which is drawn an envelope of possibly alignment area.
The alignment is then calculated only in this area

This feature has not been well tested yet. any potential bugs reported in
are very useful.

-alg [623/623L/2193/2193L] Algorithm used [default 623/623L] You should
read the section on algorithms (4.4). Basically 623 and 623L are cheaper
computationally and more robust with respect to repeats etc. 2193 and
2193L are much more expensive, more sensitive to changes in parameters
but potentially more accurate.

-kbyte [ 2000] Max number of kilobytes used in main calculation. Indicates
how much memory can be used for the dynamic programming calculation.

5.1.3 genewise - options: output

All output options can be used at the same time. They are separated by the
value to -divide option

-pretty show pretty ascii output, as see in Section 2
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-pseudo For genes with frameshifts, mark them as pseudo genes

-genes show gene structure - as

Gene 1
Gene 1386 3963
Exon 1386 1493
Exon 1789 1935
Exon 2084 2294
Exon 2388 2480
Exon 2794 2868
Exon 3073 3228
Exon 3806 3963

//

-para show parameters

-sum show summary output. Shows output as

Bits Query start end Target start end idels introns
230.57 roa1_drome 26 347 HSHNRNPA 1386 3963 0 6

This is useful for parsing, but probably if you want to do something like
that you want to get hold of the API directly.

-cdna show cDNA Show a fasta format of the predicted cDNA sequence

-trans show protein translation Show a fasta format of the predicted protein
sequence. Breaks on frameshifts

-pep show predicted peptide. Shows predicted peptide, including frameshifts,
which are X’s in the proteins

-ace ace file gene structure - ACeDB subsequence model

Sequence HSHNRNPA
subsequence HSHNRNPA.1 1386 3963

Sequence HSHNRNPA.1
CDS
CDS_predicted_by genewise 0.00
source_Exons 1 108
source_Exons 404 550
source_Exons 699 909
source_Exons 1003 1095
source_Exons 1409 1483
source_Exons 1688 1843
source_Exons 2421 257
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-gff Gene Feature Format file - useful for programs which also support GFF

HSHNRNPA GeneWise cds_exon 1386 1494 0.00 + 0
HSHNRNPA GeneWise cds_exon 1789 1936 0.00 + 0
HSHNRNPA GeneWise cds_exon 2084 2295 0.00 + 0

-gener raw gene structure - a debugging output

-alb show logical AlnBlock alignment - a debugging output

-pal show raw matrix alignment - a debugging output

-block [50] Length of main block in pretty output

-divide [//] divide string for multiple outputs

5.2 genewisedb

genewisedb is the database searching version of genewise. It takes a database
of proteins and compares it to a database of dna sequences

5.2.1 genewisedb - search modes

-protein [default] single protein. Protein is a single protein sequence in fasta
format

-prodb protein fasta format db. Protein is a database of protein sequences in
fasta format

-pfam pfam hmm library. Protein is a database of HMMer2 models as a single
file

-pfam2 pfam old style model directory (2.1). Protein is a directory of HMMs
with a file called HMMs in it indicating which HMMs there. This is how
Pfam databases 2.1 and lower were distributed

-hmmer single hmmer HMM (version 2 compatible). Protein is a single HMM

-dnadb [default] dna fasta database. The DNA sequence is a fasta format file
with multiple sequences

-dnas a single dna fasta sequence. The DNA sequence is a single sequence in
fasta format
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5.2.2 genewisedb - protein comparison options

-gap [ 12] gap penalty - see genewise option

-ext [ 2] extension penalty - see genewise option

-matrix [blosum62.bla] Comparison matrix - see genewise option

-hname For single hmms, use this as the name, not filename

5.2.3 genewisedb - gene model options

Many of these options are identical to the genewise options listed above

-init [default/global/local/wing] (see section 4.3.3) For protein sequences the
default is to be local (like smith waterman). For protein profile HMMs,
the default is read from the HMM - the HMM carries this information
internally. The global mode is equivalent to to the ls building option (the
default in the HMMer2 package). The local mode is equivalent to to the
fs building option (-f) in the HMMer2 package. The wing model is local
on the edges and global in the middle.

-codon [codon.table] Codon file -see genewise option

-gene [human.gf] Gene parameter file - see genewise option

-subs [1e-05] Substitution error rate - see genewise option

-indel [1e-05] Insertion/deletion error rate - see genewise option

-cfreq [model/flat] Using codon bias or not? [default flat] - see genewise option

-splice [model/flat] Using splice model or GT/AG? [default model] - see ge-
newise option

-intron [model/tied] Use tied model for introns [default tied] - see genewise
option

-null [syn/flat] Random Model as synchronous or flat [default syn] - see ge-
newise option

-alg [421/623/2193/] Algorithm used for searching [default 623] The is the al-
gorithm to use for the database search part of the process. 421 is the
cheapest algorithm but can only be used with HMMs or small proteins as
it has been compiled for a limited size of query. Looping algorithms (623L
and 2193L) are not permitted as it is hard to interpret the results

-aalg [623/623L/2193/2193L] Algorithm used for alignment [default 623/623L]
This is the algorithm used for the alignment of the matches. The default
for proteins is 623, whereas for HMMs it is the looping model 623L.
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-kbyte [ 2000] Max number of kilobytes used in alignments calculation. Maxi-
mum amount of memory allowed in the alignment process.

-cut [20.00] Bits cutoff for reporting in search algorithm. Comparisons scoring
greater than this cutoff are aligned.

-ecut [n/a] Evalue cutoff only for searches which can calculate evalues

-aln [50] Max number of alignments (even if above cut). A cutoff for the number
of alignments, whatever their bits score.

-nohis Don’t show histogram on single protein/hmm vs DNA search. On a
single protein (or hmm) vs DNA database search an on-the-fly evalue
score is calculated. This disables the production of a histogram

-report [0] Issue a report every x comparisons (default 0 comparisons). Mainly
for debugging

5.2.4 genewisedb output - for each comparison

For each alignment made by genewisedb you can output it as a number of
different options

-pretty show pretty ascii output, as in genewise

-pseudo For genes with frameshifts, mark them as pseudo genes

-genes show gene structure, as in genewise

-para show parameters, as in genewise

-sum show summary output, as in genewise

-cdna show cDNA, as in genewise

-trans show protein translation, as in genewise

-ace ace file gene structure, as in genewise

-gff Gene Feature Format file, as in genewise

-gener raw gene structure, as in genewise

-alb show logical AlnBlock alignment, as in genewise

-pal show raw matrix alignment, as in genewise

-block [50] Length of main block in pretty output, as in genewise

-divide [//] divide string for multiple outputs, as in genewise
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5.2.5 genewisedb output - complete analysis

Each alignment produces a notional gene prediction. At the end of the output,
these gene predictions can be displayed together. This only works for -pfam or
-prodb and -dnas options, ie a database of protein information vs a single dna
sequence

In the future it is hoped that additional options (such as merging consistent
gene predictions) will operate before these outptus are made

-ctrans provide all translations

-ccdna provide all cdna

-cgene provide all gene structures

-cace provide all gene structures in ace format

5.3 estwise

Estwise runs very much like genewise with basically a subset of options. For
completeness they are all listed below

5.3.1 estwise - options: dna/protein

-u start position in dna

-v end position in dna

-trev reverse complement dna

-tfor use forward strands only

-both [default] do both strands

-tabs Positions reported as absolute to DNA

-s start position in protein

-t end position in protein

-gap [ 12] gap penalty

-ext [ 2] extension penalty

-matrix [blosum62.bla] Comparison matrix

-hmmer Protein file is HMMer 1.x file

-hname Name of HMM rather than using the filename
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5.3.2 estwise - options: model

-init [default/global/local/wing] (see section 4.3.3) For protein sequences the
default is to be local (like smith waterman). For protein profile HMMs,
the default is read from the HMM - the HMM carries this information
internally. The global mode is equivalent to to the ls building option (the
default in the HMMer2 package). The local mode is equivalent to to the
fs building option (-f) in the HMMer2 package. The wing model is local
on the edges and global in the middle.

-codon [codon.table] Codon file. The default is for the universal code, but you
can supply your own

-subs [0.01] Substitution error rate, ie the assummed probability of base sub-
stitutions in the sequencing reaction/assembly that provided the DNA
sequence. The substituion error is what dominates the penalty for stop
codons - a higher error rate implies a smaller penalty for stop codons

-indel [0.01] Insertion/deletion error rate, ie the assummed probability of indel
events in the sequencing reaction/assembly that provided the DNA se-
quence. The indel rate is what provides the penalty for frameshift errors.
A higher error rate implies a smaller penalty for indels.

-null [syn/flat] Random Model as synchronous or flat [default syn] whether to
use a null model which is a simple base distribution (called flat), or imagine
that the viterbi path is being compared to a gene based null model that
is making all the same gene exon/intron boundaries (synchronous). The
latter is basically a hack which demphaises the placement of frameshifts
and tries to trust the homology machinery. (not ideal!)

-alg [333,333L,333F] Algorithm used. 333 is the normal algorithm. 333L is the
looping algorithm

-kbyte [ 2000] Max number of kilobytes used in main calculation

-pretty show pretty ascii output as in genewise

-para show parameters

-sum show summary information as in genewise

-alb show logical AlnBlock alignment, debugging output

-pal show raw matrix alignment, debugging output

-block [50] Length of main block in pretty output - the length of the main text
in the pretty output

-divide [//] divide string for multiple outputs, the string used to separate mul-
tiple outputs
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5.4 estwisedb

estwisedb is the database searching version of the estwise program. Like estwise,
it has the same sort of running modes as genewisedb, but with more limited
options.

5.4.1 estwisedb - options: running modes

-protein [default] single protein

-prodb protein fasta format db

-pfam pfam hmm library

-pfam2 pfam style model directory (2.1)

-hmmer single hmmer 1.x HMM

-dnadb [default] dna fasta database

-dnas a single dna fasta sequence

5.4.2 estwisedb - options: model

-gap [ 12] gap penalty

-ext [ 2] extension penalty

-matrix [blosum62.bla] Comparison matrix

-hname For single hmms, use this as the name, not filename

-codon [codon.table] Codon file

-subs [0.01] Substitution error rate

-indel [0.01] Insertion/deletion error rate

-null [syn/flat] Random Model as synchronous or flat [default syn]

-alg [333/] Algorithm used for searching [default 333]

-aalg [333/333L] Algorithm used for alignment [default 623]

-kbyte [ 2000] Max number of kilobytes used in alignments calculation

-cut [20.00] Bits cutoff for reporting in search algorithm

-ecut [n/a] Evalue cutoff only for searches which can calculate evalues

-aln [50] Max number of alignments (even if above cut)

-nohis Don’t show histogram on single protein/hmm vs DNA search

-report [0] Issue a report every x comparisons (default 0 comparisons)
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5.4.3 estwisedb - options: output

-pretty show pretty ascii output

-para show parameters

-sum show summary output

-alb show logical AlnBlock alignment

-pal show raw matrix alignment

-mul produce complete protein multiple alignment from a HMM to DNA db
search as a mul format M/A.

-pep show predicted peptide. Shows predicted peptide, including frameshifts,
which are X’s in the proteins

-block [50] Length of main block in pretty output

-divide [//] divide string for multiple outputs

-help help

-version show version and compile info

-silent No messages on stderr

-quiet No report on stderr

-erroroffstd No warning messages to stderr

-errorlog [file] Log warning messages to file

5.5 Running with pthreads

The two database searching programs, genewisedb and estwisedb can be run
with pthread support on SMP boxes. To do so you need to compile the source
code with pthread support (it is very easy, see section 3.3). Then the programs
need to be run with the additional option -pthread. On most machines the
executable will pick up the number of available processors automatically and
run that number of threads. If you want to override this use the -pthr no
option.
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6 Other Programs

There are other programs in the wise2 package which are not as well developped
as the *wise set of programs. These programs are more an indication of how
fast it is to develop algorithms sensibly in the Wise2 environment than anything
else.

6.1 dba - Dna Block Aligner

dba - standing for Dna Block Aligner, was developped by Niclas Jareborg,
Richard Durbin and Ewan Birney for characterising shared regulatory regions
of genomic DNA, either in upstream regions or introns of genes

The idea was that in these regions there would a series of shared motifs,
perhaps with one or two insertions or deletions but between motifs there would
be any length of sequence.

The subsquent model was a 3 state model which was log-odd’d ratio to a
null model of their being no examples of a motif in the two sequences.

6.1.1 dba - options

-match [0.8] match probability

-gap [0.05] gap probability

-blockopen [0.01] block open probability

-umatch [0.99] unmatched gap probability

-nomatchn do not match N to any base

-align show alignment

-params print parameters

-help print this message

6.2 psw - Protein Smith-Waterman and other compar-
isons

psw is a short and sweet program for calculating smith waterman alginments
quickly. It was mainly written as C driver to test the underlying code which is
more useful in things like the Perl port.

More recently I added in the generalised gap penalty model of Stephen
Altschul, that is known as the abc model in Wise2. The abc model is detailed
in Proteins 1998 Jul 1, 32 pages 88-96.
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6.2.1 psw - options

-g gap penalty (default 12) - gap penalty used for smith waterman

-e ext penatly (default 2) - ext penalty used for smith waterman

-m comp matrix (default blosum62.bla) - comparison matrix used for both
smith waterman and the abc model

-abc use the abc model: use Stephen Altschul’s ’generalised gap penalty’ model
(called the abc model in Wise2)

-a a penalty for above (default 120) gap opening penalty in the abc model

-b b penalty for above (default 10) gap extension penalty in the abc model

-c c penalty for above (default 3) unmatched ’gap’ region penalty in the abc
model

-r show raw output - raw matrix output

-l show label output - label based output

-f show fancy output - pretty output

6.3 pswdb

pswdb - protein smith waterman database searching was written by Richard
Copley using the underlying Wise2 libraries

6.3.1 psw - options

-g gap penalty (default 12) - gap penalty used for smith waterman

-e ext penatly (default 2) - ext penalty used for smith waterman

-m comp matrix (default blosum62.bla) - comparison matrix used for both
smith waterman and the abc model

-abc use the abc model: use Stephen Altschul’s ’generalised gap penalty’ model
(called the abc model in Wise2)

-a a penalty for above (default 120) gap opening penalty in the abc model

-b b penalty for above (default 10) gap extension penalty in the abc model

-c c penalty for above (default 3) unmatched ’gap’ region penalty in the abc
model

-max desc Maximum number of description lines
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-max aln Maximum number of alignments

-ids in alignments, show sequence names, not probe/target

-r show raw output - raw matrix output

-l show label output - label based output

-f show fancy output - pretty output

7 API

This section is really only an introduction to the API. There is another, separate
documentation on the API with a complete reference of all the functions etc.

If you end up parsing the programs in the Wise2 package alot, or repeatedly
calling them to do something slightly at odds to the way they work, then you
should probably be using the API. The API is quite easy to use once you have got
used to the number of functions that you can call: all the hard parts of writing
a C program, such as the underlying algorithms and memory management are
conviently hidden from you.

The API (application programming interface) is a defined layer for you to
write programs that use Wise2 functionality. The API has only a subset of the
functions available internally to Wise2 (but still it is quite a daunting number).
Currently there are two main ways to access the API - firstly using C function
calls, and secondly using Perl function calls. In the latter case, the Wise2 code
is ’compiled into’ perl (in fact dynamically loaded - the unix equivalent of a dll
file), meaning that although you call what looks like normal perl functions, it
is actually executed by compiled C functions.

The API interface is written in C, but with a very strong object model. This
means that the C API can be easily mapped to an object based enviroment.
In particular this is taken advantage of in the Perl case, where Perl objects are
exported in the Perl space, allowing very idomatic scripts to be written.

The documentation for the API currently lies in the C header files and the
Perl .pod files. This is something which I am actively working on at the moment.

7.0.2 Example perl script

This is just a taster for you to see what one can do. For a more detailed
examination, look at the API documentation.

#!/usr/local/bin/perl

#
# protestwise.pl <protein-seq-fasta> <dna-seq-fasta>\n
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# produces on STDOUT a new protein sequence which is the
# DNA sequence ’fixed’ by the comparison to the protein sequence.

# in particular frameshift errors get mapped to X

# written by James cuff (james@ebi.ac.uk)
# Hacked by Ewan (birney@sanger.ac.uk). Talk to ewan
# first about the script.

use Wise2;

my $pro_file = shift; # first argument from @ARGV
my $dna_file = shift; # second argument @ARGV

if( !defined $dna_file ) {
die "ProtESTwise.pl <protein-seq-fasta> <dna-seq>\nProduces output of the DNA sequence\n’fixed’ by the comparison on stdout";

}

# read in inputs. Read in first as generic ’Sequence’ objects
# and then converted to specific ’Protein’ or ’cdna’ type
# objects

open(PRO,$pro_file) || die "Could not open $pro_file!";
$seq = &Wise2::Sequence::read_fasta_Sequence(\*PRO);
$pro = &Wise2::Protein::Protein_from_Sequence($seq);

if( $pro == 0 ) {
# can’t interpolate function calls <sigh>
die sprintf("Could not make protein from sequence %s!",$seq->name());

}

open(DNA,$dna_file) || die "Could not open $pro_file!";
$seq = &Wise2::Sequence::read_fasta_Sequence(\*DNA);
$cdna = &Wise2::cDNA::cDNA_from_Sequence($seq);

if( $cdna == 0 ) {
# can’t interpolate function calls <sigh>
die sprintf("Could not genomic from sequence %s!",$seq->name());

}

# Read in data structures needed for
# estwise type algorthim
#
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# These will be automatically read from WISECONFIGDIR if necessary.

# this is the indel rate
$cp = &Wise2::flat_cDNAParser(0.001);

# codon table
$ct = &Wise2::CodonTable::read_CodonTable_file("codon.table");

#this means we are not using any codon bias
$cm = &Wise2::flat_CodonMapper($ct);

# this is the substitution error
$cm->sprinkle_errors_over_CodonMapper(0.001);

# random model needed if we are not using syn
$rmd = &Wise2::RandomModelDNA_std();

# means estwise3 algorithm. Not obvious!
$alg = 0;

# sets memory amount for main memory
&Wise2::change_max_BaseMatrix_kbytes(100000); # 10 Megabytes.

# these are for the protein part of the comparison
$comp = &Wise2::CompMat::read_Blast_file_CompMat("blosum62.bla");
$rm = &Wise2::default_RandomModel();

# do it!
$alb = &Wise2::AlnBlock_from_Protein_estwise_wrap($pro,$cdna,$cp,$cm,$ct,$comp,-12,-2,0,$rmd,$alg,$rm,1);
$proseq = "";

#
# This is where we get clever!
#
# The for loops across the alignments. The protein sequence is in $alc->alu(0). The
# DNA sequence is in $alc->alu(1). We are interested in codons in the DNA sequence
# and turns those into amino acids. Sequence insertions or deletions become X’s
#

for($alc=$alb->start();$alc->at_end() != 1;$alc = $alc->next()) {
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if( $alc->alu(1)->text_label() =~ /^INSERT$/ ) {
next; # skip protein inserts relative to the DNA sequence
# NB different from SEQUENCE_INSERTION.

}

if( $alc->alu(1)->text_label() =~ /CODON/ ) {
# get out sequence from $start to $end
# $start and $end are in bio coordinates
$start = $alc->alu(1)->start+1;
$end = $alc->alu(1)->end+1;
$dnatemp = "";

for($x=$start;$x < $end;$x++){
$tmp = &Wise2::cDNA::cDNA_seqchar($cdna,$x);
$dnatemp=$dnatemp.$tmp;

}

$temp = $ct->aminoacid_from_seq($dnatemp);

# if codon has an N, then set the residue to unk X,
# we could be clever about this and work out what
# it is likely to be, but hell...

$temp =~ s/x/X/;

$proseq .= $temp;
} else {

# deletion or insertion of a base
$proseq .= ’X’;

}

}

# make the new protein sequence and
# dump it to stdout

$namecdna = $cdna->baseseq()->name();
$new = &Wise2::new_Sequence_from_strings($namecdna,$proseq);
$new->write_fasta(STDOUT);
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