Intel® Fortran Compiler for Linux* Systems
User's Guide

Volume II: Optimizing Applications

Copyright © 2003-2004 Intel Corporation
Portions © Copyright 2001 Hewlett-Packard Development Company, L.P.

Document Number: 253260-001

Disclaimer and Legal Information

Information in this document is provided in connection with Intel products. No
license, express or implied, by estoppel or otherwise, to any intellectual property
rights is granted by this document. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING L IABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

This User's Guide Volume Il as well as the software described in it is furnished
under license and may only be used or copied in accordance with the terms of
the license. The information in this manual is furnished for informational use only,
is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or
liability for any errors or inaccuracies that may appear in this document or any
software that may be provided in association with this document.

Designers must not rely on the absence or characteristics of any features or
instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

The software described in this User's Guide Volume Il may contain software
defects which may cause the product to deviate from published specifications.
Current characterized software defects are available on request.

Intel SpeedStep, Intel Thread Checker, Celeron, Dialogic, i386, i486, ICOMP,
Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel
Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel Xeon, Intel
XScale, Itanium, MMX, MMX logo, Pentium, Pentium Il Xeon, Pentium Ill Xeon,
Pentium M, and VTune are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2003-2004.

Portions © Copyright 2001 Hewlett-Packard Development Company, L.P.

Table Of Contents

What's New in ThiS Releasecooooeiiiiiiiiii 1
Improvements and New Optimization in This Release............c.ccceeevvvvviviinnnnnn.. 1
NEW ProCESSOIS SUPPOIT ...cuuiiiiiiii it e ettt e et et a et a e e ea e eenes 1
Optimizing for Specific Processors at Run-time, 1A-32 Systems.................... 1
Symbol Visibility Attribute OPLiONSoiiiiiiiieieei e 2

[PO FUNCHONANTY ...ttt e e e e e e e e e e e eeeeeeeeas 2
New Directive for AUtO-VECIONZAatioNuuueiiiieieeieeieeeiicee e 2
MISCEIIANEOUS ... 2
Introduction t0 VOIUME 11 ... 2
The SUDJECES COVEIEA......uueeiii e e e e e e e e e eaeanes 3
Notations and CONVENTIONSuuuuuuiiiiriiiiiiiiiieiieeiees 3
Programming for High Performance: OVErVIEW...........oooouivvviiiiiiiiiiie e 5
Programming GUIAEIINESooeiiiiiiiiii e 5
Setting Data Type and AlIGNMENT........coooiiiiiiii e 5
Causes of Unaligned Data and Ensuring Natural Alignment..............ccccceenneee 5
Checking for Inefficient Unaligned Dataccccevvveeviiiiiiiee e 8
Ordering Data Declarations to Avoid Unaligned Datacccccooeeeeeeeeenennnnn, 9
Arranging Data Items in Common BIOCKSccccooeiiiiiiiiiiiii e, 10
Arranging Data Items in Derived-Type Data..........ccooevvviiviiiiinneiieeieeeiiiinnn, 11
Arranging Data Items in Intel Fortran Record Structures............ccccevvvvvnnnnnn. 12
Using Arrays EffICIENTIYoooviiiiiii 13

Table Of Contents

Accessing Arrays EffiCientlyo.oooveiiiiii e 13
Passing Array Arguments Efficiently ... 17
IMproving 1/O PerforManCe...........ccooiiiiiiiiicie e 18
Use Unformatted Files Instead of Formatted Filesoooovviviiiiiiiiiiiinnnnn. 19
Write Whole Arrays OF STHNGS ...ooeeeeiiiiiiieee et e et eeeeeeeens 20
Write Array Data in the Natural Storage Order.........cccoooccvvivveiieeiiiiicciiieeeeeenn 20
Use Memory for Intermediate RESUILSuuuiiiiiiiiiiiiiiiiiiiiieeeeeeee e 20
Enable Implied-DO Loop CollapSingccovvveeuiuiiiiieeeeeeeeeiiceee e e 20
Use of Variable Format EXPreSSioNScoeuuuviiiiiieieeeeeeeeiiiie e ee e 21
Efficient Use of Record Buffers and Disk 1/O............ccooiiiiiiiiiiiiiiiieeeeen 21
SPECIHTY RECL ...ttt e e e e 23
Use the Optimal RECOId TYPE .coeeiiiiiiiieei et 23
Reading from a Redirected Standard Input File ..., 24
Improving Run-time EffiCIENCY ... 24
Avoid Small Integer and Small Logical Data [tems..............ceevvieviiiiiiiiieieeeeenn. 24
Avoid Mixed Data Type ArithmetiC EXPreSSionSccooveeeeieeviveiiiiiiieieeeeeeeeenanns 25
Use Efficient Data TYPES.....cccoiiiiieiiiie et e e e e e e e eaannnes 25
Avoid Using Slow ArithmetiC Operators.............oouuuviiiiiiieeeeiceeeeie e e, 26
Avoid Using EQUIVALENCE Statements...........c.uuuuiiiiiieiiiieiiiiiiianeeeeeeeeeeeenns 26
Use Statement Functions and Internal Subprograms...........ccceeevviiiiiiiiiinnnnnn. 26
Code DO LOOPS fOr EffICIENCYuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiieeeieeeeeeeesseeeeeeeeeees 27
Using Intrinsics for ltanium®-based SYStEmMS ..., 27
Cache Size Intrinsic (Itanium® COMPIIEN)......cciieeiiiiiieeiie e 27

Table Of Contents

Coding Guidelines for Intel® ArchiteCturesccceeveeeeeieeieeeiiciee e 28
Y =T gTo] YA Ao o =T P PRPTRPPIN 29
MEMOIY LAYOUL.....uniiiiiiiii ettt ettt e e e e e e e e e e e e eaaeaees 29
Optimizing for Floating-point ApPPlICAtioNSccooviiiiiiiiiiiie e 30

Denormal EXCEPLIONS......coiiiiiiieeiiiiiee ettt e e e e e eeeeenees 30
F U (oY =Tox (o] g 4= Vi (o] o IO PP PPPPPPPPPPPP 31
Creating Multithreaded AppPlICAtIONS............uuuiiiiiiiiiiiiiiiiiiiiii e 31

Analyzing and Timing Your AppliCatioN..........coovvivieiiiiiiiee e 31
Using Intel Performance Analysis TOOIS...........ciiiiiiiiiieiieeicce e 31

TimING YOUr APPLICAtIONcoeeeeiiiiie e e e e 32

D= 11 1] 0] L= RSP 33

Compiler OptimiZAtioNS OVEIVIEWoiiiieieiiiiiiiiiiaae e e e et e e e eeeeeenanns 34

Optimizing Compilation ProCesS OVEIVIEWcoceeiiiiiiiiiiiiiiiaeee e eeeeeiiiian e 35

Efficient Compilation ... 35
Efficient Compilation TECNNIQUESuuuiiiiiiiiiiiiiiiiiiiiiiiieieieieeeeee e 36
Options That Improve Run-Time Performance...........ccccceeeeiiieeiiiiviiiiciiin e, 36
Options That Slow Down the Run-time Performance............cccccvvviiiiieenneeenn. 37

Little-endian-to-Big-endian CONVEISION...........ccoevuiiuiiiiieie e e e eeeaaaaae 39
Little-to-Big Endian Conversion Environment Variable.................ccccovviiinnnnnnn. 39

Another Possible Environment Variable Settingoouiiiiiiiiiiiiiiiiiinnnn, 41
USAQE EXAMPIES ...ttt e e e e e e e e e e 41

Default Compiler OptiMIZAtiONSccevviiiiiiiiiiiiiii 43

Data Setting and Fortran Language Conformance...........cccccceeeeeeeeevvveeviinnnnnnn. 43

Table Of Contents

(@ 0] 110 0T 4[] 1 U 44
Disabling Default OpLioNS.........coovuiiiiiiiee e 45
Using Compilation OPLIONSccooiiiiiiiiiii e e e e e 46
Stacks: Automatic Allocation and Checkingcooouuiiiiiiiiiiiiiiiiei e 46
Automatic Allocation of Variables...............eeeiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee 46
SUMIMBTY ettt ettt e e e e e et e e et e e e e e e e e e e rann e e e eeas 47
Checking the Floating-point Stack State (IA-32 only), -fpstkchk...................... 48
ABIBSES ...t e e e 49
(o100 10 410 o TE= T TP PP UPPTRRPIN 49
Preventing CRAY* Pointer Aliasingc.uuiiiiiiiieeieeeeeiee e 49
AlGNMENT OPLIONS... .o e e e e e e e e e e e e e e e eeeannen 50
-align recnbyte OF -ZP[N] .cooeeeieie e 50
SAlgN AN “PAA ..o 50
Recommendations on Controlling Alignment with OptioNnS.............ccevvviveeeeeeee. 51
Symbol Visibility Attribute OPLIONS ..o 52
Global Symbols and Visibility AttribULeSccooeviiiiiiiiiee e 53
Symbol Preemption and Optimizationccccocoeiiiiiiiiiiiii e 53
Specifyng Symbol Visibility EXPlCItly............iiiiiiieeiiii e 54
Specifying Visibility without Symbol File, -fvisibility=keyword 55
Visibility-related OPtiONSooii i 56
IMINSNAIEd ... 56
Optimizing Different Application TYPESoooviiiiiiiiiii e, 57
Optimizing Different Application Types OVEIVIEWuvviviiieeeeeeieeeiiiiiinnneeeen 57

Table Of Contents

Setting Optimizations With -ON OPLIONSevveiiiieieeeeiieeerr e 57
(@ 0] 1o o OSSPSR 58

B OOt e 58
Restricting OPtIMIZALIONSooiiiiiiiiieiiiee e e e e eeeeeees 60
Floating-point Arithmetic OptimiZatioNS...........ccuuuuiiiiiiiie e 61
Options Used for 1A-32 and Itanium® ArchiteCturesS..........cccceevvvvvevvivviiinneeeeenn. 61
SN OPLION e 61

e 0] 031 01 o o S 61
Flushing to Zero Denormal Values, -ftZ[-].........cccooeieiiieiiiiiiieee e, 61
DEAUIL ... 61
-ftz[-] on Itanium-based SYSIEMS..........uciiiiiiiieiieeecr e 62

§ 72 T [PP 62
Using the Floating-point Exception Handling, -fpen............ccccoooviiiiiiiiiiiiiinnnnnn. 63
Floating-point Arithmetic Precision for IA-32 SyStemscccevveeieeeevvveeiiiiinnnnn. 64
SPrEC_AIV OPLION ..o 64
-PC{32|64]|80} OPLION.....cceeeeeiiiiiiee e ee et e e e e e e e e e e e e e e eeeees 64
(OF- U1 1o o IH T TP P PP PPPPPPPPPRPPPI 65
Rounding Control, -rcd, -fp_POrt......cooiii i 65
Floating-point Arithmetic Precision for Itanium®-based Systems 65
Contraction of FP Multiply and Add/Subtract Operationscccceeeeeevennnnn. 66
FP SPECUIALION ...ttt s e e e e e e e e e e e 66
FP Operations EVAlUALIONuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeneeeeeneeeeeeeeeeee 66
Controlling Accuracy of the FP ReSUItScccooeeiiiiiiiiiiiiie e 67

Table Of Contents

Improving/Restricting FP Arithmetic PreciSioncceeviiieeiiiiiciiiciee e 67
Optimizing for Specific Processors OVEIVIEWcccovvvviiiiiiiiiieeeeeeeeeiiiiene e 68
Targeting a Processor, -tPP{N} . .cooi i 69
Processors fOr IA-32 SYSIEIMSuuuiiiiii et 69
Processors for Itanium®-based SYStEMSuuiiiiiiiiiiiieeiie e 70
Processor-specific Optimization (IA-32 0NlY)ooooiiiiiiiiii, 70
OPLION . 71

(@ 0] 110 0 T=2S {0 S 71
Automatic Processor-specific Optimization (IA-32 only)coovvvviiiiiiiieeeeeieeeenn, 72
(@ 0] 1o o OSSPSR 72
Optimizes Your Code fOr... ..o 72
EXAIMPIE e e e e eaaree 73
Processor-specific Run-time Checks, IA-32 SysStems............cceiiiiiieiiiieeiiiinennnnn. 73
Check for Supported Processor with -XB , -XB, OF -XPcccccovvviviiiiiiiiineeeenn, 73
Setting FTZ and DAZ FIAgQS.......ccooo o oo 74
Interprocedural Optimizations (IPO)ccooiiiiiiiice e 74

[P O OVEIVIEW.....ceiiiiiieeieeite ettt e e e e et e e e e e e e e nnnnnnreeeas 74
(OF- U1 1o o IH T TP P PP PPPPPPPPPRPPPI 75
Option -auto_ilp32 for Itanium COMPIIErcooeeiiiiiiiiiie e 76
MUILIfIlE TPO OVEIVIEW......ciiiiiiiiiiiiiiiieee ettt 76
ComPIlAtION PRESE ... 76
LINKAGE PRASE......euiiiiiiiiiiiiiieeeieeee ettt e ettt e e e s e e s eeeeeeeeeeees 76
Creating a Multifile IPO Executable with Command Line..........ccccoooeevvvvvviiinnnnnnn. 77

Vi

Table Of Contents

Creating a Multifile IPO Executable Using Xild..............cccovvvvvviiiiiiiiiieeeeeeeeeiiiinn 78
USAQE RUIES.... .ottt e e e e et e e e e e e e eeaaaanaa 79
The Xild OPLIONS ... e e e e 79

Compilation with Real ODJect FileS ... 79
Implementing the .il Files with Version NUMbers...........cccovviiiiiiiiiineeceeeees 80

IL in Libraries: More OptimiZationsueuieeurireimirinerineieirineeneene.. 80

Creating a Library from PO ODJECIScvviiiiiiiiiiiiiiiieeeeeeeee ettt 81

Analyzing the Effects of Multifile IPOcccoooeiiriiiie e, 81

Using -ip with -QOpPtioN SPECIFIEISuvueiiei e 82
~QOPLION SPECITIEISo c e e 82

Inline EXpansion Of FUNCHONScooiiiiiiciie e 84
Criteria for Inline Function EXPansion.............ccoiviiiiiiiiiiiiiiiii e 84
Selecting Routines for Inlining with or without PGOcoooiiiiiiiiiiiiine, 85
aliTall e Jr=Talo W el £=T=T 001 o] (o] o TP PPPPPPPPPPP 85

Controlling Inline Expansion of User FUNCHONS............covvviiiiiiiiiiiiiiiiiieeeeeeeeeeeeee 86

Inline Expansion of Library FUNCLIONSccoooiiiiiiiiiieie e 86

Profile-guided Optimizations OVEIVIEWcocvviviiiiiiee e eeeeeeeeice e e e 87
INStrUMENtEd PrOgram i e e e e e e e eeeananaas 87
Added Performance With PGO ... 87

Profile-guided Optimizations Methodology and Usage Model.............cccccvvvenennn. 88
P GO PRESES ...ttt st s et sttt ettt ettt e e et e e e et e e e e e e e e e e e 88
PGO USAQE MOUEI ...ttt e e e eeeeeeeees 89

BaASIC PGO OPLONS.....cceuiiiiiiie e e eee et s s e e e e e e e et ss s e e e e e e e eeaaaasnneaeeeeeeeeeennnnns 91

vii

Table Of Contents

Generating Instrumented Code, -prof_gen........ccoovvvviiiiiiiiii e 91
Generating a Profile-optimized Executable, -prof usecccccvviiiiiinnneen. 91
Using 32-bit Counters, -prof_format_32ccccoeieiiieiiiiiiiiiee e, 91
Disabling Function Splitting, -fnsplit- (Itanium® Compiler only)cccceeen.... 92
Yo \VZ= g [of=To I o €10 @ o] i o] o IS TR SRRPPPPPRPIN 93
Specifying the Directory for Dynamic Information Files............ccccevvviiiinnnennn. 93
Specifying Profiling Summary File...........ooooiii 93
Guidelines for Using Advanced PGOcccooviieiiiiiiiiiiiiic e 93
PGO ENVIronment Variablescooiiiiiiiiiiiicce e 94
Example of Profile-Guided Optimizationcccooeiiiieiiiiieicee e, 94
Merging the .dyN FlES..........uiii e e e e 95
The profmMerge ULHILYu.eie e e e 95
DUmping Profile Datal..........cooviiiiiiiiiiieeeeeeeeee et 96
Using profmerge to Relocate the Source FilesSccoooevviiiiiiiiiiiiiieeeeeeeeeiiinn 97
SOUICE REIOCALION ... 97
NOTES et e 97
(@00 [ot0)Y7=T = To [T o o | NPT 98
CommaNd-lNE SYNTAXooviiiiiiii e e 98

B o To] @] o110 o PPN 98
(@] 0] 1o o [PPSR 99
DS CIIPEION ..ttt e e e 99
DEIAUIE ...ttt e e e e 99
Visual Presentation of the Application's Code Coverage...........cceeeeeeeevvvennnns 99

viii

Table Of Contents

TOP LEVEI COVEIAQE ...ovvviviiie ettt e e e e e e e e e e e e e 100
Browsing the Frames..........ooooiiiiiiiii s 101
Individual Module SOUICE VIEW...........ueiiiiiiiiiiiiiiiiieee e 101
Setting the Coloring Scheme for the Code Coverage............cccovvveieenennnn. 102
Coverage Analysis of a Modules Subsetcccoooviiiiiii e, 103
DYNAMIC COUNTEIS ...ttt ettt s s s ss s s e e s e e seseeeee e 104
DIffer@ntial COVEIAQE uuuuuueiiiiiiiiiiiiittteeeebeeeteeeeeeeesseeeseeeseeeseeeseseeeeeeeeeeeeeeees 105
Running for Differential Coverage............oouuuiiiiiiieeeeieeeicee e 105
Test Prioritization TOOIoviiiiiiiiieiiec e 106
Features and BENEFItSooooiiiiiiiiiicee e 107
Command-lNE SYNAXccoiiiiiiiie e 107
B IeL0] I@] o] 1o] o 1S PRSP 107
(@] 10 o 1SRRI 107
DS CIIPEION ..ttt e e e 107
DEIAUIL ...ttt e e e 107
USAQgE REQUITEIMENTS. . .uuiiii e e eeeeieeeiiie e e e e e e e e e e e e e e ee e e e e e e e eaeeennnnns 108
(01T Vo T= 1Y (o To [U USRPPPRPPR 109
Example 1 Minimizing the Number of TestS.........cccovvviiiiiiiiiiee, 111
Example 2 Minimizing EXeCution TIMecoiiiiiiiiiiiiiiiiicie e 112
USING Other OPLIONSoiieiiiiieeeiiiee e e e e e e eeaeeens 113
PGO API SUPPOIt OVEIVIEW.......cceviiiiiiiiiiiiieee et 113
The Profile IGS FUNCLIONSooooiiiiiiie s 114
The Profile IGS Environment Variable.............ccccccoiiiiiiieen 114

Table Of Contents

Dumping Profile INformationuiiiii oo 114
RECOMMENUAEA USAJE ...uuuiiii et e et e e e e e e e e e e e e e e e e eeeannaa 115
Resetting the Dynamic Profile Countersooouvviiiiiiiei i, 115
RECOMMENAEA USAGEuuniiiieiiieeeeeiie ettt e e e e e eeaeene 115
Dumping and Resetting Profile Informationccooooiiiiiiiiiiiiiiiie e 116
RECOMMENUEU USBAQEeevieiiiiieiiiiiieieeiieteeteeeteeeeee et se e eeseeeeeeeeeees 116
Interval Profile DUMPING.......cooooiiiii s 116
RECOMMENUEA USAJE ...uvuuiiieeeieieeeeiiiie e e e e e et e e e e e e e e eeeaaan e e e e e e e eaeeennnnns 117
HLO OVEIVIEW. ...ttt ettt e et e e e e e s e e e e e e e e e nnnnes 117
IA-32 and Itanium®-based ApplicationScoovvviiiiiie e, 117
[A-32 APPHICALIONS ... 117
Itanium-based APPIICALIONScooeeiiiiiii e 117
LOOP TranSTOrMEATIONSuuuiiee ettt e et e e e e e e e e eeeaneens 118
Scalar Replacement (IA-32 ONIY)uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 118
Loop Unrolling with -unroll[N] ... 119
Benefits and Limitations of Loop UNrollingcccoeeevvvvviiiiiiiiiiiiiee e 119
Absence of Loop-carried Memory Dependency with I[VDEP Directive.............. 120
L (=1 (=] (o] 11 Vo S USSPPRPPRPRRN 120
Parallel Programming with Intel® Fortrancccooooiiiiiiiiiiiiiii e, 121
ParallelisSm: an OVEIVIEWuuuuiiiiiiiiiiiiiiieiiiiees 121
Parallel Program DevelopmeENt.uuuuuuueiiiiiiiiiiiiieiiieiiieieeeeeeneeeeeeeeeeeeeeeeee 122
Auto-vectorization (IA-32 ONlY) ..o 124
VECLONZAtION OVEIVIEW.......ciiiiiiiiiiiie ettt e e e e e 124

Table Of Contents

VLol (o] 474 = g @] o)1) o RS 125
Y /=Tt (o] 1= 11 o] g I = =T 0 To] £ 126
Usage With Other OPLioNS..........uuiiiiiie et 126
Loop Parallelization and VecCtorizationcooeveuuiiiiiiinie e 127
Vectorization Key Programming Guidelines..............ooviiiiiiiiiiiiiiiiiiieeeeee 127
GUIAEIINES ... 127
RESIIICLIONS ...ttt neeeeee e 128
Data DEPENAENCEceveeiiiii et e e et e e e e e e e e e e et e e e e e e e eeeansnnnns 128
Data Dependence ANAIYSISc.uuuiiiiiiieeiiieeeiees e e e e e e e e eeeaanne 129

[oTo] o J @0 81511 (1 [o1 K= PP 130
LoOP EXit CONAILIONSceeviiiiie st e e e e e e e e e e e eeannaes 131
Types Of LOOP VECIONZEMuuueiiiieieeiiieeiee e 132
Strip-miNiNg and ClEANUPoovviiiiiiiiie e e s 132
[oTo] o] =] (o1ed (] T FR PP PP P PPPPPPPPPPPPPP 133
Statements in the LOOP BOAYuuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieseeeeeieeseeeeseeeeeeeenes 134
Floating-point Array OpPeratioNS..........ccoiieeeeeiieeeiiiiaaseeeeeeeeeesiins e e e e eeeeeeennnnn 134
Integer Array OPEratiONScccceceeeeieeiiiieee e e e et e e e e e e eeeeaes 135

(O 11 a1 @] o 1] = 11 o] 1SS 135
VeCtorization EXAMPIES ... 135
Argument Aliasing: A VECIOr COPY ...uuiieieeiiiiiiiiiiiiaae e e e ee ettt e e e e e eeeenannes 135
DAt AlIGNMENT. ...ttt e e e e e e ee e e e s e s esesesesseeeseeeeeeeeeees 135
AlIGNMENT STFALEGY ..eeveveiiiiiiiiiiie ettt 136
Loop Interchange and Subscripts: Matrix MUltiplyccccoovvviiiiiiiiiiieeeeeeeeens 137

Xi

Table Of Contents

Auto-parallelization OVEIVIEWcccceeeuiiiiiiiie e e e e e 138
Original Serial COUE..........uuuiiiii e 139
Transformed Parallel COUeouvvviiiiiiiiiiiiiii 139

Programming with Auto-parallelization..............couuuiiiiiiii e 139

Guidelines for Effective Auto-parallelization Usage............ccooevvveviviiiiinninnennn. 139
CodiNg GUIAEIINES ... 140
Auto-parallelization Data FIOW..............ccoviiii 140

Auto-parallelization: Enabling, Options, Directives, and Environment Variables

.. 141
Auto-parallelization OPLIONScuvvviiiiiiiiiiiiii e 141
Auto-parallelization DIFECHIVESuuuuiiiie e e e e e e eenaannes 142

Auto-parallelization Directives Format and Syntaxccccceeeeveeeeeeeennnn, 142
Auto-parallelization Environment Variables..........cccooooooviiiiiiiiieeeeei, 143

Auto-parallelization Threshold Control and DiagnostiCs...............eeiiiieeeeiieennns 143
Threshold CONLrOl........cooouiiei e 143
DIAGNOSTICS ...ttt e s e s e e e e e e e 144

Example of Parallelization Diagnostics Reportccooeeeieiiiiiiiiiiiiiins 144
I (18] o] =] qTo o] 1] T o TN I o1 145

Parallelization with OpenMP* OVEIVIEW...........cccuuuviiiiieieeeeeeeeeiiiee e e e e 145
Parallel Processing With OPeNMPcoooiiiiiiiiiiiee e 146
Performance ANAIYSIScooi i e e i 146

Programming With OPENMPcooiiiiiiii e eeaanees 146
Parallel REGIONcooiiiiiiie e e e e e e eeaeene 146
WOrksharing CONSIIUCT.........ocvviiiiiiiiiiiii 147

Xii

Table Of Contents

Parallel Processing DireCtive GrOUPSuvuuuiieieeeeereeeeiiiiiiiineeeeeseeseeennnnns 147
(D= U= B =TT o U UUSPPRRRR 149
Orphaned DIFECHIVES........cooveiieiiee e e e e e e 149

Orphaned Directives Usage RUIES...........ccooivviiiiiiiiiiiici e 150
Preparing Code for OpenMP ProCeSsSinguuceeiieieiiieeeeiiiiiineeeeeeeeeeeeinenns 150

Before Inserting OpenMP DIreCtiVES........cccooiiiiiees 150

ANBIYZE ...ttt ettt ettt ettt ettt e et n e et e e e e e e e 151

RESITUCTUIE ... e 151

TUNE L 152

Parallel Processing Thread Modelcccoooiiiiiiiiiiiii e 152
The EXECULION FIOWcciiiiiiiiiiiiiiie et 152

Using Orphaned Dir€CHIVESuiiiieeeiiiiieiiiiie et 153

Data Environment DIr€CHIVEuuuuiiiiiiiiiiiiiiiiiiiiiiiiiie e eeeeeeees 153
Pseudo Code of the Parallel Processing Modeloovvviiiiiiiiiiiiiiiiinnnn. 154

Compiling with OpenMP, Directive Format, and DiagnostiCS.............ccccuvvvnnnnnn. 155
o] o L= a1 o o] 1T o 1 155
OpenMP Directive Format and SYNtaxcccoeeeeeeevvieiiiiiiiiinieeeeeeeeeeevieen 155

Syntax for Parallel Regions in the Source Code..........cccooeeeeeeeiiiiiiiiiinnnnnnn. 156

OpenMP DiagnOStiC REPOIMSiii i 156
OpenMP Directives and Clauses SUMMAIYcccoooviiiiiiiiiiiiinie e 157
OPENMP DIFECLIVES ... 157
OPENMP CIAUSESo 158
Directives and Clauses CroSs-referencCecccvvvvveeeeiiiiiiiieeeieee e 160

Table Of Contents

DIMECHIVE ...ttt e e e e e e e e e e e e 160
USES ThESE CIAUSES......uuiiiiiiiieeiiiieee ettt 160
OpenMP Directive DESCHPLIONSciieieeeeeieeeeie e e e 161
Parallel Region DIF€CLIVESccoeiiiiiiiiiii e e e eeeaeenes 161
ClauSES USEAttt e et e e e e e e e e eeeees 161
Changing the Number of Threadscccccooiiiiiiiiiiies 162
Setting UNItS Of WOTK.......coo i 162
Setting Conditional Parallel Region EXeCUutioncccceevvieeiiiiiiiiiiiiiinneeenn, 163
Worksharing CONStruCt DIFECHIVES.........uuuviiiieie et e e e 164
DO 2= Ta o I =1 NN B I L PP 164
ClAUSES USEA ...ttt e e e e a e e e e 164
USAQE RUIES ...t e e e e eeaaeees 164
SECTIONS, SECTION and END SECTIONS ..ot 165
SINGLE and END SINGLEuoiiiiiiiiiiiiieiiiis e 165
Combined Parallel/Worksharing CONSIIUCESccevviiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeee 166
PARALLEL DO and END PARALLEL DOcuuuuiiiiiiiiiiiiiiiiiiiieiiiieneeeeeeeeneee. 166
PARALLEL SECTIONS and END PARALLEL SECTIONS..........ccvvvvvivveennen. 167
Synchronization CONSITUCEScuuuiiiiiiie e e e e e e e e e eeanaaaes 167
ATOMIC DIFECLIVE ...ttt 168
BARRIER DIFECHVEuuiiiiiiiiiiiiiiiiiiiiieeeieeeeeesesseeseeesssseesseeseseseeeeeeeeeeseeeeeeeeeees 169
CRITICAL and END CRITICAL ..uuuuiiiieeeieeeeeeiie et e s 169
FLUSH DIFECTIVE.ttt ee e e ee e e e e e e e eeeees 170
MASTER and END MASTERcuuiiiiiiiiiiiiiiiiiiiiiiieeee ettt e e 171

Xiv

Table Of Contents

ORDERED and END ORDEREDccoooiiiiiii 171
THREADPRIVATE DiIr€CHVEccoe e et 172
OpenMP Clause DeSCIIPLIONSuuiiiei e e 172

Data Scope Attribute Clauses OVEIVIEWuuiiiiieeiiieeiiiiiiiianeeeeeeeeeeeennenns 172
COPYIN ClAUSE ...ttt ettt e e e e e e e e e e e e e e 173
DEFAULT CIAUSE .. cieeeiiieiiiiee et eeettiiss s e e e e e e e ettt s s e e e e e e eeeeeasnnnnaaaeeeeaeeensnnns 173
PRIVATE, FIRSTPRIVATE, and LASTPRIVATE Clauses.........cccccceveeeevveeennns 174

PRIV AT E .o e 174

FIRSTPRIVATE. .. e e 175

LASTPRIVATE ... e 175
REDUCTION CIAUSEcoeeviiiiiiiiiiieieeeee e 176
SHARED ClAUSE......uuuuiiiiiiiiiiiiiiiiiiiiibiebbbieeeeee e ssessesssssseeeeesesssseeseeeeeeeenees 178
Specifying Schedule Type and Chunk SiZecoovviiiiiiiiiiieei e 178
OpPenMP SUpPPOIt LIDIAri€s ... 180

EXECULION MOAESttt eeeeeee e 180

TUMAIOUND ..o e e 180
TRIOUGNPUL ..o e 181
OpenMP Environment Variables.............cooooiiiii e 181

Standard Environment Variables.............ooooi s 181

Intel Extension Environment Variables............ccccoovvviiiiiiiiiii 182
OpenMP Run-time Library ROULINESuuuuiiiiiiiiiiiiiiiiiiiiiiiieieiiierieeeeeeeeeeeeeee 184
Intel EXteNSION ROULINES ..o 187

STACK SIZE ... 188

XV

Table Of Contents

AT g To] VA AN | (o Tox= 1 o o ISR 188
Examples of OpenMP USAQE..........couuuiiiiie e e e e e e eeaannnns 190
do: A Simple Difference OpPerator.............uuuiiiiiieeeiieeeee e 190
do: TWO Difference OPEratorsScooeiiieiiiiiiiiiie et 190
sections: TWo Difference OPEeratorscoeiieeeiiiieiiiiiiiree e 191
single: Updating a Shared Scalar...........cccoooiiiiiis 192
Debugging Multithread Programs OVEIVIEWcccooviiiiiiiiiiiiiiiiiieeeeeee, 192
Debugger Limitations for Multithread Programs.............c.cceiiiiiieeeevveeviiinnnnnn. 193
Debugging Parallel REQIONSoovviiiiiiiiee e e e e e eeeananns 194
Constructing an Entry-point Name.............ccoeeiiiieeiiiiiciiciee e, 194
Debugging Code with Parallel Regioncccooooeieiiiiiiiiiiiieie e 194
Debugging Multiple Threads ... 196
The Call StaCK DUMPSuuiiiieecee e 197
Debugging Shared Variables ... 200
Optimization Support FeatureS OVEIVIEWueuuuuuueummirinnrriniernnnrrnnrenenee. 201
Compiler DIreCtiVES OVEIVIEWc.uuuiiiiieeeeeeeieeiiiiiss e e e e e e eeeeeaaane e e e eeeeeeeannnnnns 201
Pipelining for Itanium®-based Applications...........cccceeeeiieeiiiiiiiiiiieee e, 202
Loop Count and LOOP DiStribDULION...........coiiieiiiiieeecie e 202
LOOP COUNT (N) DIr€CHVE.....cceeeieiiiiiieee ettt eeeeeeennnne 202
Loop Distribution DIFECHIVEcceeviiiiiiiiee e eeeeeeeeees 203
LoOop UNrolling SUPPOITcovvviiiiiiiiiiiiiiee e 204
PrefetChing SUPPOIToooiiiii 205
AV ZTei (o] g4V i[o] g IS U o] o o g S 205

XVi

Table Of Contents

[VDEPR DIFECHIVE.uiieiiiieiiiiite ettt e e e e e e 205
Overriding Vectorizer's Efficiency HEUriStiCSviiiiiiiiiiiiciceeeeeee, 207
The VECTOR ALWAYS and NOVECTOR DirectivesS............ueeveeeeeeeeeennen. 207
The VECTOR ALIGNED and UNALIGNED Directivescccevveveeeeeeene. 208
The VECTOR NONTEMPORAL DIireCtiVeccuuuiiiiieiiiiieeeiiiiiee e 209
Optimizations and DeDUGQINGuuuuuuuuuiiiiiiiiiitiiiiieeeeeeeereeerereeeeeereeeeeeeeeeeeeeeeee 210
Support for Symbolic Debugging, =g.......cooooeoeii 210
The Use Of eDP REQISIENeuniiii e 210
e T (2 C 722 o117 SO 210
The -traceback OPLiONcooc o e 211
Combining Optimization and Debuggingccccoooeeviiiiiiiiii e, 211
TRESE OPLIONS ...t e e e e e 212
Produce these reSuUltSccooiii e 212
Debugging and ASSEMDIINGuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 212
Optimizer REPOIrt GENEIALIONuuuureiiiiiiiiriiiiieieieeeeeeereeeeeeeeeeeeeeeeeereeeeeeeeeeeees 212
Specifying Optimizations to Generate RepOrts.........ccccveeeiieeeeeeeeeeiiicceennn 213
Command Syntax EXampleccccooiiiiiiiiiiiiiee e 214
The Availability of Report Generationviiiiiiiieeiiieeeeee e, 214
0 =) T 217

XVii

What's New In This Release

This volume focuses on the coding techniques and compiler optimizations that
make your application more efficient.

Improvements and New Optimization in This
Release

This document provides information about Intel® Fortran Compiler for IA-32-
based applications and Itanium®-based applications. IA-32-based applications
run on any processor of the Intel® Pentium® processor family generations,
including the Intel® Xeon(TM) processor and Intel® Pentium® M processor.
Itanium-based applications run on the Intel® Itanium® processor family.

The Intel Fortran Compiler has many options that provide high application
performance. In this release, the Intel Fortran Compiler supports most Compaq*
Visual Fortran (CVF) options. Some of the CVF options are supported as
synonyms for the Intel Fortran Compiler back-end optimizations. For a complete
list of new options in this release, see New Compiler Options in the Intel Fortran
Compiler Options Quick Reference Guide.

f) Note

Please refer to the Release Notes for the most current information about
features implemented in this release.

New Processors Support

The new options - xN, - xB, and - xP support Intel® Pentium® 4 processors,
Intel® Pentium® M processors and Intel® Pentium® 4 processor with Streaming
SIMD Extensions 3 (SSE3) instruction support, respectively. Correspondingly,
the options - axN, - axB, and - axP optimize for Intel Pentium® 4 processors,
Intel® Xeon™ processors, Intel® Pentium® M processors, and Intel® Pentium®
4 processor with Streaming SIMD Extensions 3 (SSES3) instruction support (new
processor).

Optimizing for Specific Processors at Run-time, 1A-32 Systems
This release enhances processor-specific optimizations for IA-32 systems by
performing the following run-time checks to determine the processor on which

the program is running and:

+ verify whether that processor supports the features of the new options - xN, -
xB, and - xP

Intel(R) Fortran User's Guide Vol lI

+ set the appropriate flush-to-zero (FTZ) and denormals-are-zero (DAZ) flags

See Processor-specific Run-time Checks, IA-32 Systems for more details.

Symbol Visibility Attribute Options

The Intel Fortran Compiler has the visibility attribute options that provide
command-line control of the visibility attributes as well as a source syntax to set
the complete range of these attributes. The options ensure immediate access to
the feature without depending on header file modifications. The visibility options
cause all global symbols to get the visibility specified by the option.

IPO Functionality

Automatic generation and update of the intermediate language (. i |) and
compiler files is part of the compilation process. You can create a library that
retain versioned . i | files and use them in IPO compilations. The compiler can
extract the . i | files from the library and use them to optimize the program.

New Directive for Auto-vectorization

Added extended optimization directive ! DEC$ VECTOR NONTEMPORAL.

Miscellaneous

IA-32 option - f pst kchk checks whether a program makes a correct call to a
function that should return a floating-point value. Marks the incorrect call and
makes it easy to find the error.

The - al i gn keywor d option provides more data alignment control with
additional keywords.

Introduction to Volume I

This is the second volume in a two-volume Intel® Fortran Compiler User's Guide.
It explains how you can use the Intel Fortran Compiler to enhance your
application.

The variety of optimizations used by the Intel Fortran Compiler enables you to
enhance the performance of your application. Each optimization is performed by
a set of options discussed in the sections of this volume.

In addition to optimizations invoked by the compiler command line options, the
compiler includes features which enhance your application performance such as

2

Volume II: Optimizing Applications

directives, intrinsics, run-time library routines and various utilities. These features
are discussed in the Optimization Support Features section.

£l Note

This document explains how information and instructions apply differently
to a targeted architecture, 1A-32 or Itanium® architecture. If there is no
specific reference to either architecture, the description applies to both

architectures.

This documentation assumes that you are familiar with the Fortran Standard

programming language and with the Intel® processor architecture. You should

also be familiar with the host computer's operating system.

The Subjects Covered

Programming for high performance by using the specifics of Intel Fortran:

« Setting Data Type and Alignment
« Using Arrays Efficiently

« Improving I/O Performance

« Improving Run-time Efficiency

« Caoding for Intel Architectures

Implementing Intel Fortran Compiler optimizations

« Optimizing Compilation Process

« Options to Optimize Different Application Types
« Floating Point Arithmetic Optimizations

+ Optimizing for Specific Processors
 Interprocedural Optimizations

« Profile-guided Optimizations

« High-level Language Optimizations (HLO)

Parallel Programming with Intel Fortran
« Auto-vectorization (IA-32 Only)
« Auto-parallelization
« Parallelization with OpenMP*

Optimization Support Features

« Compiler Directives
« Optimizations and Debugging

Notations and Conventions

Intel(R) Fortran User's Guide Vol lI

This documentation uses the following conventions:

Intel® Fortran

(later: Intel Fortran)

The name of the common compiler language
supported by the Intel Fortran Compiler for
Windows* and Intel Fortran Compiler for Linux*
products.

Adobe Acrobat*

An asterisk at the end of a word or name indicates
it is a third-party product trademark.

FORTRAN 77 and

later versions of
Fortran

The references to the versions of the Fortran
language. After FORTRAN 77, the references are
Fortran 90 or Fortran 95. The default is "Fortran,”
which corresponds to all versions.

THIS TYPE STYLE

Statements, keywords, and directives are shown in
all uppercase, in a normal font. For example, “add
the USE statement...”

This type style

Bold normal font shows menu names, menu items,
button names, dialog window names, and other
user-interface items.

File > Open

Menu names and menu items joined by a greater
than (>) sign indicate a sequence of actions. For
example, "Click File > Open " indicates that in the
File menu, click Open to perform this action.

ifort

The use of the compiler command in the examples
for both 1A-32 and Itanium processors is as
follows: when there is no usage difference
between the two architectures, only one command
is given. Whenever there is a difference in usage,
the commands for each architecture are given.

This type
style

An element of syntax, a reserved word, a keyword,
a file name, a variable, or a code example. The
text appears in lowercase unless uppercase is
required.

TH' S TYPE
STYLE

Fortran source text or syntax element.

This type style

Indicates what you type as command or input.

This type style

Command line arguments and option arguments
you enter.

This type Indicates an argument on a command line or an
style option's argument in the text.
[opti ons] Indicates that the items enclosed in brackets are

optional.

Volume II: Optimizing Applications

{val ue | A value separated by a vertical bar (]) indicates a
val ue} version of an option.

Ellipses in the code examples indicate that part of
the code is not shown.

Programming for High Performance:

Overview

This section consists of two sub-sections: Programming Guidelines and
Analyzing and Timing Your Application. The first one discusses the programming
guidelines geared to enhance application performance, including the specific
coding practices to utilize the Intel® architecture features. The second discusses
how to use the Intel performance analysis tools and how to time the program
execution to collect information about the problem areas.

The correlation between the programming practices and related compiler options
is explained and the related topics are linked.

Programming Guidelines

Setting Data Type and Alignment

Alignment of data concerns these kinds of variables:

dynamically allocated

« members of a data structure

« global or local variables
parameters passed on the stack.

For best performance, align data as follows:

« 8-bit data at any address
16-bit data to be ontained within an aligned four byte word
32-bit data so that its base address is a multiple of four
64-bit data so that its base address is a multiple of eight

« 80-bit data so that its base address is a multiple of sixteen

« 128-bit data so that its base address is a multiple of sixteen.

Causes of Unaligned Data and Ensuring Natural
Alignment

Intel(R) Fortran User's Guide Vol lI

For optimal performance, make sure your data is aligned naturally. A natural
boundary is a memory address that is a multiple of the data item's size. For
example, a REAL (KI ND=8) data item aligned on natural boundaries has an
address that is a multiple of 8. An array is aligned on natural boundaries if all of
its elements are.

All data items whose starting address is on a natural boundary are naturally
aligned . Data not aligned on a natural boundary is called unaligned data .

Although the Intel Fortran Compiler naturally aligns individual data items when it
can, certain Fortran statements (such as EQUI VALENCE) can cause data items to
become unaligned (see causes of unaligned data below).

You can use the command-line option - al i gn to ensure naturally aligned data,
but you should check and consider reordering data declarations of data items
within common blocks, derived type and record structures as follows:

+ carefully specify the order and sizes of data declarations to ensure
naturally aligned data

- start with the largest size numeric items first, followed by smaller size
numeric items, and then non-numeric (character) data.

Common blocks (COMMON statement), derived-type data, and FORTRAN 77
record structures (RECORD statement) usually contain multiple items within the
context of the larger structure.

The following declaration statements can force data to be unaligned:

« Common blocks (COVMON statement)
The order of variables in the COMMON statement determines their storage order.
Unless you are sure that the data items in the common block will be naturally

aligned, specify either the - al i gn conmons or - al i gn dconmons option,
depending on the largest data size used. See Alignment Options.

Derived-type (user-defined) data

Derived-type data members are declared after a TYPE statement.

If your data includes derived-type data structures, you should use the - al i gn
r ecor ds option, unless you are sure that the data items in derived-type data

structures will be naturally aligned.

If you omit the SEQUENCE statement, the - al i gn r ecor ds option (default)
ensures all data items are naturally aligned.

Volume II: Optimizing Applications

If you specify the SEQUENCE statement, the - al i gn r ecor ds option is
prevented from adding necessary padding to avoid unaligned data (data items
are packed) unless you specify the

-al i gn sequence option. When you use SEQUENCE, you should specify data
declaration order such that all data items are naturally aligned.

« Record structures (RECORD and STRUCTURE statements)

Intel Fortran record structures usually contain multiple data items. The order of
variables in the STRUCTURE statement determines their storage order. The
RECORD statement names the record structure.

If your data includes Intel Fortran record structures, you should use the - al i gn
r ecor ds option, unless you are sure that the data items in derived-type data and
Intel Fortran record structures will be naturally aligned.

+ EQUI VALENCE statements

EQUI VALENCE statements can force unaligned data or cause data to span
natural boundaries. For more information, see the Intel® Fortran Language
Reference Manual.

To avoid unaligned data in a common block, derived-type data, or record
structure (extension), use one or both of the following:

+ For new programs or for programs where the source code declarations
can be modified easily, plan the order of data declarations with care. For
example, you should order variables in a COMMON statement such that
numeric data is arranged from largest to smallest, followed by any
character data (see the data declaration rules in Ordering Data
Declarations to Avoid Unaligned Data below.

« For existing programs where source code changes are not easily done or
for array elements containing derived-type or record structures, you can
use command line options to request that the compiler align numeric data
by adding padding spaces where needed.

Other possible causes of unaligned data include unaligned actual arguments
and arrays that contain a derived-type structure or Intel Fortran record structure
as detailed below.

« When actual arguments from outside the program unit are not naturally
aligned, unaligned data access occurs. Intel Fortran assumes all passed
arguments are naturally aligned and has no information at compile time
about data that will be introduced by actual arguments during program
execution.

Intel(R) Fortran User's Guide Vol lI

- For arrays where each array element contains a derived-type structure or
Intel Fortran record structure, the size of the array elements may cause
some elements (but not the first) to start on an unaligned boundary.

« Even if the data items are naturally aligned within a derived-type structure
without the SEQUENCE statement or a record structure, the size of an array
element might require use of the Fortran
-align records option to supply needed padding to avoid some array
elements being unaligned.

« If you specify - al i gn nor ecor ds or specify - vis without - al i gn
r ecor ds, no padding bytes are added between array elements. If array
elements each contain a derived-type structure with the SEQUENCE
statement, array elements are packed without padding bytes regardless of
the Fortran command options specified. In this case, some elements will
be unaligned.

- When-align records option is in effect, the number of padding bytes
added by the compiler for each array element is dependent on the size of
the largest data item within the structure. The compiler determines the
size of the array elements as an exact multiple of the largest data item in
the derived-type structure without the SEQUENCE statement or a record
structure. The compiler then adds the appropriate number of padding
bytes. For instance, if a structure contains an 8-byte floating-point number
followed by a 3-byte character variable, each element contains five bytes
of padding (16 is an exact multiple of 8). However, if the structure contains
one 4-byte floating-point number, one 4-byte integer, followed by a 3-byte
character variable, each element would contain one byte of padding (12 is
an exact multiple of 4).

Checking for Inefficient Unaligned Data

During compilation, the Intel Fortran compiler naturally aligns as much data as
possible. Exceptions that can result in unaligned data are described above.

Because unaligned data can slow run-time performance, it is worthwhile to:

- Double-check data declarations within common block, derived-type data,
or record structures to ensure all data items are naturally aligned (see the
data declaration rules in the subsection below). Using modules to contain
data declarations can ensure consistent alignment and use of such data.

« Avoid the EQUI VALENCE statement or use it in a manner that cannot
cause unaligned data or data spanning natural boundaries.

- Ensure that passed arguments from outside the program unit are naturally
aligned.

« Check that the size of array elements containing at least one derived-type
data or record structure (extension) cause array elements to start on
aligned boundaries (see the previous subsection).

Volume II: Optimizing Applications

« There are two ways unaligned data might be reported:

« During compilation, warning messages are issued for any data items that
are known to be unaligned (unless you specify the -war n noal i gnnment s
(-WWD) option that suppresses all warnings).

« During program execution, warning messages are issued for any data that
is detected as unaligned. The message includes the address of the
unaligned access. You can use the EDB debugger to locate unaligned
data.

The following run-time message shows that:

« The statement accessing the unaligned data (program counter) is
located at 3ff80805d60
« The unaligned data is located at address 140000154

Unal i gned access pi d=24821 <a. out> va=140000154,
pc=3f f 80805d60,
ra=1200017bc

Ordering Data Declarations to Avoid Unaligned
Data

For new programs or when the source declarations of an existing program can
be easily modified, plan the order of your data declarations carefully to ensure
the data items in a common block, derived-type data, record structure, or data
items made equivalent by an EQUI VALENCE statement will be naturally aligned.

Use the following rules to prevent unaligned data:

« Always define the largest size numeric data items first.

« If your data includes a mixture of character and numeric data, place the
numeric data first.

« Add small data items of the correct size (or padding) before otherwise
unaligned data to ensure natural alignment for the data that follows.

When declaring data, consider using explicit length declarations, such as
specifying a KI ND parameter. For example, specify | NTEGER(KI ND=4) (or

| NTEGER(4)) rather than | NTEGER. If you do use a default size (such as

| NTEGER, LOQd CAL, COVPLEX, and REAL), be aware that the compiler options -
i {2| 4| 8} and -r{8| 16} can change the size of an individual field's data
declaration size and thus can alter the data alignment of a carefully planned
order of data declarations.

Using the suggested data declaration guidelines minimizes the need to use the -
al i gn keywor d options to add padding bytes to ensure naturally aligned data.

Intel(R) Fortran User's Guide Vol lI

In cases where the - al i gn keywor d options are still needed, using the
suggested data declaration guidelines can minimize the number of padding bytes
added by the compiler.

Arranging Data Items in Common Blocks

The order of data items in a conmopn statement determine the order in which the
data items are stored. Consider the following declaration of a common block
named X:

| ogi cal (kind=2) flag

i nt eger iarry_i(3)
character (|l en=5) nane_ch
common /x/ flag, itarry_i(3),
name_ch

As shown in Figure 1-1, if you omit the appropriate Fortran command options, the
common block will contain unaligned data items beginning at the first array
elementofiarry i.

Figure 1-1 Common Block with Unaligned Data

0 2 g 10 4 pame cH 19 (brte offset)

FLAG | I&RRY_IF1Y | IARRY_IK2Y | IARRY_IES)

1 byte per character

ZK-66594-GE

As shown in Figure 1-2, if you compile the program units that use the common
block with the
-al i gn commons option, data items will be naturally aligned.

Figure 1-2 Common Block with Naturally Aligned Data

o2 4 5 12 16 pamE_cH 21 (byte offset)

IARRY_ICTY | IARRY_I62Y | LARRY_IC3)

Fadding 1 byte per character

ZR-BE604A-0E

Because the common block x contains data items whose size is 32 bits or
smaller, specify

-al i gn commons option. If the common block contains data items whose size
might be larger than 32 bits (such as REAL (KI ND=8) data), use - al i gn
commons option.

10

Volume II: Optimizing Applications

If you can easily modify the source files that use the common block data, define
the numeric variables in the COMMON statement in descending order of size and
place the character variable last. This provides more portability, ensures natural
alignment without padding, and does not require the Fortran command options -
al i gn commons or-align conmons option:

| ogi cal (kind=2) flag

i nt eger iarry_i(3)
character (|l en=5) nane_ch
common /x/ iarry_i(3), flag,
name_ch

As shown in Figure 1-3, if you arrange the order of variables from largest to
smallest size and place character data last, the data items will be naturally
aligned.

Figure 1-3 Common Block with Natu rally Aligned Reordered Data

0 4 g 12 14 payE oy 19 (byte offsst)

IARRY_IF13 | IARRY_K2Y | IARRY_I3Y | FLAG

1 byte per character
ZK-T2154-GE

When modifying or creating all source files that use common block data, consider
placing the common block data declarations in a module so the declarations are
consistent. If the common block is not needed for compatibility (such as file
storage or FORTRAN 77 use), you can place the data declarations in a module
without using a common block.

Arranging Data Items in Derived-Type Data

Like common blocks, derived-type data may contain multiple data items
(members).

Data item components within derived-type data will be naturally aligned on up to
64-bit boundaries, with certain exceptions related to the use of the SEQUENCE
statement and Fortran options. See Options Controlling Alignment for information
about these exceptions.

Intel Fortran stores a derived data type as a linear sequence of values, as
follows:

+ If you specify the SEQUENCE statement, the first data item is in the first

storage location and the last data item is in the last storage location. The
data items appear in the order in which they are declared. The Fortran

11

Intel(R) Fortran User's Guide Vol lI

options have no effect on unaligned data, so data declarations must be
carefully specified to naturally align data. The - al i gn sequence option
specifically aligns data items in a SEQUENCE derived-type on natural
boundaries.

+ If you omit the SEQUENCE statement, the Intel Fortran adds the padding
bytes needed to naturally align data item components, unless you specify
the - al i gn nor ecor ds option.

Consider the following declaration of array CATALOG_SPRI NG of derived-type
PART DT:

nmodul e dat a_defs

type part _dt

i nt eger identifier
r eal wei ght
character (|l en=15) description
end type part_dt
type(part_dt)

cat al og_spri ng(30)

énd nmodul e data_defs

As shown in Figure 1-4, the largest numeric data items are defined first and the
character data type is defined last. There are no padding characters between
data items and all items are naturally aligned. The trailing padding byte is needed
because CATALOG_SPRI NGis an array; it is inserted by the compiler when the -
al i gn records option is in effect.

Figure 1-4 Derived-Type Naturally Aligne d Data (in CATALOG_SPRING : (,))

0 4 A DESCRIFTION 73 (e offset)
IDENTIFIER | WEIGHT 5 N
1 byte per character \1
Fadding

ZR-66554 -0E

Arranging Data Items in Intel Fortran Record Structures

Intel Fortran supports record structures provided by Intel Fortran. Intel Fortran
record structures use the RECCORD statement and optionally the STRUCTURE
statement, which are extensions to the FORTRAN 77 and Fortran standards. The
order of data items in a STRUCTURE statement determine the order in which the
data items are stored.

12

Volume II: Optimizing Applications

Intel Fortran stores a record in memory as a linear sequence of values, with the
record's first element in the first storage location and its last element in the last

storage location. Unless you specify

-al i gn norecords, padding bytes are added if needed to ensure data fields
are naturally aligned.

The following example contains a structure declaration, a RECORD statement,
and diagrams of the resulting records as they are stored in memory:

structure /stral
character*1 chr
i nteger*4 int
end structure

record /stral rec

Figure 1-5 shows the memory diagram of record REC for naturally aligned
records.

Figure 1-5 Memory Diagram of REC for Naturally Aligned Records

0 1 2 5 4 5 thyte offset)

L
AT

REC.IMT

L
AT

REC.CHR

e
Fadding

h'd
Record REC

ZR-22444-0FE

Using Arrays Efficiently

This topic discusses how to efficiently access arrays and how to efficiently pass
array arguments.

Accessing Arrays Efficiently

Many of the array access efficiency techniques described in this section are
applied automatically by the Intel Fortran loop transformations optimizations.
Several aspects of array use can improve run-time performance:

13

Intel(R) Fortran User's Guide Vol lI

- The fastest array access occurs when contiguous access to the whole
array or most of an array occurs. Perform one or a few array operations
that access all of the array or major parts of an array instead of numerous
operations on scattered array elements. Rather than use explicit loops for
array access, use elemental array operations, such as the following line
that increments all elements of array variable a:
a=-a+1
When reading or writing an array, use the array name and not a DOloop or
an implied DO-loop that specifies each element number. Fortran 95/90
array syntax allows you to reference a whole array by using its name in an
expression. For example:

real :: a(100, 100)
a=2=0.0
a=-a+1 I Increnent all
el enent s
I of a by 1
wite (8) a I Fast whol e array
use

Similarly, you can use derived-type array structure components, such as:

type x
i nteger a(b)
end type X

type (x) z
wite (8)z% I Fast array
structure

I conponent use

« Make sure multidimensional arrays are referenced using proper array
syntax and are traversed in the natural ascending storage order , which
is column-major order for Fortran. With column-major order, the leftmost
subscript varies most rapidly with a stride of one. Whole array access
uses column-major order.

Avoid row-major order , as is done by C, where the rightmost subscript
varies most rapidly.

For example, consider the nested do loops that access a two-dimension
array with the j loop as the innermost loop:

integer x(3,5), y(3,5, i, |
y =0

14

Volume II: Optimizing Applications

do i=1,3 I | outer |oop varies slowest
do j=1,5 I J inner |loop varies fastest
X (i,)) =vy(i,j) +1 I Inefficient row major

st orage order

end do I (rightnost subscript varies
fast est)

end do

end program

Since j varies the fastest and is the second array subscript in the
expression x (i,]j),the array is accessed in row-major order.

To make the array accessed in natural column-major order, examine the
array algorithm and data being modified. Using arrays x and y, the array
can be accessed in natural column-major order by changing the nesting
order of the do loops so the innermost loop variable corresponds to the
leftmost array dimension:

integer x(3,5), y(3,5), i,]

y =0

do j=1,5 I J outer |oop varies slowest
do i=1,3 I I inner |oop varies fastest
X (i,)) =vy(i,)) +1 I Efficient colum-major
storage order

end do I (leftnost subscript varies
fast est)

end do

end program

The Intel Fortran whole array access (x = y + 1) uses efficient column
major order. However, if the application requires that J vary the fastest or if
you cannot modify the loop order without changing the results, consider
modifying the application program to use a rearranged order of array
dimensions. Program modifications include rearranging the order of:

- Dimensions in the declaration of the arrays x(5,3) and y(5,3)
« The assignmentof x(j,i) andy(j,i) withinthe do loops
« All other references to arrays x and y

In this case, the original DOloop nesting is used where J is the innermost
loop:

integer x(3,5), y(3,5), i, |

15

Intel(R) Fortran User's Guide Vol lI

y =0

do i=1,3 I | outer |oop varies slowest

do j=1,5 I J inner |oop varies fastest

x (j,1) =vy(j,i) +1 ' Efficient colum-nmajor storage
or der

end do I (leftnost subscript varies

f ast est)

end do

end program

r eal

Code written to access multidimensional arrays in row-major order (like C)
or random order can often make use of the CPU memory cache less
efficient. For more information on using natural storage order during
record, see Improving I/0O Performance.

Use the available Fortran 95/90 array intrinsic procedures rather than
create your own.

Whenever possible, use Fortran 95/90 array intrinsic procedures instead of
creating your own routines to accomplish the same task. Fortran 95/90
array intrinsic procedures are designed for efficient use with the various
Intel Fortran run-time components.

Using the standard-conforming array intrinsics can also make your
program more portable.

With multidimensional arrays where access to array elements will be
noncontiguous, avoid leftmost array dimensions that are a power of two
(such as 256, 512).

Since the cache sizes are a power of 2, array dimensions that are also a
power of 2 may make less efficient use of cache when array access is
noncontiguous. If the cache size is an exact multiple of the leftmost
dimension, your program will probably make inefficient use of the cache.
This does not apply to contiguous sequential access or whole array
access.

One work-around is to increase the dimension to allow some unused
elements, making the leftmost dimension larger than actually needed. For
example, increasing the leftmost dimension of A from 512 to 520 would
make better use of cache:

a(512, 100)

do i= 2,511

16

Volume II: Optimizing Applications

doj = 2,99

a(i,j)=(a(i+1,j-1) + a(i-1, j+1))
* 0.5

end do

end do

In this code, array a has a leftmost dimension of 512, a power of two. The
iInnermost loop accesses the rightmost dimension (row major), causing
inefficient access. Increasing the leftmost dimension of a to 520 (real a
(520, 100)) allows the loop to provide better performance, but at the
expense of some unused elements.

Because loop index variables | and J are used in the calculation, changing
the nesting order of the do loops changes the results.

For more information on arrays and their data declaration statements, see the
Intel® Fortran Language Reference Manual.

Passing Array Arguments Efficiently
In Fortran, there are two general types of array arguments:
« Explicit-shape arrays used with FORTRAN 77.

These arrays have a fixed rank and extent that is known at compile time.
Other dummy argument (receiving) arrays that are not deferred-shape
(such as assumed-size arrays) can be grouped with explicit-shape array
arguments.

- Deferred-shape arrays introduced with Fortran 95/90.

Types of deferred-shape arrays include array pointers and allocatable
arrays. Assumed-shape array arguments generally follow the rules about
passing deferred-shape array arguments.

When passing arrays as arguments, either the starting (base) address of the
array or the address of an array descriptor is passed:

« When using explicit-shape (or assumed-size) arrays to receive an array,
the starting address of the array is passed.

« When using deferred-shape or assumed-shape arrays to receive an array,
the address of the array descriptor is passed (the compiler creates the
array descriptor).

Passing an assumed-shape array or array pointer to an explicit-shape array can
slow run-time performance. This is because the compiler needs to create an

17

Intel(R) Fortran User's Guide Vol lI

array temporary for the entire array. The array temporary is created because the
passed array may not be contiguous and the receiving (explicit-shape) array
requires a contiguous array. When an array temporary is created, the size of the
passed array determines whether the impact on slowing run-time performance is
slight or severe.

The following table summarizes what happens with the various combinations of
array types. The amount of run-time performance inefficiency depends on the
size of the array.

Output Argument Array Types

Input Explicit-Shape Arrays Deferred-Shape and
Arguments Assumed-Shape Arrays
Array Types

Explicit- Very efficient. Does not use | Efficient. Only allowed for

shape arrays

an array temporary. Does
not pass an array
descriptor. Interface block
optional.

assumed-shape arrays (not
deferred-shape arrays). Does
not use an array temporary.
Passes an array descriptor.
Requires an interface block.

Deferred-
shape and
assumed-
shape arrays

When passing an
allocatable array, very
efficient. Does not use an
array temporary. Does not
pass an array descriptor.
Interface block optional.

When not passing an
allocatable array, not
efficient. Instead use
allocatable arrays
whenever possible.

Uses an array temporary.
Does not pass an array
descriptor. Interface block
optional.

Efficient. Requires an
assumed-shape or array
pointer as dummy argument.
Does not use an array
temporary. Passes an array
descriptor. Requires an
interface block.

Improving 1/O Performance

18

Volume II: Optimizing Applications

Improving overall I/O performance can minimize both device 1/0 and actual CPU
time. The techniques listed in this topic can significantly improve performance in
many applications.

An 1/O flow problems limit the maximum speed of execution by being the slowest
process in an executing program. In some programs, 1/O is the bottleneck that
prevents an improvement in run-time performance. The key to relieving I/O
problems is to reduce the actual amount of CPU and I/O device time involved in
/0.

The problems can be caused by one or more of the following:

« A dramatic reduction in CPU time without a corresponding improvement in
I/O time
« Such coding practices as:
« Unnecessary formatting of data and other CPU-intensive
processing
« Unnecessary transfers of intermediate results
 Inefficient transfers of small amounts of data
« Application requirements

Improved coding practices can minimize actual device 1/O, as well as the actual
CPU time.

Intel offers software solutions to system-wide problems like minimizing device 1/0O
delays.

Use Unformatted Files Instead of Formatted Files

Use unformatted files whenever possible. Unformatted 1/0O of numeric data is
more efficient and more precise than formatted 1/0. Native unformatted data
does not need to be modified when transferred and will take up less space on an
external file.

Conversely, when writing data to formatted files, formatted data must be
converted to character strings for output, less data can transfer in a single
operation, and formatted data may lose precision if read back into binary form.

To write the array A(25, 25) in the following statements, S1 is more efficient
than S2:

s1 WRITE (7) A

S2 WRI TE (7, 100) A
100 FORMAT (25(' ', 25F5.21))

19

Intel(R) Fortran User's Guide Vol lI

Although formatted data files are more easily ported to other systems, Intel
Fortran can convert unformatted data in several formats; see Little-endian-to-Big-
endian Conversion.

Write Whole Arrays or Strings

To eliminate unnecessary overhead, write whole arrays or strings at one time
rather than individual elements at multiple times. Each item in an I/O list
generates its own calling sequence. This processing overhead becomes most
significant in implied-DOloops. When accessing whole arrays, use the array
name (Fortran array syntax) instead of using implied-DOloops.

Write Array Data in the Natural Storage Order

Use the natural ascending storage order whenever possible. This is column-
major order, with the leftmost subscript varying fastest and striding by 1. (See
Accessing Arrays Efficiently.) If a program must read or write data in any other
order, efficient block moves are inhibited.

If the whole array is not being written, natural storage order is the best order
possible.

If you must use an unnatural storage order, in certain cases it might be more
efficient to transfer the data to memory and reorder the data before performing
the I/O operation.

Use Memory for Intermediate Results

Performance can improve by storing intermediate results in memory rather than
storing them in a file on a peripheral device. One situation that may not benefit
from using intermediate storage is when there is a disproportionately large
amount of data in relation to physical memory on your system. Excessive page
faults can dramatically impede virtual memory performance.

If you are primarily concerned with the CPU performance of the system, consider
using a memory file system (mfs) virtual disk to hold any files your code reads or
writes.

Enable Implied-DO Loop Collapsing

DOloop collapsing reduces a major overhead in 1/O processing. Normally, each
element in an I/O list generates a separate call to the Intel Fortran run-time
library (RTL). The processing overhead of these calls can be most significant in
implied-DOloops.

20

Volume II: Optimizing Applications

Intel Fortran reduces the number of calls in implied-DOloops by replacing up to
seven nested implied-DOloops with a single call to an optimized run-time library
I/O routine. The routine can transmit many I/O elements at once.

Loop collapsing can occur in formatted and unformatted 1/O, but only if certain
conditions are met:

« The control variable must be an integer. The control variable cannot be a
dummy argument or contained in an EQUI VALENCE or VOLATI LE
statement. Intel Fortran must be able to determine that the control variable
does not change unexpectedly at run time.

« The format must not contain a variable format expression.

For information on VOLATI LE attribute and statement, see the Intel® Fortran
Language Reference.

For loop optimizations, see Loop Transformations, Loop Unrolling, and
Optimization Levels.

Use of Variable Format Expressions

Variable format expressions (an Intel Fortran extension) are almost as flexible as
run-time formatting, but they are more efficient because the compiler can
eliminate run-time parsing of the 1/0 format. Only a small amount of processing
and the actual data transfer are required during run time.

On the other hand, run-time formatting can impair performance significantly. For
example, in the following statements, S1 is more efficient than S2 because the
formatting is done once at compile time, not at run time:

s1 WRI TE (6, 400) (A(1), =1, N)
400 FORMAT (1X, <N> F5.2)

S2 WRI TE (CHFMT, 500)
"(1X,', N ' F5.2)"

500 FORMAT (A I3,A)

WRI TE (6, FMT=CHFMT) (A(1), 1=1,N)

Efficient Use of Record Buffers and Disk 1/O

Records being read or written are transferred between the user's program buffers
and one or more disk block I/O buffers, which are established when the file is
opened by the Intel Fortran RTL. Unless very large records are being read or

21

Intel(R) Fortran User's Guide Vol lI

written, multiple logical records can reside in the disk block I/O buffer when it is
written to disk or read from disk, minimizing physical disk I/O.

You can specify the size of the disk block physical I/O buffer by using the open
statement BLOCKSI ZE specifier; the default size can be obtained from

fstat (2).If you omit the BLOCKSI ZE specifier in the open statement, it is set
for optimal 1/0 use with the type of device the file resides on (with the exception
of network access).

The open statement BUFFERCOUNT specifier specifies the number of I1/0
buffers. The default for BUFFERCOUNT is 1. Any experiments to improve 1/O
performance should increase the BUFFERCOUNT value and not the BLOCKSI ZE
value, to increase the amount of data read by each disk I/O.

If the open statement has BLOCKSI ZE and BUFFERCOUNT specifiers, then the
internal buffer size in bytes is the product of these specifiers. If the open
statement does not have these specifiers, then the default internal buffer size is
8192 bytes. This internal buffer will grow to hold the largest single record, but will
never shrink.

The default for the Fortran run-time system is to use unbuffered disk writes. That
is, by default, records are written to disk immediately as each record is written
instead of accumulating in the buffer to be written to disk later.

To enable buffered writes (that is, to allow the disk device to fill the internal buffer
before the buffer is written to disk), use one of the following:

« The OPEN statement BUFFERED specifier
« The -assune buffered_i o command-line option
« The FORT_BUFFERED run-time environment variable

The open statement BUFFERED specifier takes precedence over the - assune
buf f er ed_i o option. If neither one is set (which is the default), the
FORT_BUFFERED environment variable is tested at run time.

The open statement BUFFERED specifier applies to a specific logical unit. In
contrast, the

-assunme nobuf f ered_i o option and the FORT_BUFFERED environment
variable apply to all Fortran units.

Using buffered writes usually makes disk I/0O more efficient by writing larger
blocks of data to the disk less often. However, a system failure when using
buffered writes can cause records to be lost, since they might not yet have been
written to disk. (Such records would have been written to disk with the default
unbuffered writes.)

22

Volume II: Optimizing Applications

When performing 1/0O across a network, be aware that the size of the block of
network data sent across the network can impact application efficiency. When
reading network data, follow the same advice for efficient disk reads, by
increasing the BUFFERCOUNT. When writing data through the network, several
items should be considered:

« Unless the application requires that records be written using unbuffered
writes, enable buffered writes by a method described above.

- Especially with large files, increasing the BLOCKSI ZE value increases the
size of the block sent on the network and how often network data blocks
get sent.

« Time the application when using different BLOCKSI ZE values under
similar conditions to find the optimal network block size.

When writing records, be aware that 1/O records are written to unified buffer
cache (UBC) system buffers. To request that 1/0O records be written from program
buffers to the UBC system buffers, use the flush library routine (see FLUSH in
Intel® Fortran Library Reference). Be aware that calling flush also discards read-
ahead data in user buffer.

Specify RECL

The sum of the record length (RECL specifier in an open statement) and its
overhead is a multiple or divisor of the blocksize, which is device-specific. For
example, if the BLOCKSI ZE is 8192 then RECL might be 24576 (a multiple of 3)
or 1024 (a divisor of 8).

The RECL value should fill blocks as close to capacity as possible (but not over
capacity). Such values allow efficient moves, with each operation moving as
much data as possible; the least amount of space in the block is wasted. Avoid
using values larger than the block capacity, because they create very inefficient
moves for the excess data only slightly filling a block (allocating extra memory for
the buffer and writing partial blocks are inefficient).

The RECL value unit for formatted files is always 1-byte units. For unformatted
files, the RECL unit is 4-byte units, unless you specify the -assunme byt er ecl

option to request 1-byte units (see
-assune byterecl).

Use the Optimal Record Type

Unless a certain record type is needed for portability reasons, choose the most
efficient type, as follows:

23

Intel(R) Fortran User's Guide Vol lI

- For sequential files of a consistent record size, the fixed-length record type
gives the best performance.

+ For sequential unformatted files when records are not fixed in size, the
variable-length record type gives the best performance, particularly for
BACKSPACE operations.

- For sequential formatted files when records are not fixed in size, the
St r eam LF record type gives the best performance.

Reading from a Redirected Standard Input File

Due to certain precautions that the Fortran run-time system takes to ensure the
integrity of standard input, reads can be very slow when standard input is
redirected from a file. For example, when you use a command such as

nypr ogram exe < nyi nput . dat a>, the data is read using the READ(*) or
READ(5) statement, and performance is degraded. To avoid this problem, do
one of the following:

« Explicitly open the file using the open statement. For example:

open(5, STATUS=' QLD ,
FI LE=' nyi nput . dat ')

Use an environment variable to specify the input file.

To take advantage of these methods, be sure your program does not rely on
sharing the standard input file.

For More Information on Intel Fortran data files and I/O, see "Files, Devices, and
I/O" in Volume I; on open statement specifiers and defaults, see "Open
Statement" in the Intel® Fortran Language Reference Manual.

Improving Run-time Efficiency

Source coding guidelines can be implemented to improve run-time performance.
The amount of improvement in run-time performance is related to the number of
times a statement is executed. For example, improving an arithmetic expression
executed within a loop many times has the potential to improve performance,
more than improving a similar expression executed once outside a loop.

Avoid Small Integer and Small Logical Data ltems

Avoid using integer or logical data less than 32 bits. Accessing a 16-bit (or 8-bit)
data type can make data access less efficient, especially on Itanium-based
systems.

24

Volume II: Optimizing Applications

To minimize data storage and memory cache misses with arrays, use 32-bit data
rather than 64-bit data, unless you require the greater numeric range of 8-byte
integers or the greater range and precision of double precision floating-point
numbers.

Avoid Mixed Data Type Arithmetic Expressions

Avoid mixing integer and floating-point (REAL) data in the same computation.
Expressing all numbers in a floating-point arithmetic expression (assignment
statement) as floating-point values eliminates the need to convert data between
fixed and floating-point formats. Expressing all numbers in an integer arithmetic
expression as integer values also achieves this. This improves run-time
performance.

For example, assuming that | and J are both | NTEGER variables, expressing a
constant number (2.) as an integer value (2) eliminates the need to convert the
data:

Inefficient Code:

| NTEGER 1,
J

| =J/ 2.
Efficient Code:

| NTEGER I,
J

Il =J/ 2
You can use different sizes of the same general data type in an expression with
minimal or no effect on run-time performance. For example, using REAL, DOUBLE

PRECI SI ON, and COVPLEX floating-point numbers in the same floating-point
arithmetic expression has minimal or no effect on run-time performance.

Use Efficient Data Types

In cases where more than one data type can be used for a variable, consider
selecting the data types based on the following hierarchy, listed from most to
least efficient:

« Integer (also see above example)

25

Intel(R) Fortran User's Guide Vol lI

« Single-precision real, expressed explicitly as REAL, REAL (KI ND=4) , or
REAL* 4

« Double-precision real, expressed explicitly as DOUBLE PRECI SI ON, REAL
(KI ND=8) , or REAL*8

« Extended-precision real, expressed explicitly as REAL (KI ND=16) or
REAL* 16

However, keep in mind that in an arithmetic expression, you should avoid mixing
integer and floating-point (REAL) data (see example in the previous subsection).

Avoid Using Slow Arithmetic Operators

Before you modify source code to avoid slow arithmetic operators, be aware that
optimizations convert many slow arithmetic operators to faster arithmetic
operators. For example, the compiler optimizes the expression H=J** 2 to be
H=J*J.

Consider also whether replacing a slow arithmetic operator with a faster
arithmetic operator will change the accuracy of the results or impact the
maintainability (readability) of the source code.

Replacing slow arithmetic operators with faster ones should be reserved for
critical code areas. The following hierarchy lists the Intel Fortran arithmetic
operators, from fastest to slowest:

« Addition (+), subtraction (-), and floating-point multiplication (*)
+ Integer multiplication (*)

« Division (/)

- Exponentiation (**)

Avoid Using EQUIVALENCE Statements
Avoid using EQUI VALENCE statements. EQUI VALENCE statements can:

- Force unaligned data or cause data to span natural boundaries.
- Prevent certain optimizations, including:
« Global data analysis under certain conditions (see -Q2 in Setting
Optimization with -On options).
« Implied-DOloop collapsing when the control variable is contained in
an EQUI VALENCE statement

Use Statement Functions and Internal
Subprograms

26

Volume II: Optimizing Applications

Whenever the Intel Fortran compiler has access to the use and definition of a
subprogram during compilation, it may choose to inline the subprogram. Using
statement functions and internal subprograms maximizes the number of
subprogram references that will be inlined, especially when multiple source files
are compiled together at optimization level - G3.

For more information, see Efficient Compilation.

Code DO Loops for Efficiency

Minimize the arithmetic operations and other operations in a DOloop whenever
possible. Moving unnecessary operations outside the loop will improve
performance (for example, when the intermediate nonvarying values within the
loop are not needed).

For More Information on loop optimizations, see Pipelining for Itanium®-based
Applications and Loop Unrolling; on coding Intel Fortran statements, see the
Intel® Fortran Language Reference Manual.

Using Intrinsics for Itanium®-based

Systems

Intel® Fortran supports all standard Fortran intrinsic procedures and in addition,
provides Intel-specific intrinsic procedures to extend the functionality of the
language. Intel Fortran intrinsic procedures are provided in the library

I'i bintrins. a. See the Intel® Fortran Language Reference.

This topic provides examples of the Intel-extended intrinsics that are helpful in
developing efficient applications.

Cache Size Intrinsic (Itanium® Compiler)

Intrinsic cachesi ze(n) is used only with Intel® Itanium® Compiler.
cachesi ze(n) returns the size in kilobytes of the cache at level n; 1 represents
the first level cache. Zero is returned for a nonexistent cache level.

This intrinsic can be used in many scenarios where application programmer
would like to tailor their algorithms for target processor's cache hierarchy. For
example, an application may query the cache size and use it to select block sizes
in algorithms that operate on matrices.

subroutine foo (level)
i nteger | evel

27

Intel(R) Fortran User's Guide Vol lI

if (cachesize(level) >
t hreshol d) then
call big_bar()
el se
call small _bar()
end if
end subroutine

Coding Guidelines for Intel®

Architectures

This section provides general guidelines for coding practices and techniques that
insure most benefits of using:

« |A-32 architecture supporting MMX(TM) technology and Streaming SIMD
Extensions (SSE) and Streaming SIMD Extensions 2 (SSE2)
« Itanium® architecture

This section describes practices, tools, coding rules and recommendations
associated with the architecture features that can improve the performance on
IA-32 and Itanium processors families. For all details about optimization for IA-32
processors, see Intel® Architecture Optimization Reference Manual. For all
details about optimization for Itanium processor family, see the Intel Itanium 2
Processor Reference Manual for Software Development and Optimization.

f)Note

If a guideline refers to a particular architecture only, this architecture is
explicitly named. The default is for both IA-32 and Itanium architectures.

Performance of compiler-generated code may vary from one compiler to another.
Intel® Fortran Compiler generates code that is highly optimized for Intel
architectures. You can significantly improve performance by using various
compiler optimization options. In addition, you can help the compiler to optimize
your Fortran program by following the guidelines described in this section.

When coding in Fortran, the most important factors to consider in achieving
optimum processor performance are:

« avoiding memory access stalls

« ensuring good floating-point performance
« ensuring good SIMD integer performance
+ using vectorization.

28

Volume II: Optimizing Applications

The following sections summarize and describe coding practices, rules and
recommendations associated with the features that will contribute to optimizing
the performance on Intel architecture-based processors.

Memory Access

The Intel compiler lays out Fortran arrays in column-major order. For example, in
a two-dimensional array, elements A(22, 34) and A(23, 34) are contiguous
in memory. For best performance, code arrays so that inner loops access them in
a contiguous manner. Consider the following examples.

The code in example 1 will likely have higher performance than the code in
example 2.

Example 1

ACl, J) +1

The code above illustrates access to arrays A and B in the inner loop | in a
contiguous manner which results in good performance.

Example 2

The code above illustrates access to arrays A and B in inner loop J in a non-
contiguous manner which results in poor performance.

The compiler itself can transform the code so that inner loops access memory in
a contiguous manner. To do that, you need to use advanced optimization

options, such as - O3 for both IA-32 and Itanium acrchitectures, and -O3 and -
axK| W N| B| P for IA-32 only.

Memory Layout

Alignment is a very important factor in ensuring good performance. Aligned
memory accesses are faster than unaligned accesses. If you use the

29

Intel(R) Fortran User's Guide Vol lI

interprocedural optimization on multiple files (the - i po option), the compiler
analizes the code and decides whether it is beneficial to pad arrays so that they
start from an aligned boundary. Multiple arrays specified in a single common
block can impose extra constraints on the compiler. For example, consider the
following COMVON statement:

COWON / AREAL/ A(200), X, B(200)

If the compiler added padding to align A(1) at a 16-byte aligned address, the
element B(1) would not be at a 16-byte aligned address. So it is better to split
AREAL as follows.

COVNON / AREAL/
A(200)

COWON / AREA2/ X
COVMON / AREA3/

B(200)

The above code provides the compiler maximum flexibility in determining the
padding required for both A and B.

Optimizing for Floating-point Applications
To improve floating-point performance, generally follow these rules:

« Avoid exceeding representable ranges during computation since handling
these cases can have a performance impact. Use REAL variables in
single-precision format unless the extra precision obtained through
DOUBLE or REAL* 8 variables is required. Using variables with a larger
precision formation will also increase memory size and bandwidth
requirements.

« For 1A-32 only : Avoid repeatedly changing rounding modes between
more than two values, which can lead to poor performance when the
computation is done using non-SSE instructions. Hence avoid using
FLOOR and TRUNC instructions together when generating non-SSE code.
The same applies for using CEl L and TRUNC.

Another way to avoid the problem is to use the - x{ K| W N| B| P} options to
do the computation using SSE instructions.

« Reduce the impact of denormal exceptions for both architectures as
described below.

Denormal Exceptions

30

Volume II: Optimizing Applications

Floating point computations with underflow can result in denormal values that
have an adverse impact on performance.

For 1A-32 : take advantage of the SIMD capabilities of Streaming SIMD
Extensions (SSE), and Streaming SIMD Extensions 2 (SSEZ2) instructions. The -
x{ K| W N| B| P} options enable the flush-to-zero (FTZ) mode in SSE and SSE2
instructions, whereby underflow results are automatically converted to zero,
which improves application performance. In addition, the - xP option also enables
the denormals-as-zero (DAZ) mode, whereby denormals are converted to zero
on input, further improving performance. An application developer willing to trade
pure IEEE-754 compliance for speed would benefit from these options. For more
information on FTZ and DAZ, see Setting FTZ and DAZ Flags and "Floating-point
Exceptions” in the Intel® Architecture Optimization Reference Manual.

For Itanium architecture : enable flush-to-zero (FTZ) mode with the -ftz option
set by -O3 option.

Auto-vectorization

Many applications significantly increase their performance if they can implement
vectorization, which uses streaming SIMD SSEZ2 instructions for the main
computational loops. The Intel Compiler turns vectorization on (auto-
vectorization) or you can implement it with compiler directives.

See Auto-vectorization (IA-32 Only) section for complete details.

Creating Multithreaded Applications

The Intel Fortran Compiler and the Intel® Threading Toolset have the capabilities
that make developing multithreaded application easy. See Parallel Programming
with Intel Fortran. Multithreaded applications can show significant benefit on
multiprocessor Intel symmetric multiprocessing (SMP) systems or on Intel
processors with Hyper-Threading technology.

Analyzing and Timing Your

Application

Using Intel Performance Analysis Tools

31

Intel(R) Fortran User's Guide Vol lI

Intel offers an array of application performance tools that are optimized to take
the best advantage of the Intel architecture-based processors. You can employ
these tools for developing the most efficient programs without having to write
assembly code.

The performance tools to help you analyze your application and find and resolve
the problem areas are as follows:

+ Intel® Enhanced Debugger for 1A-32 systems and Intel® Debugger (IDB)
for Itanium®-based systems.

The Enhanced Debugger (EDB) enables you to debug your programs and
view the XMM registers in a variety of formats corresponding to the data
types supported by Streaming SIMD Extensions and Streaming SIMD
Extensions 2.

The IDB debugger provides extensive support for debugging programs by
using a command-line or graphical user interface.

+ Intel® VTune(TM) Performance Analyzer

The VTune analyzer collects, analyzes, and provides Intel architecture-
specific software performance data from the system-wide view down to a
specific module, function, and instruction in your code. For information, see
http://www.intel.com/software/products/vtune/.

+ Intel® Threading Tools. The Intel Threading Tools consist of the following:
+ Intel® Thread Checker
« Intel® Thread Profiler

For general information, see
http://www.intel.com/software/products/threadtool.htm.

Timing Your Application

One of the performance indicators is your application timing. Use the t i ne
command to provide information about program performance. The following
considerations apply to timing your application:

« Run program timings when other users are not active. Your timing results
can be affected by one or more CPU-intensive processes also running
while doing your timings.

« Try to run the program under the same conditions each time to provide the
most accurate results, especially when comparing execution times of a
previous version of the same program. Use the same CPU system (model,

32

Volume II: Optimizing Applications

amount of memory, version of the operating system, and so on) if
possible.

« If you do need to change systems, you should measure the time using the
same version of the program on both systems, so you know each system's
effect on your timings.

- For programs that run for less than a few seconds, run several timings to
ensure that the results are not misleading. Overhead functions like loading
shared libraries might influence short timings considerably.

Using the form of the t i me command that specifies the name of the executable
program provides the following:

« The elapsed, real, or "wall clock" time, which will be greater than the total
charged actual CPU time.

« Charged actual CPU time, shown for both system and user execution. The
total actual CPU time is the sum of the actual user CPU time and actual
system CPU time.

Example

In the following example timings, the sample program being timed displays the
following line:

Average of all the nunbers is: 4368488960. 000000

Using the Bourne shell, the following program timing reports that the program
uses 1.19 seconds of total actual CPU time (0.61 seconds in actual CPU time for
user program use and 0.58 seconds of actual CPU time for system use) and 2.46
seconds of elapsed time:

$ tinme a.out

Average of all the nunbers is:
4368488960. 000000

r eal OnR. 46s

user OnD. 61s

Sys On0. 58s

Using the C shell, the following program timing reports 1.19 seconds of total
actual CPU time (0.61 seconds in actual CPU time for user program use and
0.58 seconds of actual CPU time for system use), about 4 seconds (0:04) of
elapsed time, the use of 28% of available CPU time, and other information:

| %time a.out |

33

Intel(R) Fortran User's Guide Vol lI

Average of all the nunbers is:
4368488960. 000000

0.61u 0.58s 0:04 28% 78+424k 9+5i o Opf +0w

Using the bash shell, the following program timing reports that the program uses
1.19 seconds of total actual CPU time (0.61 seconds in actual CPU time for user
program use and 0.58 seconds of actual CPU time for system use) and 2.46
seconds of elapsed time:

[user @ystemuser]$ tine ./a.out

Average of all the nunbers is:
4368488960. 000000

el apsed OnR. 46s

user On?D. 61s

Sys On0. 58s

Timings that show a large amount of system time may indicate a lot of time spent
doing 1/0, which might be worth investigating.

If your program displays a lot of text, you can redirect the output from the
program on the time command line. Redirecting output from the program will
change the times reported because of reduced screen I/O.

For more information, seeti me(1).

In addition to the t i me command, you might consider modifying the program to
call routines within the program to measure execution time. For example, use the
Intel Fortran intrinsic procedures, such as SECNDS, DCLOCK, CPU_TI ME,
SYSTEM CLQOCK, Tl ME, and DATE_AND_TI ME. See "Intrinsic Procedures" in the
Intel® Fortran Language Reference.

Compiler Optimizations Overview

The variety of optimizations used by the Intel® Fortran Compiler enable you to
enhance the performance of your application. Each optimization is performed by
a set of options discussed in each section dedicated to the following
optimizations:

« Optimizing compilation process
« Optimizing different types of applications

34

Volume II: Optimizing Applications

+ Floating-point arithmetic operations

« Optimizing applications for specific processors
+ Interprocedural optimizations (IPO)

+ Profile-guided optimizations

- High-level Language optimizations

In addition to optimizations invoked by the compiler command-line options, the
compiler includes features which enhance your application performance such as
directives, intrinsics, run-time library routines and various utilities. These
features are discussed in the Optimization Support Features section.

Optimizing Compilation Process

Overview

This section describes the Intel® Fortran Compiler options that optimize the
compilation process. By default, the compiler converts source code directly to an
executable file. Appropriate options enable you not only to control the process
and obtain desired output file produced by the compiler, but also make the
compilation itself more efficient.

A group of options monitors the outcome of Intel compiler-generated code
without interfering with the way your program runs. These options control some
computation aspects, such as allocating the stack memory, setting or modifying
variable settings, and defining the use of some registers.

The options in this section provide you with the following capabilities of efficient
compilation:

- automatic allocation of variables and stacks
- aligning data

- symbol visibility attribute options

Efficient Compilation

Understandably, efficient compilation contributes to performance improvement.
Before you analyze your program for performance improvement, and improve
program performance, you should think of efficient compilation itself. Based on
the analysis of your application, you can decide which Intel Fortran Compiler
optimizations and command-line options can improve the run-time performance
of your application.

35

Intel(R) Fortran User's Guide Vol lI

Efficient Compilation Techniques

The efficient compilation techniques can be used during the earlier stages and
later stages of program development.

During the earlier stages of program development, you can use incremental
compilation with minimal optimization. For example:

ifort -c -g -Q0 sub2.f90 (generates object file of sub2)

ifort -c -g -Q0 sub3.f90 (generates object file of sub3)

ifort -o main -g -Q0 main.f90 sub2.0 sub3.o0

The above commands turn off all compiler default optimizations (for example, -
O2) with -0Q0. You can use the - g option to generate symbolic debugging
information and line numbers in the object code for all routines in the program for
use by a source-level debugger. The mai n file created in the third command
above contains symbolic debugging information as well.

During the later stages of program development, you should specify multiple
source files together and use an optimization level of at least - Q2 (default) to
allow more optimizations to occur. For instance, the following command compiles
all three source files together using the default level of optimization, - O2:

ifort -o main main.f90 sub2.f90 sub3.f90

Compiling multiple source files lets the compiler examine more code for possible
optimizations, which results in:

+ Inlining more procedures
« More complete data flow analysis
« Reducing the number of external references to be resolved during linking

For very large programs, compiling all source files together may not be practical.
In such instances, consider compiling source files containing related routines
together using multiple i f ort commands, rather than compiling source files
individually.

Options That Improve Run-Time Performance

The table below lists the options in alphabetical order that can directly improve
run-time performance. Most of these options do not affect the accuracy of the
results, while others improve run-time performance but can change some
numeric results. The Intel Fortran Compiler performs some optimizations by

36

Volume II: Optimizing Applications

default unless you turn them off by corresponding command-line options.
Additional optimizations can be enabled or disabled using command options.

Option Description
-align Analyzes and reorders memory layout for variables and
keywor d arrays.

Controls whether padding bytes are added between data
items within common blocks, derived-type data, and
record structures to make the data items naturally
aligned.

- Optimizes your application's performance for specific
ax{ K| WN| B| P} | processors. Regardless of which - ax suboption you
IA-32 only choose, your application is optimized to use all the
benefits of that processor with the resulting binary file
capable of being run on any Intel IA-32 processor.

-fast Enables a collection of optimizations for run-time
performance.

-0l Optimizes to favor code size and code locality. See
Setting Optimizations with -On Options.

-2 Optimizes for code speed. Sets performance-related
options. Setting Optimizations with -On Options.

-8 Activates loop transformation optimizations. Setting
Optimizations with -On Options.

- opennp Enables the parallelizer to generate multithreaded code

based on the OpenMP* directives.

-paral | el Enables the auto-parallelizer to generate multithreaded
code for loops that can be safely executed in parallel.

-gp Requests profiling information, which you can use to
identify those parts of your program where improving
source code efficiency would most likely improve run-time
performance. After you modify the appropriate source
code, recompile the program and test the run-time

performance.
-t pp{ n} Optimizes your application's performance for specific Intel
processors. See Targeting a Processor, -t pp{n}.
-unrolIn Specifies the number of times a loop is unrolled (n) when

specified with optimization level - G3. If you omit n in -
unr ol | , the optimizer determines how many times loops
can be unrolled.

Options That Slow Down the Run-time
Performance

37

Intel(R) Fortran User's Guide Vol lI

The table below lists options in alphabetical order that can slow down the run-
time performance. Some applications that require floating-point exception
handling or rounding might need to use the - f pen dynamic option. Other
applications might need to use the - assune dummy_al i ases or - virs options
for compatibility reasons. Other options that can slow down the run-time
performance are primarily for troubleshooting or debugging purposes.

Table below lists the options that can slow down run-time performance.

Option Description

-assune Forces the compiler to assume that dummy (formal)
dummy_al i ases | arguments to procedures share memory locations
with other dummy arguments or with variables shared
through use association, host association, or
common block use. These program semantics slow
performance, so you should specify

-assune dunmy_al i ases only for the called
subprograms that depend on such aliases.

The use of dummy aliases violates the FORTRAN 77
and Fortran 95/90 standards but occurs in some older

programs.
-check bounds | Generates extra code for array bounds checking at
run time.
- check Generates extra code to check integer calculations
overfl ow for arithmetic overflow at run time. Once the program

is debugged, omit this option to reduce executable
program size and slightly improve run-time
performance.

-fpe3 Using this option enables certain types of floating-
point exception handling, which can be expensive.

-9 Generate extra symbol table information in the object
file. Specifying this option also reduces the default
level of optimization to - Q0 or - Q0 (no optimization).

f) Note

The - g option only slows your program down when
no optimization level is specified, in which case - g
turns on - Q0, which slows the compilation down. If -
g, - Q2 are specified, the code runs very much the
same speed as if - g were not specified.

-0 Turns off optimizations. Can be used during the early
stages of program development or when you use the

38

Volume II: Optimizing Applications

debugger.

-save Forces the local variables to retain their values from

the last invocation terminated. This may change the

output of your program for floating-point values as it

forces operations to be carried out in memory rather
than in registers, which in turn causes more frequent
rounding of your results.

- VB Controls certain VMS-related run-time defaults,
including alignment. If you specify the - virs option,
you may need to also specify the - al i gn records
option to obtain optimal run-time performance.

Little-endian-to-Big-endian

Conversion

The Intel Fortran Compiler can write unformatted sequential files in big-endian
format and also can read files produced in big-endian format by using the little-
endian-to-big-endian conversion feature.

Both on IA-32-based processors and on Itanium®-based processors, Intel
Fortran handles internal data in little-endian format. The little-endian-to-big-
endian conversion feature is intended for Fortran unformatted input/output
operations in unformatted sequential files. The feature enables:

« processing of the files developed on processors that accept big-endian data
format
« producing big-endian files for such processors on little-endian systems.

The little-endian-to-big-endian conversion is accomplished by the following
operations:

- The WRI TE operation converts little-endian format to big-endian format.
- The READ operation converts big-endian format to little-endian format.

The feature enables the conversion of variables and arrays (or array subscripts)
of basic data types. Derived data types are not supported.

Little-to-Big Endian Conversion Environment
Variable

39

Intel(R) Fortran User's Guide Vol lI

In order to use the little-endian-to-big-endian conversion feature, specify the
numbers of the units to be used for conversion purposes by setting the
F_UFMTENDI AN environment variable. Then, the READ/WRI TE statements that
use these unit numbers, will perform relevant conversions. Other READMWRI TE
statements will work in the usual way.

In the general case, the variable consists of two parts divided by a semicolon. No
spaces are allowed inside the F_UFMIENDI AN value. The variable has the
following syntax:

F_UFMTENDI AN=MODE | [MODE;] EXCEPTI ON

where:

MODE = big | little

EXCEPTION = big: ULIST | little:ULIST | ULIST
ULIST = U| ULIST, U

U = decimal | deciml -decinal

« MODE defines current format of data, represented in the files; it can be
omitted.

The keyword | i t t | e means that the data have little endian format and will
not be converted. This keyword is a default.

The keyword bi g means that the data have big endian format and will be
converted. This keyword may be omitted together with the colon.

« EXCEPTI ONis intended to define the list of exclusions for MODE; it can be
omitted. EXCEPTI ONkeyword (1 i tt| e or bi g) defines data format in the
files that are connected to the units from the EXCEPTI ON list. This value
overrides MODE value for the units listed.

« Each list member Uis a simple unit number or a number of units. The
number of list members is limited to 64.
deci mal is a non-negative decimal number less than 2*.

Converted data should have basic data types, or arrays of basic data types.
Derived data types are disabled.

Command lines for variable setting with different shells:
Sh: export F_UFMIENDI AN=MODE; EXCEPTI ON

Csh: setenv F_UFMIENDI AN MODE; EXCEPTI ON
Note

Environment variable value should be enclosed in quotes if semicolon is
present.

40

Volume II: Optimizing Applications

Another Possible Environment Variable Setting

The environment variable can also have the following syntax:
F_UFMTENDI AN=u[, u]

Command lines for the variable setting with different shells:

« Sh: export F_UFMIENDI AN=u[, u]
+ Csh: setenv F_UFMIENDI AN u[, u]

See error messages that may be issued during the little endian — big endian
conversion. They are all fatal. You should contact Intel if such errors occur.

Usage Examples
1. F_UFMIENDI AN=bi g

All input/output operations perform conversion from big-endian to little-
endian on READ and from little-endian to big-endian on WRI TE.

2. F_UFMTENDI AN="1ittl e; bi g: 10, 20"
or F_UFMTENDI AN=bi g: 10, 20
or F_UFMIENDI AN=10, 20

In this case, only on unit numbers 10 and 20 the input/output operations
perform big-little endian conversion.

3. F_UFMTENDI AN="big; little: 8"

In this case, on unit number 8 no conversion operation occurs. On all other
units, the input/output operations perform big-little endian conversion.

4. F_UFMTENDI AN=10- 20

Define 10, 11, 12 ... 19, 20 units for conversion purposes; on these units,
the input/output operations perform big-little endian conversion.

5. Assume you set F_UFMIENDI AN=10, 100 and run the following program.

i nteger*4 cc4
i nteger*8 cc8
i nteger*4 c4
i nteger*8 c8
c4 = 456
c8 = 789

41

Intel(R) Fortran User's Guide Vol lI

C prepare a little endian representation
of data

open(11,file="lit.tnmp ,forms" unformatted')
wite(1ll) c8

wite(ll) c4

cl ose(11)

C prepare a big endian representation of
dat a

open(10,file="big.tnp' ,form" unformatted')
wite(1l0) c8

wite(1l0) c4

cl ose(10)

C read big endian data and operate with
t hem on
C little endian machi ne.

open(100, file="big.tnmp',form="unformatted')
read(100) cc8
read(100) cc4

C Any operation with data, which have been
read

C Co.
cl ose(100)
stop

end

Now compare | i t.t np and bi g. t np files with the help of od utility.
>o0d -t x4 lit.tnp

0000000 00000008 00000315 00000000 00000008
0000020 00000004 000001c8 00000004
0000034

> o0d -t x4 big.tnp

0000000 08000000 00000000 15030000 08000000
0000020 04000000 ¢8010000 04000000
0000034

You can see that the byte order is different in these files.

42

Volume II: Optimizing Applications

Default Compiler Optimizations

If you invoke the Intel® Fortran Compiler without specifying any compiler options,
the default state of each option takes effect. The following tables summarize the
options whose default status is ON as they are required for Intel Fortran Compiler
default operation. The tables group the options by their functionality.

For the default states and values of all options, see Compiler Options Quick
Reference Alphabetical table in the Intel® Fortran Compiler Options Quick
Reference. The table provides links to the sections describing the functionality of
the options. If an option has a default value, such value is indicated.

Per your application requirement, you can disable one or more options. For
general methods of disabling optimizations, see Volume 1.

The following tables list all options that compiler uses for its default optimizations.

Data Setting and Fortran Language Conformance

Default Option

Description

-align
-align records

Analyzes and reorders memory layout for
variables and arrays.

-align rec8bhyte

Specifies 8-byte boundary for alignment
constraint.

-al t param

Specifies if alterate form of parameter
constant declarations is recognized or not.

-ansi _alias

Enables assumption of the program's ANSI
conformance.

-assune cc_onp

Enables OpenMP conditional compilation
directives.

-ccdefaul t
def aul t

Specifies default carriage control for units 6
and *.

-doubl e_si ze 64

Defines the default KIND for double-
precision variables to be 64.

-double_size 64 n is 64 (KIND=8)

-dps

Enables DEC* parameter statement
recognition.

-error _limt 30

Specifies the maximum number of error-
level or fatal-level compiler errors
permissible.

43

Intel(R) Fortran User's Guide Vol lI

-fpe 3

Specifies floating-point exception handling
at run time for the main program.

-i nteger_si ze
32

Specifies the default size of integer and
logical variables.

- pad Enables changing variable and array
memory layout.

- pc80 - pc{ 32| 64| 80} enables floating-point

IA-32 only significand precision control as follows: -

pc32 to 24-bit significand, - pc64 to 53-bit
significand, and - pc80 to 64-bit significand.

-real _size 64

Specifies the size of REAL and COVPLEX
declarations, constants, functions, and
intrinsics.

-save Saves all variables in static allocation.
Disables
- aut o, that is, disables setting all variables
AUTOVATI C.

- Zp8 - Zp{ n} specifies alignment constraint for

structures on 1-, 2-, 4-, 8-, or 16-byte
boundary. To disable, use
-align-.

Optimizations

Default Option

Description

-assune cc_onp

Enables OpenMP conditional
compilation directives.

-fp Disables the use of the ebp register in

IA-32 only optimizations. Directs to use the ebp-
based stack frame for all functions.

-fpe 3 Specifies floating-point exception

handling at run time for the main
program. - f pe 0 disables the option.

-ip_no_inlining

Disables full or partial inlining that
would result from the -i p
interprocedural optimizations.
Requires -i p or -i po.

-1 PF_fltacc-
Itanium® compiler

Enables the compiler to apply
optimizations that affect floating-point
accuracy.

44

Volume II: Optimizing Applications

-1 PF_fma
Itanium compiler

Enables the contraction of floating-
point multiply and add/subtract
operations into a single operation.

-1 PF_fp_specul ation
f ast

Itanium compiler

Sets the compiler to speculate on
floating-point operations. -

| PF_f p_specul ati onof f disables
this optimization.

-1 po_obj
Itanium compiler

Forces the generation of real object
files. Requires - i po.
IA-32 systems: OFF

-0 -

Optimize for maximum speed.

-opennp_report1

Indicates loops, regions, and sections
parallelized.

opt _report_levelmn

Specifies the minimal level of the
optimizations report.

-par _reportl

Indicates loops successfully auto-
parallelized.

-t pp2
Itanium compiler

Optimizes code for the Intel®
Itanium® 2 processor for Itanium-
based applications. Generated code
is compatible with the Itanium
processor.

-t pp7 Optimizes code for the Intel®

IA-32 only Pentium® 4 and Intel® Xeon(TM)
processor for IA-32 applications.

-unrol | -unrol | [n] : omitn to let the

compiler decide whether to perform
unrolling or not (default).

Specify n to set maximum number of
times to unroll a loop.

The Itanium compiler currently uses
only

n =0, -unrol | 0 (disabled option) for
compatibility.

-vec_reportl

Indicates loops successfully
vectorized.

Disabling Default Options

To disable an option, use one of the following as applies:

45

Intel(R) Fortran User's Guide Vol lI

- Generally, to disable one or a group of optimization options, use - Q0
opt i on. For example:

ifort -Q2 -Q0 input _file(s)

f) Note

The - Q0 option is part of a mutually-exclusive group of options that
includes - A0, - O, - A1, - @2, and - G3. The last of any of these options
specified on the command line will override the previous options from this

group.

- To disable options that include optional "-" shown as [-] , use that version
of the option in the command line, for example: - al i gn- .

- To disable options that have { n} parameter, use n=0 version, for
example: - unr ol | 0.

fj Note

If there are enabling and disabling versions of switches on the line, the last
one takes precedence.

Using Compilation Options

Stacks: Automatic Allocation and Checking

The options in this group enable you to control the computation of stacks and
variables in the compiler generated code.

Automatic Allocation of Variables

-aut o

The - aut o option specifies that locally declared variables are allocated to the
run-time stack rather than static storage. If variables defined in a procedure do
not have the SAVE or ALLOCATABLE attribute, they are allocated to the stack. It
does not affect variables that appear in an EQUI VALENCE or SAVE statement, or
those that are in COMVON.

- aut o is the same as - aut omat i ¢ and - nosave.
- aut o may provide a performance gain for your program, but if your program
depends on variables having the same value as the last time the routine was

invoked, your program may not function properly. Variables that need to retain
their values across routine calls should appear in a SAVE statement.

46

Volume II: Optimizing Applications

If you specify - r ecur si ve or - opennp, the default is - aut o.

-auto scal ar

The - aut o_scal ar option causes allocation of local scalar variables of intrinsic
type | NTEGER, REAL, COVPLEX, or LOG CAL to the stack. This option does not
affect variables that appear in an EQUI VALENCE or SAVE statement, or those
that are in COMMON.

-aut o_scal ar may provide a performance gain for your program, but if your
program depends on variables having the same value as the last time the routine
was invoked, your program may not function properly. Variables that need to
retain their values across subroutine calls should appear in a SAVE statement.
This option is similar to - aut o, which causes all local variables to be allocated
on the stack. The difference is that - aut o_scal ar allocates only scalar
variables of the stated above intrinsic types to the stack.

-aut o_scal ar enables the compiler to make better choices about which
variables should be kept in registers during program execution.

-Save, -Zero

The - save option is opposite of - aut o: the - save option saves all variables in
static allocation except local variables within a recursive routine. If a routine is
invoked more than once, this option forces the local variables to retain their
values between the invocations. The - save option ensures that the final results
on the exit of the routine is saved on memory and can be reused at the next
occurrence of that routine. This may cause some performance degradation as it
causes more frequent rounding of the results.

When the compiler optimizes the code, the results are stored in registers. - save
is the same as - noaut o.

The - [no] zer o option initializes to zero all local scalar variables of intrinsic type

| NTEGER, REAL, COVPLEX, or LOQ CAL, which are saved and not initialized yet.
Used in conjunction with - save. The default is - nozer o.

Summary

There are three choices for allocating variables: - save, - aut o, and -

aut o_scal ar. Only one of these three can be specified. The correlation among
them is as follows:

+ -save disables - aut o0, sets - noaut omat i ¢, and allocates all variables
not marked AUTOVATI Cto static memory.

47

Intel(R) Fortran User's Guide Vol lI

« -autodisables - save, sets - aut onat i ¢, and allocates all variables—
scalars and arrays of all types—not marked SAVE to the stack.
« -auto_scalar:
o It makes local scalars of intrinsic types | NTEGER, REAL, COVPLEX,
and LOd CAL automatic.
o This is the default; there is no - noaut o_scal ar; however, -
recursive or - opennp disables - aut o_scal ar and makes -
aut o the default.

Checking the Floating-point Stack State (IA-32
only), -fpstkchk

The - f pst kchk option (IA-32 only) checks whether a program makes a correct
call to a function that should return a floating-point value. If an incorrect call is
detected, the option places a code that marks the incorrect call in the program.

When an application calls a function that returns a floating-point value, the
returned floating-point value is supposed to be on the top of the floating-point
stack. If return value is not used, the compiler must pop the value off of the
floating-point stack in order to keep the floating-point stack in correct state.

If the application calls a function, either without defining or incorrectly defining the
function's prototype, the compiler does not know whether the function must return
a floating-point value, and the return value is not popped off of the floating-point
stack if it is not used. This can cause the floating-point stack overflow.

The overflow of the stack results in two undesirable situations:

- a NANvalue gets involved in the floating-point calculations

- the program results become unpredicatble; the point where the program
starts making errors can be arbitrarily far away from the point of the actual
error.

The - f pst kchk option marks the incorrect call and makes it easy to find the
error.

Note

This option causes significant code generation after every
function/subroutine call to insure a proper state of a floating-point stack and
slows down compilation. It is meant only as a debugging aid for finding
floating point stack underflow/overflow problems, which can be otherwise
hard to find.

48

Volume II: Optimizing Applications

Aliases

-common_args

The - conmon_ar gs option assumes that the "by-reference” subprogram
arguments may have aliases of one another.

Preventing CRAY* Pointer Aliasing

Option - saf e_cray_pt r specifies that the CRAY* pointers do not alias with
other variables. The default is OFF.

Consider the following example.

poi nter (pb, b)

p
get st orage()

doi =1, n
b(i) = a(i) + 1
enddo

When - saf e_cray_ptr is not specified (default), the compiler assumes that b
and a are aliased. To prevent such an assumption, specify this option, and the
compiler will treat b(1) and a(i) as independent of each other.

However, if the variables are intended to be aliased with CRAY pointers, using
the - saf e_cray_ptr option produces incorrect result. For the code example
below, - saf e_cray_ptr should not be used.

pb = loc(a(2))
do i=1, n
b(i) = a(i) +1
enddo

Cross-platform, -ansi ali as

The - ansi _al i as[-] enables (default) or disables the compiler to assume that
the program adheres to the ANSI Fortran type aliasablility rules. For example, an
object of type real cannot be accessed as an integer. You should see the ANSI
standard for the complete set of rules.

The option directs the compiler to assume the following:
« Arrays are not accessed out of arrays' bounds.
« Pointers are not cast to non-pointer types and vice-versa.

- References to objects of two different scalar types cannot alias. For
example, an object of type i nt eger cannot alias with an object of type

49

Intel(R) Fortran User's Guide Vol lI

real or an object of type real cannot alias with an object of type double
preci si on.

If your program satisfies the above conditions, setting the - ansi _al i as option
will help the compiler better optimize the program. However, if your program may
not satisfy one of the above conditions, the option must be disabled, as it can
lead the compiler to generate incorrect code.

The synonym of - ansi _al i as is-assune [no] dumry_al i ases.

Alignment Options

-align recnbyte or -Zp|[n]

Use the - al i gn recnbyt e (or - Zp[n]) option to specify the alignment
constraint for structures on n-byte boundaries (where n =1, 2, 4, 8, or 16 with -

Zp[n]).

When you specify this option, each structure member after the first is stored on
either the size of the member type or n-byte boundaries (where n =1, 2, 4, 8, or
16), whichever is smaller.

For example, to specify 2 bytes as the packing boundary (or alignment
constraint) for all structures and unions in the file pr ogl. f, use the following
command:

ifort -Zp2 progl.f

The default for IA-32 and Itanium-based systems is - al i gn rec8byte or -
Zp8. The - Zp16 option enables you to align Fortran structures such as common

blocks. For Fortran structures, see STRUCTURE statement in Intel® Fortran
Language Reference Manual.

If you specify - Zp (omit n), structures are packed at 8-byte boundary.

-align and -pad

The - al i gn option is a front-end option that changes alignment of variables in a
conmon block.

Example:

common
/ bl ock1/ ch, doub, chl, i nt

50

Volume II: Optimizing Applications

i nteger int
character(l en=1) ch,
chl

doubl e precision doub
end

The - al i gn option enables padding inserted to ensure alignment of doub and
i nt on natural alignment boundaries. The - noal i gn option disables padding.

The - al i gn option applies mainly to structures. It analyzes and reorders
memory layout for variables and arrays and basically functions as - Zp{ n} . You
can disable either option with - noal i gn.

For - al i gn keywor d options, see Command-line Options.

The - pad option is effectively not different from - al i gn when applied to
structures and derived types. However, the scope of - pad is greater because it
applies also to common blocks, derived types, sequence types, and VAX*
structures.

Recommendations on C ontrolling Alignment with
Options

The following options control whether the Intel Fortran compiler adds padding
(when needed) to naturally align multiple data items in common blocks, derived-
type data, and Intel Fortran record structures:

« By default (with - Q2), the - al i gn conmons option requests that data in
common blocks be aligned on up to 4-byte boundaries, by adding padding
bytes as needed.

The - al i gn nocomuons arbitrarily aligns the bytes of common block data.
In this case, unaligned data can occur unless the order of data items
specified in the COMMON statement places the largest numeric data item first,
followed by the next largest numeric data (and so on), followed by any
character data.

+ By default (with - Q2), the - al i gn dcommons option requests that data in
common blocks be aligned on up to 8-byte boundaries, by adding padding
bytes as needed.

The - al i gn nodconmons arbitrarily aligns the bytes of data items in a
common data.

Specify the - al i gn dconmmons option for applications that use common
blocks, unless your application has no unaligned data or, if the application

51

Intel(R) Fortran User's Guide Vol lI

might have unaligned data, all data items are four bytes or smaller. For
applications that use common blocks where all data items are four bytes or
smaller, you can specify - al i gn commons instead of - al i gn dconmons.

« The-align norecords option requests that multiple data items in derived-
type data and record structures (an Intel Fortran extension) be aligned
arbitrarily on byte boundaries instead of being naturally aligned. The default
is-align records.

« The-align records option requests that multiple data items in record
structures (extension) and derived-type data without the SEQUENCE
statement be naturally aligned, by adding padding bytes as needed.

« The-align recnbyt e option requests that fields of records and
components of derived types be aligned on either the size byte boundary
specified or the boundary that will naturally align them, whichever is smaller.
This option does not affect whether common blocks are naturally aligned or
packed.

« The-align sequence option controls alignment of derived types with the
SEQUENCE attribute.

The - al i gn nosequence option means that derived types with the
SEQUENCE attribute are packed regardless of any other alignment rules. Note
that - al i gn none implies -al i gn nosequence .

The - al i gn sequence option means that derived types with the SEQUENCE
attribute obey whatever alignment rules are currently in use. Consequently,
since - al i gn record is a default value, then - al i gn sequence alone
on the command line will cause the fields in these derived types to be
naturally aligned.

The default behavior is that multiple data items in derived-type data and record
structures will be naturally aligned; data items in common blocks will not (-
align records with-al i gn noconmons). In derived-type data, using the
SEQUENCE statement prevents - al i gn r ecor ds from adding needed padding
bytes to naturally align data items.

Symbol Visibility Attribute Options

Applications that do not require symbol preemption or position-independent code
can obtain a performance benefit by taking advantage of the generic ABI visibility
attributes.

f_:) Note

52

Volume II: Optimizing Applications

The visibility options are supported by both 1A-32 and Itanium compilers,
but currently the optimization benefits are for Itanium-based systems only.

Global Symbols and Visibility Attributes

A global symbol is a symbol that is visible outside the compilation unit in which it
is declared (compilation unit is a single-source file with its include files). Each
global symbol definition or reference in a compilation unit has a visibility attribute
that controls how it may be referenced from outside the component in which it is
defined. The values for visibility are defined in the table that follows.

EXTERN The compiler must treat the symbol as though it is
defined in another component. This means that the
compiler must assume that the symbol will be
overridden (preempted) by a definition of the same
name in another component. (See Symbol Preemption.)
If a function symbol has external visibility, the compiler
knows that it must be called indirectly and can inline the
indirect call stub.

DEFAULT Other components can reference the symbol.
Furthermore, the symbol definition may be overridden
(preempted) by a definition of the same name in another
component.

PROTECTED Other components can reference the symbol, but it
cannot be preempted by a definition of the same name
in another component.

HI DDEN Other components cannot directly reference the symbol.
However, its address might be passed to other
components indirectly; for example, as an argument to a
call to a function in another component, or by having its
address stored in a data item referenced by a function

in another component.

| NTERNAL The symbol cannot be referenced outside the
component where it is defined, either directly or
indirectly.

Z:) Note

Visibility applies to both references and definitions. A symbol reference’s
visibility attribute is an assertion that the corresponding definition will have
that visibility.

Symbol Preemption and Optimization

53

Intel(R) Fortran User's Guide Vol lI

Sometimes programmers need to use some of the functions or data items from a
shareable object, but at the same time, they need to replace other items with
definitions of their own. For example, an application may need to use the
standard run-time library shareable object, | i bc. so, but to use its own
definitions of the heap management routines mal | oc and f r ee. In this case it is
important that calls to mal | oc and f r ee within | i bc. so use the user's
definition of the routines and not the definitions in | i bc. so. The user's definition
should then override, or preempt, the definition within the shareable object.

This functionality of redefining the items in shareable objects is called symbol
preemption. When the run-time loader loads a component, all symbols within the
component that have default visibility are subject to preemption by symbols of the
same name in components that are already loaded. Note that since the main
program image is always loaded first, none of the symbols it defines will be
preempted (redefined).

The possibility of symbol preemption inhibits many valuable compiler
optimizations because symbols with default visibility are not bound to a memory
address until run-time. For example, calls to a routine with default visibility cannot
be inlined because the routine might be preempted if the compilation unit is
linked into a shareable object. A preemptable data symbol cannot be accessed
using GP-relative addressing because the name may be bound to a symbol in a
different component; and the GP-relative address is not known at compile time.

Symbol preemption is a rarely used feature and has negative consequences for
compiler optimization. For this reason, by default the compiler treats all global
symbol definitions as non-preemptable (protected visibility). Global references to
symbols defined in another compilation unit are assumed by default to be
preemptable (default visibility). In those rare cases where all global definitions as
well as references need to be preemptable, specify the - f pi ¢ option to override
this default.

Specifyng Symbol Visibility Explicitly

The Intel Fortran Compiler has the visibility attribute options that provide
command-line control of the visibility attributes as well as a source syntax to set
the complete range of these attributes. The options ensure immediate access to
the feature without depending on header file modifications. The visibility options
cause all global symbols to get the visibility specified by the option. There are two
variety of options to specify symbol visibility explicitly:

-fvisibility=keyword
-fvisibility-keyword=file

54

Volume II: Optimizing Applications

The first form specifies the default visibility for global symbols. The second form
specifies the visibility for symbols that are in a file (this form overrides the first
form).

The fi | e is the pathname of a file containing the list of symbols whose visibility
you want to set; the symbols are separated by whitespace (spaces, tabs, or
newlines).

In both options, the keywor d is: ext er n, def aul t, pr ot ect ed, hi dden, and
i nt er nal , see definitions above.

f) Note

These two ways to explicitly set visibility are mutually exclusive: you may
use the visibility attribute on the declaration, or specify the symbol name in
afil e, butnot both.

The option - f vi si bi | i ty- keywor d=fi | e specifies the same visibility
attribute for a number of symbols using one of the five command line options
corresponding to the keywor d:

-fvisibility-extern=file
-fvisibility-default=file
-fvisibility-protected=file
-fvisibility-hidden=file
-fvisibility-internal =file

where fi | e is the pathname of a file containing a list of the symbol names
whose visibility you wish to set; the symbol names in the fi | e are separated by
either blanks, tabs, or newlines. For example, the command line option:

-fvisibility-protected=prot.txt

where file pr ot . t xt contains symbols a, b, ¢, d, and e sets protected visibility
for symbols a, b, c, d, and e. This has the same effect as declared attribute
vi si bility=protected on the declaration for each of the symbols.

Specifying Visibility without Sy mbol File, -fvisibility=keyword

This option sets the visiblity for symbols not specified in a visibility list file and
that do not have vi si bi | ty attribute in their declaration. If no symbol file
option is specified, all symbols will get the specified attribute. Command line
example:

ifort -fvisibility=protected a.f

55

Intel(R) Fortran User's Guide Vol lI

You can set the default visibility for symbols using one of the following command
line options:

-fvisibility=extern
-fvisibility=default
-fvisibility=protected
-fvisibility=hidden
-fvisibility=interna

The above options are listed in the order of precedence: explicitly setting the
visibility to ext er n, by using either the attribute syntax or the command line
option, overrides any setting to def aul t, pr ot ect ed, hi dden, ori nt er nal .
Explicitly setting the visibility to def aul t overrides any setting to pr ot ect ed,
hi dden, ori nt ernal and so on.

The visibility attribute def aul t enables compiler to change the default symbol
visibility and then set the default attribute on functions and variables that require
the default setting. Since i nt er nal is a processor-specific attribute, it may not
be desirable to have a general option for it.

In the combined command-line options
-fvisibility=protected -fvisibility-default=prot.txt

file prot .t xt (see above) causes all global symbols except a, b, ¢, d, and e to
have protected visibility. Those five symbols, however, will have default visibility
and thus be preemptable.

Visibility-related Options

-fminshared

Directs to treat the compilation unit as a component of a main program and not
to link it as a part of a shareable object.

Since symbols defined in the main program cannot be preempted, this enables
the compiler to treat symbols declared with default visibility as though they have
protected visibility. It means that

-fm nshar ed implies - f vi si bi | i t y=pr ot ect ed. The compiler need not
generate position-independent code for the main program. It can use absolute
addressing, which may reduce the size of the global offset table (GOT) and may
reduce memory traffic.

-fpic

56

Volume II: Optimizing Applications

Specifies full symbol preemption. Global symbol definitions as well as global
symbol references get default (that is, preemptable) visibility unless explicitly
specified otherwise. Generates position-independent code.

- f conmon

Instructs the compiler to treat common symbols as global definitions and to
allocate memory for each symbol at compile time. This may permit the compiler
to use the more efficient GP-relative addressing mode when accessing the
symbol.

The default is - f no- conmon.

Optimizing Different Application Types

Optimizing Different Application

Types Overview

This section discusses the command-line options - Q0, - OL, - @2 (or- O, and -
(3. The - Q0 option disables optimizations. Each of the other three turns on
several compiler capabilities. To specify one of these optimizations, take into
consideration the nature and structure of your application as indicated in the
more detailed description of the options.

In general terms, - OL, - Q2 (or - O), and - O3 optimize as follows:

- O1 : code size and locality

-2 (or- O : code speed; this is the default option

- B: enables - Q2 with more aggressive optimizations.

-fast: enables - 3 and - i po to enhance speed across the entire program.

These options behave similarly on 1A-32 and Itanium® architectures, with some
specifics that are detailed in the sections that follow.

Setting Optimizations with -On

Options

The following table details the effects of the - O0, - O1, - 2, - O3, and - f ast
options. The table first describes the characteristics shared by both IA-32 and

57

Intel(R) Fortran User's Guide Vol lI

Itanium architectures and then explicitly describes the specifics (if any) of the -
On and - f ast options’ behavior on each architecture.

Option Effect

-0 Disables - On optimizations. On 1A-32 systems, this
option sets the - f p option.

-01 Optimizes to favor code size and code locality.

Disables loop unrolling.

May improve performance for applications with very
large code size, many branches, and execution time
not dominated by code within loops.

In most cases, - @2 is recommended over - OL.
IA-32 systems:

Disables intrinsics inlining to reduce code size.
Enables optimizations for speed. Also disables
intrinsic recognition and the - f p option.
Itanium-based systems:

Disables software pipelining and global code
scheduling. Enables optimizations for server
applications (straight-line and branch-like code with
e at proele). Enables optimizations for speed, while
being aware of code size. For example, this option
disables software pipelining and loop unrolling.

-2,-0 This option is the default for optimizations. However,
if - g is specified, the default is - Q0.

Optimizes for code speed.

This is the generally recommended optimization
level. However, if - g is specified, - Q2 is turned off
and - QO is the default unless - @2 (or -OL or - 3) is
explicitly specified in the command line together with

_g.

On |A-32 systems, this option is the same as the -
Ol option.

Itanium-based systems:

Enables optimizations for speed, including global
code scheduling, software pipelining, predication,
and speculation.

On these systems, the - Q2 option enables inlining of
intrinsics. It also enables the following capabilities for
performance gain: constant propagation, copy
propagation, dead-code elimination, global register
allocation, global instruction scheduling and control

58

Volume II: Optimizing Applications

speculation, loop unrolling, optimized code selection,
partial redundancy elimination, strength
reduction/induction variable simplification, variable
renaming, exception handling optimizations, tail
recursions, peephole optimizations, structure
assignment lowering and optimizations, and dead
store elimination.

Enables - Q2 optimizations and in addition, enables
more aggressive optimizations such as prefetching,
scalar replacement, and loop and memory access
transformations. Enables optimizations for maximum
speed, but does not guarantee higher performance
unless loop and memory access transformation take
place. The - O3 optimizations may slow down code
in some cases compared to - O2 optimizations.
Recommended for applications that have loops that
heavily use floating-point calculations and process
large data sets.

IA-32 systems:

In conjunction with - ax{ K| W N| B| P} or -

x{ K| W N| B| P} options, this option causes the
compiler to perform more aggressive data
dependency analysis than for - Q2. This may result
in longer compilation times.

On Itanium-based systems, enables optimizations
for technical computing applications (loop-intensive
code): loop optimizations and data prefetch.

-f ast

This option is a single, simple method to enable a
collection of optimizations for run-time performance.
Sets the following options that can improve run-time
performance:

- B: maximum speed and high-level optimizations,
see above

-1 po: enables interprocedural optimizations across
files

- st ati c: prevents linking with shared libraries

Provides a shortcut that requests several important
compiler optimizations. To override one of the
options set by - f ast, specify that option after the -
f ast option on the command line.

59

Intel(R) Fortran User's Guide Vol lI

The options set by the - f ast option may change
from release to release.

IA-32 systems:
In conjunction with - ax{ K| W N| B| P} or -

x{ K| WN B| P} options, this option provides the
best run-time performance.

Restricting Optimizations

The following options restrict or preclude the compiler's ability to optimize your
program:

-0 Disables optimizations. Enables -
f p option.
-9 Specifying the - g option turns off

the default - 2 option and makes
- Q0 the default unless - @2 (or - OL
or -) is explicitly specified in the
command line together with - g.
See Optimizations and Debugging.

-np Restricts optimizations that cause
some minor loss or gain of
precision in floating-point arithmetic
to maintain a declared level of
precision and to ensure that
floating-point arithmetic more
nearly conforms to the ANSI and
IEEE* standards. See - np option
for more details.

-nolib_inline Disables inline expansion of
intrinsic functions.

For more information on ways to restrict optimization, see Using - i p with -
Qoption Specifiers.

60

Volume II: Optimizing Applications

Floating-point Arithmetic

Optimizations

Options Used for IA-32 and Itanium®
Architectures

The options described in this section all provide optimizations with varying
degrees of precision in floating-point (FP) arithmetic for IA-32 and Itanium®
compilers.

The - npl (IA-32 only) and - np options improve floating-point precision, but also
affect the application performance. See more details about these options in
Improving/Restricting FP Arithmetic Precision.

The FP options provide optimizations with varying degrees of precision in
floating-point arithmetic. The option that disables these optimizations is - Q0.

-mp Option

Use - np to limit floating-point optimizations and maintain declared precision. For
example, the Intel® Fortran Compiler can change floating-point division
computations into multiplication by the reciprocal of the denominator. This
change can alter the results of floating point division computations slightly. The -
np switch may slightly reduce execution speed. See Improving/Restricting FP
Arithmetic Precision for more detail.

-mpl Option
Use the - np1 option to restrict floating-point precision to be closer to declared
precision with less impact to performance than with the - np option. The option

will ensure the out-of-range check of operands of transcendental functions and
improve accuracy of floating-point compares.

Flushing to Zero Denormal Values, -ftz[-]

Option -ft z[-] flushes denormal results to zero when the application is in the
gradual underflow mode. Flushing the denormal values to zero with - f t z may
improve performance of your application.

Default

61

Intel(R) Fortran User's Guide Vol lI

The default status of -ftz[-] is OFF. By default, the compiler lets results
gradually underflow. With the default - O2 option, - ft z[-] is OFF.

-ftz[-] on Itanium-based systems
On Itanium-based systems only, the - O3 option turnson - ft z.

If the - f t z option produces undesirable results of the numerical behavior of your
program, you can turn the FTZ mode off by using - f t z- in the command line
while still benefiting from the - O3 optimizations:

ifort - -ftz- nyprog.f
Usage

« Use this option if the denormal values are not critical to application
behavior.

« -ftz[-] only needs to be used on the source that contains the mai n
program to turn the FTZ mode on. The initial thread, and any threads
subsequently created by that process, will operate in FTZ mode.

Results
The - ft z[-] option affects the results of floating underflow as follows:

- -ftz- results in gradual underflow to O: the result of a floating underflow
is a denormalized number or a zero.

« -ftzresultsin abrupt underflow to O: the result of a floating underflow is
set to zero and execution continues. - f t z also makes a denormal value
used in a computation be treated as a zero so no floating invalid exception
occurs. On Itanium-based systems, the - O3 option sets the abrupt
underflow to zero (- f t z is on). At lower optimization levels, gradual
underflow to 0 is the default on the Itanium-based systems.

On IA-32, setting abrupt underflow by - f t z may improve performance of
SSE/SSEZ2 instructions, while it does not affect either performance or numerical
behavior of x87 instructions. Thus, - f t z will have no effect unless you select -
x{} or-ax{} options, which activate instructions of the more recent 1A-32 Intel
processors.

On Itanium-based processors, gradual underflow to 0 can degrade performance.
Using higher optimization levels to get the default abrupt underflow or explicitly
setting - f t z improves performance.

- f t z may improve performance on Itanium® 2 processor, even in the absence
of actual underflow, most frequently for single-precision code.

62

Volume II: Optimizing Applications

Using the Floating-point Exception Handling, -

fpen

Use the - f pe n option to control the handling of exceptions. The - f pe n option
controls floating-point exceptions according to the value of n.

The following are the kinds of floating-point exceptions:

Floating overflow: the result of a computation is too large for the floating-
point data type. The result is replaced with the exceptional value Infinity
with the proper "+" or "-" sign. For example, 1E30 * 1E30 overflows single-
precision floating-point value and results in a +Infinity; -1E30 * 1E30
results in a -Infinity.

Floating divide-by-zero: if the computation is 0.0 / 0.0, the result is the
exceptional value NaN (Not a Number), a value that means the
computation was not successful. If the numerator is not 0.0, the result is a
signed Infinity.

Floating underflow: the result of a computation is too small for the floating-
poinit type. Each floating-point type (32-, 64-, and 128-bit) has a
denormalized range where very small numbers can be represented with
some loss of precision. For example, the lower bound for normalized
single-precision floating-point value is approximately 1E-38; the lower
bound for denormalized single-precision floating-point value is 1E-45. 1E-
30/ 1E10 underflows the normalized range but not the denormalized
range so the result is the denormal exceptional value 1E-40. 1E-30 / 1E30
underflows the entire range and the result is zero. This is known as
gradual underflow to 0.

Floating invalid: when the exceptional value (signed Infinities, NaN,
denormal) is used as input to a computation, the result is also a NaN.

The - f pen option allows some control over the results of floating-point exception
handling at run time for the main program.

- f peO restricts floating-point exceptions as follows:

« Floating overflow, floating divide-by-zero, and floating invalid cause
the program to print an error message and abort.

+ If a floating underflow occurs, the result is set to zero and execution
continues. This is called abrupt underflow to O.

- f pel restricts only floating underflow:

- Floating overflow, floating divide-by-zero, and floating invalid
produce exceptional values (NaN and signed Infinities) and
execution continues.

+ If afloating underflow occurs, the result is set to zero and execution
continues.

63

Intel(R) Fortran User's Guide Vol lI

« The default is - f pe3 on both 1A-32 and Itanium-based processors. This
allows full floating-point exception behavior:

+ Floating overflow, floating divide-by-zero, and floating invalid
produce exceptional values (NaN and signed Infinities) and
execution continues.

- Floating underflow is gradual: denormalized values are produced
until the result becomes 0.

The - f pen only affects the Fortran main program. The floating-point exception
behavior set by the Fortran main program is in effect throughout the execution of
the entire program. If the main program is not Fortran, you can use the Fortran
intrinsic FOR_SET_FPE to set the floating-point exception behavior.

When compiling different routines in a program separately, you should use the
same value of n in - f pen.

For more information, refer to the Intel Fortran Compiler User's Guide for Linux*
Systems, Volume I, section "Controlling Floating-point Exceptions."

Floating-point Arithmetic Precision

for IA-32 Systems

-prec_div Option
The Intel® Fortran Compiler can change floating-point division computations into
multiplication by the reciprocal of the denominator. Use - pr ec_di v to disable

floating point division-to-multiplication optimization resulting in more accurate
division results. May have speed impact.

-pc{32|64|80} Option

Use the - pc{ 32| 64| 80} option to enable floating-point significand precision
control. Some floating-point algorithms, created for specific 1A-32 and Itanium®-
based systems, are sensitive to the accuracy of the significand or fractional part
of the floating-point value. Use appropriate version of the option to round the
significand to the number of bits as follows:

- pc32: 24 bits (single precision)

- pc64: 53 bits (double precision)

- pc80: 64 bits (extended precision)

64

Volume II: Optimizing Applications

The default version is - pc80 for full floating-point precision.

This option enables full optimization. Using this option does not have the
negative performance impact of using the - np option because only the fractional
part of the floating-point value is affected. The range of the exponent is not
affected.

Note

This option only has effect when the module being compiled contains the
main program.

Caution

A change of the default precision control or rounding mode (for example,
by using the - pc32 option or by user intervention) may affect the results
returned by some of the mathematical functions.

Rounding Control, -rcd, -fp_port

The Intel Fortran Compiler uses the - r cd option to disable changing of rounding
mode for floating-point-to-integer conversions.

The system default floating-point rounding mode is round-to-nearest. This means
that values are rounded during floating-point calculations. However, the Fortran
language requires floating-point values to be truncated when a conversion to an
integer is involved. To do this, the compiler must change the rounding mode to
truncation before each floating-point conversion and change it back afterwards.

The - r cd option disables the change to truncation of the rounding mode for all
floating-point calculations, including floating-point-to-integer conversions. Turning
on this option can improve performance, but floating-point conversions to integer
will not conform to Fortran semantics.

You can also use the - f p_port option to round floating-point results at
assignments and casts. May cause some speed impact, but also makes sure that
rounding to the user-declared precision at assignments is always done. The -
npl option implies - f p_port.

Floating-point Arithmetic Precision

for Itanium®-based Systems

65

Intel(R) Fortran User's Guide Vol lI

The following Intel® Fortran Compiler options enable you to control the compiler
optimizations for floating-point computations on Itanium®-based systems.

Contraction of FP Multiply and Add/Subtract
Operations

-1 PF_f ma[-] enables or disables the contraction of floating-point multiply and
add/subtract operations into a single operations. Unless - np is specified, the
compiler tries to contract these operations whenever possible. The - np option
disables the contractions.

-1 PF_frmaand -1 PF_f ma- can be used to override the default compiler
behavior. For example, a combination of - np and - | PF_f na enables the
compiler to contract operations:

ifort -np -1PF_fma nyprog. f

FP Speculation

-1 PF_f p_specul ati onnode sets the compiler to speculate on floating-point
operations in one of the following nodes:

f ast : sets the compiler to speculate on floating-point operations; this is the
default.

saf e: enables the compiler to speculate on floating-point operations only when it
is safe;

stri ct: enables the compiler's speculation on floating-point operations
preserving floating-point status in all situations. In the current version, this mode
disables the speculation of floating-point operations (same as of f).

of f : disables the speculation on floating-point operations.

FP Operations Evaluation

-1 PF_flt_eval net hod{ 0| 2} option directs the compiler to evaluate the
expressions involving floating-point operands in the following way:

-1 PF_flt_eval net hodO directs the compiler to evaluate the expressions
involving floating-point operands in the precision indicated by the variable types
declared in the program.

-1 PF_flt_eval net hod2 is not supported in the current version.

66

Volume II: Optimizing Applications

Controlling Accuracy of the FP Results

-1 PF_f 1t acc disables the optimizations that affect floating-point accuracy. The
default is
-1 PF_fltacc- to enable such optimizations.

The Itanium® compiler may reassociate floating-point expressions to improve
application performance. Use - | PF_f | t acc or - np to disable or restrict these
floating-point optimizations.

Improving/Restricting FP Arithmetic

Precision

The - np and - npl options maintain and restrict, respectively, floating-point
precision, but also affect the application performance. The - np1l option causes
less impact on performance than the - np option. - np1 ensures the out-of-range
check of operands of transcendental functions and improve accuracy of floating-
point compares. For 1A-32 systems, the - np option implies - np1; - npl implies -
f p_port. - np slows down performance the most of these three, - f p_port the
least of these three.

The - np option restricts some optimizations to maintain declared precision and
to ensure that floating-point arithmetic conforms more closely to the ANSI and
IEEE* standards. This option causes more frequent stores to memory, or
disallow some data from being register candidates altogether. The Intel
architecture normally maintains floating point results in registers. These registers
are 80 bits long, and maintain greater precision than a double-precision number.
When the results have to be stored to memory, rounding occurs. This can affect
accuracy toward getting more of the "expected" result, but at a cost in speed.
The - pc{ 32| 64| 80} option (IA-32 only) can be used to control floating point
accuracy and rounding, along with setting various processor IEEE flags.

For most programs, specifying the - np option adversely affects performance. If
you are not sure whether your application needs this option, try compiling and
running your program both with and without it to evaluate the effects on
performance versus precision.

Specifying this option has the following effects on program compilation:
« On IA-32 systems , floating-point user variables declared as floating-point
types are not assigned to registers.

- On ltanium®-based systems , floating-point user variables may be
assigned to registers. The expressions are evaluated using precision of

67

Intel(R) Fortran User's Guide Vol lI

source operands. The compiler will not use Floating-point Multiply and
Add (FMA) function to contract multiply and add/subtract operations in a
single operation. The contractions can be enabled by using - | PF_f ma
option. The compiler will not speculate on floating-point operations that
may affect the floating-point state of the machine. See Floating-point
Arithmetic Precision for Itanium-based Systems.

Floating-point arithmetic comparisons conform to IEEE 754.

The exact operations specified in the code are performed. For example,
division is never changed to multiplication by the reciprocal.

The compiler performs floating-point operations in the order specified
without reassociation.

The compiler does not perform the constant folding on floating-point
values. Constant folding also eliminates any multiplication by 1, division by
1, and addition or subtraction of 0. For example, code that adds 0.0 to a
number is executed exactly as written. Compile-time floating-point
arithmetic is not performed to ensure that floating-point exceptions are
also maintained.

For 1A-32 systems, whenever an expression is spilled, it is spilled as 80
bits (EXTENDED PRECI S| ON), not 64 bits (DOUBLE PRECI SI ON).
Floating-point operations conform to IEEE 754. When assignments to type
REAL and DOUBLE PRECI SI ON are made, the precision is rounded from
80 bits (EXTENDED) down to 32 bits (REAL) or 64 bits (DOUBLE

PRECI SI ON). When you do not specify - 0, the extra bits of precision are
not always rounded away before the variable is reused.

Even if vectorization is enabled by the - x{ K| W N| B| P} options, the
compiler does not vectorize reduction loops (loops computing the dot
product) and loops with mixed precision types. Similarly, the compiler
does not enable certain loop transformations. For example, the compiler
does not transform reduction loops to perform partial summation or loop
interchange.

Optimizing for Specific Processors

Overview

This section describes targeting a processor and processor dispatch and
extensions support options.

The options -t pp{ 5| 6] 7} optimize for the 1A-32 processors, and the options -
t pp{ 1| 2} optimize for the Itanium® processor family. The options -

x{ K| WN B| P} and - ax{ K| W N| B| P} generate code that is specific to
processor-instruction extensions.

68

Volume II: Optimizing Applications

Note that you can run your application on the latest processor-based systems,
like Intel® Pentium® M processors or Intel® Pentium® 4 processors with
Streaming SIMD Extensions 3 (SSE3) instruction support and still gear your code
to any of the previous processors specified by N W or K versions of the - x and

- ax options.

Targeting a Processor, -tpp{n}

The -t pp{ n} optimizes your application's performance for specific Intel
processors. This option generates code that is tuned for the processor
associated with its version. For example, -t pp7 generates code optimized for
running on Intel® Pentium® 4, Intel® Xeon(TM), Intel® Pentium® M processors
and Intel® Pentium® 4 processor with Streaming SIMD Extensions 3 (SSE3)
instruction support, and - t pp2 generates code optimized for running on
Itanium® 2 processor.

The - t pp{ n} option always generates code that is backwards compatible with
Intel® processors of the same family. This means that code generated with -

t pp7 will run correctly on Pentium Pro or Pentium Ill processors, possibly just
not quite as fast as if the code had been compiled with - t pp6. Similarly, code
generated with - t pp2 will run correctly on Itanium processor, but possibly not
quite as fast as if it had been generated with - t pp1.

Processors for IA-32 Systems

The - t pp5, -t pp6, and - t pp7 options optimize your application's performance
for a specific Intel IA-32 processor as listed in the table below. The resulting
binaries will also run correctly on any of the processors mentioned in the table.

Option Optimizes your application for...

_t pp5 Intel® Pentium® and Pentium® with MMX(TM) technology
processor

-t pp6 Intel® Pentium® Pro, Pentium® Il and Pentium® Il processors

“t pp7 Intel Pentium 4 processors, Intel® Xeon(TM) processors, Intel®

(default) Pentium® M processors, and Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (SSE3) instruction support

Example

The invocations listed below each result in a compiled binary of the source
program pr og. f optimized for Pentium 4 and Intel Xeon processors by default.

69

Intel(R) Fortran User's Guide Vol lI

The same binary will also run on Pentium, Pentium Pro, Pentium I, and Pentium
[Il processors.

ifort prog.f
ifort -tpp7 prog.f

However if you intend to target your application specifically to the Intel Pentium
and Pentium with MMX technology processors, use the -t pp5 option:

ifort -tpp5 prog.f

Processors for Itanium®-based Systems

The -t ppl and - t pp2 options optimize your application's performance for a
specific Intel Iltanium® processor as listed in the table below. The resulting
binaries will also run correctly on both processors mentioned in the table.

Option Optimizes your application for...
-tppl Intel® Itanium® processor

-t pp2 :

(default) Intel® Itanium® 2 processor
Example

The following invocation results in a compiled binary of the source program

pr og. f optimized for the Itanium 2 processor by default. The same binary will
also run on Itanium processors.

ifort prog.f

ifort -tpp2 prog.f

However if you intend to target your application specifically to the Intel Itanium
processor, use the -t ppl option:

ifort -tppl prog.f

Processor-specific Optimization (l1A-

32 only)

70

Volume II: Optimizing Applications

The - x{ K| W N| B| P} options target your program to run on a specific Intel
processor. The resulting code might contain unconditional use of features that
are not supported on other processors.

Option Optimizes for...
- xK Intel Pentium® 11l and compatible Intel processors.
- xW Intel Pentium 4 and compatible Intel Processors.

Intel Pentium 4 and compatible Intel Processors. When the main
program is compiled with this option, it will detect non-compatible
-xN processors and generate an error message during execution. This
option also enables new optimizations in addition to Intel processor
specific-optimizations.

Intel® Pentium® M and compatible Intel processors. When the main
program is compiled with this option, it will detect non-compatible
-xB processors and generate an error message during execution. This
option also enables new optimizations in addition to Intel processor-
specific optimizations.

Intel® Pentium® 4 processors with Streaming SIMD Extensions 3
(SSE3) instruction support. When the main program is compiled with
-xP this option, it will detect non-compatible processors and generate an
error message during execution. This option also enables new
optimizations in addition to Intel processor-specific optimizations.

To execute a program on x86 processors not provided by Intel Corporation, do
not specify the
-x{ K| WN B| P} option.

Example

The invocation below compiles mypr og. f for Intel Pentium 4 and compatible
processors. The resulting binary might not execute correctly on Pentium,
Pentium Pro, Pentium I, Pentium Ill, or Pentium with MMX technology
processors, or on x86 processors not provided by Intel corporation.

ifort -xN nyprog.f

.&Caution

If a program compiled with - x{ K| W N| B| P} is executed on a non-
compatible processor, it might fail with an illegal instruction exception, or
display other unexpected behavior. Executing programs compiled with - xN

71

Intel(R) Fortran User's Guide Vol lI

, - XB, or - xP on unsupported processors (see table above) will display the
following run-time error:

Fatal error: This programwas not built to run on the
processor in your system

Automatic Processor-specific

Optimization (IA-32 only)

The - ax{ K| W N| B| P} options direct the compiler to find opportunities to
generate separate versions of functions that take advantage of features that are
specific to the specified Intel processor. If the compiler finds such an opportunity,
it first checks whether generating a processor-specific version of a function is
likely to result in a performance gain. If this is the case, the compiler generates
both a processor-specific version of a function and a generic version of the
function. The generic version will run on any IA-32 processor.

At run time, one of the versions is chosen to execute, depending on the Intel
processor in use. In this way, the program can benefit from performance gains on
more advanced Intel processors, while still working properly on older 1A-32
processors.

The disadvantages of using - ax{ K| W N| B| P} are:

« The size of the compiled binary increases because it contains processor-
specific versions of some of the code, as well as a generic version of the
code.

« Performance is affected slightly by the run-time checks to determine which
code to use.

FINote

Applications that you compile to optimize themselves for specific
processors in this way will execute on any Intel IA-32 processor. If you
specify both the - x and - ax options, the - x option forces the generic code
to execute only on processors compatible with the processor type specified
by the - x option.

Option [Optimizes Your Code for...

- axK Intel Pentium® Il and compatible Intel processors.

- axW Intel Pentium 4 and compatible Intel processors.

72

Volume II: Optimizing Applications

Intel Pentium 4 and compatible Intel processors. This option also
- axN enables new optimizations in addition to Intel processor-specific
optimizations.

Intel Pentium M and compatible Intel processors. This option also
-axB enables new optimizations in addition to Intel processor-specific
optimizations.

Intel® Pentium® 4 processors with Streaming SIMD Extensions 3

-axP (SSE3) instruction support. This option also enables new
optimizations in addition to Intel processor-specific optimizations.

Example
The compilation below generates a single executable that includes:

« ageneric version for use on any IA-32 processor

« aversion optimized for Intel Pentium 4 processors, as long as there is a
performance benefit.

« aversion optimized for Intel Pentium M processors, as long as there is a
performance benefit.

ifort -axNB prog.f90

Processor-specific Run-time Checks,

|A-32 Systems

The Intel Fortran Compiler optimizations take effect at run-time. For IA-32
systems, the compiler enhances processor-specific optimizations by inserting in
the main routine a code segment that performs run-time checks described below.

Check for Supported Processor with -xB , -xB, or -
xXP

To prevent from execution errors, the compiler inserts code in the main routine of
the program to check for proper processor usage. Programs compiled with
options - xN, - xB, or - xP check at run-time whether they are being executed on
the Intel Pentium® 4, Intel® Pentium® M processor or the Intel® Pentium® 4
processor with Streaming SIMD Extensions 3 (SSE3) instruction support,
respectively, or a compatible Intel processor. If the program is not executed on
one of these processors, the program terminates with an error.

Example

73

Intel(R) Fortran User's Guide Vol lI

To optimize a program f 0o. f 90 for an Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (SSE3) instruction support, issue the following
command:

ifort -xP foo.f90 -0 foo0.exe

f 00. exe aborts if it is executed on a processor that is not validated to support
the Intel® Pentium® 4 processor with Streaming SIMD Extensions 3 (SSE3)
instruction support to account for the fact that this processor may have some
additional feature enabling.

If you intend to run your programs on multiple 1A-32 processors, do not use the -
x{} options that optimize for processor-specific features; consider using -ax{} to
attain processor-specific performance and portability among different processors.

Setting FTZ and DAZ Flags

Previously, the default status of the flags flush-to-zero (FTZ) and denormals-are-
zero (DAZ) for I1A-32 processors were off by default. However, even at the cost of
losing IEEE compliance, turning these flags on significantly increases the
performance of programs with denormal floating-point values in the gradual
underflow mode run on the most recent IA-32 processors. Hence, for the Intel
Pentium 11, Pentium 4, Pentium M, Intel® Pentium® 4 processor with Streaming
SIMD Extensions 3 (SSES3) instruction support, and compatible 1A-32 processors,
the compiler's default behavior is to turn these flags on. The compiler inserts
code in the program to perform a run-time check for the processor on which the
program runs to verify it is one of the afore-listed Intel processors.

« Executing a program on a Pentium Il processor enables the FTZ flag, but
not DAZ.

« Executing a program on an Intel Pentium M processor or Intel® Pentium®
4 processor with Streaming SIMD Extensions 3 (SSES3) instruction support
enables both the FTZ and DAZ flags.

These flags are only turned on by Intel processors that have been validated to
support them.

For non-Intel processors, the flags can be set manually by calling the following
Intel Fortran intrinsic:
RESULT = FOR_SET_FPE (FOR_M ABRUPT_UND) .

Interprocedural Optimizations (IPO)

IPO Overview

74

Volume II: Optimizing Applications

Use -i p and - i po to enable interprocedural optimizations (IPO), which enable
the compiler to analyze your code to determine where you can benefit from the
optimizations listed in tables that follow.

IA-32 and Itanium®-based applications

Optimization Affected Aspect of Program

inline function expansion calls, jumps, branches, and
loops

interprocedural constant arguments, global variables,

propagation and return values

monitoring module-level further optimizations, loop

static variables invariant code

dead code elimination code size

propagation of function call deletion and call movement

characteristics

multifile optimization affects the same aspects as -
i p, but across multiple files

IA-32 applications only

Optimization Affected Aspect of Program
passing arguments in calls, register usage
registers

loop-invariant code motion | further optimizations, loop
invariant code

Inline function expansion is one of the main optimizations performed by the
interprocedural optimizer. For function calls that the compiler believes are
frequently executed, the compiler might decide to replace the instructions of the
call with code for the function itself.

With - i p, the compiler performs inline function expansion for calls to procedures
defined within the current source file. However, when you use - i po to specify
multifile IPO, the compiler performs inline function expansion for calls to
procedures defined in separate files.

To disable the IPO optimizations, use the - G0 option.
Caution

The -i p and - i po options can in some cases significantly increase
compile time and code size.

75

Intel(R) Fortran User's Guide Vol lI

Option -auto_ilp32 for Itanium Compiler

On Itanium-based systems, the - aut o_i | p32 option requires interprocedural
analysis over the whole program. This optimization allows the compiler to use 32-
bit pointers whenever possible as long as the application does not exceed a 32-
bit address space. Using the - aut o_i | p32 option on programs that exceed 32-
bit address space might cause unpredictable results during program execution.

Because this optimization requires interprocedural analysis over the whole
program, you must use the
-aut o_i | p32 option with the - i po option.

Multifile IPO Overview

Multifile IPO obtains potential optimization information from individual program
modules of a multifile program. Using the information, the compiler performs
optimizations across modules.

Building a program is divided into two phases: compilation and linkage. Multifile
IPO performs different work depending on whether the compilation, linkage or
both are performed.

Compilation Phase

As each source file is compiled, multifile IPO stores an intermediate
representation (I R) of the source code in the object file, which includes summary
information used for optimization.

By default, the compiler produces "mock" object files during the compilation
phase of multifile IPO. Generating mock files instead of real object files reduces
the time spent in the multifile IPO compilation phase. Each mock object file
contains the | R for its corresponding source file, but no real code or data. These
mock objects must be linked using the - i po optionini f ort or using the xi | d
tool. (See Creating a Multifile IPO Executable with xild.)

f) Note

Failure to link "mock" objects with i f ort and -i po or xi | d will result in
linkage errors. There are situations where mock object files cannot be
used. See Compilation with Real Object Files for more information.

Linkage Phase

76

Volume II: Optimizing Applications

When you specify - i po, the compiler is invoked a final time before the linker.
The compiler performs multifile IPO across all object files that have an IR.

ZJ/Note
The compiler does not support multifile IPO for static libraries (. a files).
See Compilation with Real Object Files for more information.

- i po enables the driver and compiler to attempt detecting a whole program
automatically. If a whole program is detected, the interprocedural constant
propagation, stack frame alignment, data layout and padding of common blocks
perform more efficiently, while more dead functions get deleted. This option is
safe.

Creating a Multifile IPO Executable

with Command Line

Enable multifile IPO for compilations targeted for I1A-32 architecture and for
compilations targeted for Itanium® architecture as follows in the example below.

Compile your source files with - i po as follows:

Compile source files to produce obiject files:
ifort -ipo -c a.f b.f c.f

Produces a. 0, b. 0, and c. o object files containing Intel compiler intermediate
representation (I R) corresponding to the compiled source filesa. f, b. f, and
c. f. Using - ¢ to stop compilation after generating . o files is required. You can
now optimize interprocedurally.

Link object files to produce application executable:
ifort -oipo_file -ipo a.o b.o c.o

The i f ort command performs IPO for objects containing | R and creates a new
list of object(s) to be linked. The i f ort command calls GCC | d to link the
specified object files and produce i po_f i | e executable specified by the - o
option. Multifile IPO is applied only to the source files that have an | R, otherwise
the object file passes to link stage.

The - onane option stores the executable ini po_fi | e. Multifile IPO is applied
only to the source files that have an IR, otherwise the object file passes to link
stage.

For efficiency, combine steps 1 and 2:

77

Intel(R) Fortran User's Guide Vol lI

ifort -ipo -oipo file a.f b.f c.f
Instead of i f ort, you can use the xi | d tool.

For a description of how to use multifile IPO with profile information for further
optimization, see Example of Profile-Guided Optimization.

Creating a Multifile IPO Executable

Using xild

Use the Intel® linker, xi | d, instead of step 2 in Creating a Multifile IPO
Executable with Command Line. The Intel linker xi | d performs the following
steps:

1. Invokes the Intel compiler to perform multifile IPO if objects containing | R
are found.
2. Invokes GCC | d to link the application.

The command-line syntax for xi | d is the same as that of the GCC linker:
pronmpt >xi | d [<options>] <LINK commandli ne>
where:
« [<options>] (optional) may include any GCC linker options or options
supported only by xi | d.

« <LI NK _conmandl i ne> is your linker command line containing a set of
valid arguments to the | d.

To place the multifile IPO executable ini po_fil e, use the option - of i | enane,
for example:

pronpt>xild -oipo_file a.o b.o c.o0

xi | d calls Intel compiler to perform IPO for objects containing | R and creates a
new list of object(s) to be linked. Then xi | d calls | d to link the object files that
are specified in the new list and produce i po_fi | e executable specified by the
- of i | enane option.

Note

78

Volume II: Optimizing Applications

The - i po option can reorder object files and linker arguments on the
command line. Therefore, if your program relies on a precise order of
arguments on the command line, - i po can affect the behavior of your
program.

Usage Rules

You must use the Intel linker xi | d to link your application if:
« Your source files were compiled with multifile IPO enabled. Multifile IPO is

enabled by specifying the - i po command-line option
« You normally would invoke the GCC linker (I d) to link your application.

The xild Options

The additional options supported by xi | d may be used to examine the results of
multifile IPO. These options are described in the following table.

-gipo_fa[file.s] Produces assembly listing for the
multifile IPO compilation. You may
specify an optional name for the listing
file, or a directory (with the backslash)
in which to place the file. The default
listing name isi po_out . s.

-qgi po_fo[file. o] Produces object file for the multifile IPO
compilation. You may specify an
optional name for the object file, or a
directory (with the backslash) in which
to place the file. The default object file
name isi po_out . o.

-1 po_f code-asm Add code bytes to assembly listing

-ipo_fsource-asm Add high-level source code to
assembly listing

-i po_fverbose-asm Enable and disable, respectively,

-1 po_f nover bose-asm inserting comments containing version

and options used in the assembly
listing for xi | d.

Compilation with Real Object Files

In certain situations you might need to generate real object files with - i po. To
force the compiler to produce real object files instead of "mock" ones with IPO,

79

Intel(R) Fortran User's Guide Vol lI

you must specify - i po_obj in addition to
-i po.

Use of - i po_obj is necessary under the following conditions:

« The objects produced by the compilation phase of - i po will be placed in a
static library without the use of xi ar . The compiler does not support
multifile IPO for static libraries, so all static libraries are passed to the
linker. Linking with a static library that contains "mock" object files will
result in linkage errors because the objects do not contain real code or
data. Specifying
-i po_obj causes the compiler to generate object files that can be used
in static libraries.

« Alternatively, if you create the static library using xi ar , then the resulting
static library will work as a normal library.

« The objects produced by the compilation phase of - i po might be linked
without the - i po option and without the use of xi ar .

« You want to generate an assembly listing for each source file (using - S)
while compiling with - i po. If you use - i po with - S, but without -

i po_obj , the compiler issues a warning and an empty assembly file is
produced for each compiled source file.

Implementing the .il Files with Version Numbers

An IPO compilation consists of two parts: the compile phase and the link phase.
In the compile phase, the compiler produces an intermediate language (IL)
version of the users’ code. In the link phase, the compiler reads the IL and
completes the compilation, producing a real object file or executable.

Generally, different compiler versions produce IL based on different definitions,
and therefore the ILs from different compilations can be incompatible. Intel
Fortran Compiler assigns a unique version number with each compiler’s IL
definition. If a compiler attempts to read IL in a file with a version number other
than its own, the compilation proceeds, but the IL is discarded and not used in
the compilation. The compiler then issues a warning message about an
incompatible IL detected and discarded.

IL in Libraries: More Optimizations

The IL produced by the Intel compiler is stored in file with a suffix . i | . Then the
. i | file is placed in the library. If this library is used in an IPO compilation
invoked with the same compiler as produced the IL for the library, the compiler
can extract the . i | file from the library and use it to optimize the program. For
example, it is possible to inline functions defined in the libraries into the users’
source code.

80

Volume II: Optimizing Applications

Creating a Library from IPO Objects

Normally, libraries are created using a library manager such as ar . Given a list of
objects, the library manager will insert the objects into a named library to be used
in subsequent link steps.

pronpt >xi ar cru user.a a.obj b.obj

The above command creates a library named user . a that contains the a. o and
b. o objects.

If, however, the objects have been created using - i po - ¢, then the objects will
not contain a valid object but only the intermediate representation (I R) for that
object file. For example:

pronpt>ifort -ipo -c a.f b.f

will produce a. o and b. o that only contains | Rto be used in a link time
compilation. The library manager will not allow these to be inserted in a library.

In this case you must use the Intel library driver xi | d - ar . This program will
invoke the compiler on the | R saved in the object file and generate a valid object
that can be inserted in a library.

prompt>xild -lib cru user.a a.o b.o

See Creating a Multifile IPO Executable Using xi | d.

Analyzing the Effects of Multifile IPO

The -i po_c and -i po_S options are useful for analyzing the effects of multifile
IPO, or when experimenting with multifile IPO between modules that do not make
up a complete program.

Use the - i po_c option to optimize across files and produce an object file. This
option performs optimizations as described for - i po, but stops prior to the final
link stage, leaving an optimized object file. The default name for this file is

I po_out . 0. You can use the - o option to specify a different name. For
example:

ifort -tpp6 -ipo_c -ofilenane a.f b.f c.f

81

Intel(R) Fortran User's Guide Vol lI

Use the - i po_S option to optimize across files and produce an assembly file.
This option performs optimizations as described for - i po, but stops prior to the
final link stage, leaving an optimized assembly file. The default name for this file
isi po_out. s. You can use the - 0 option to specify a different name. For
example:

ifort -tpp6 -ipo_S -ofilenane a.f b.f c.f

For more information on inlining and the minimum inlining criteria, see Criteria for
Inline Function Expansion and Controlling Inline Expansion of User Functions.

Using -ip with -Qoption Specifiers

You can adjust the Intel® Fortran Compiler's optimization for a particular
application by experimenting with memory and interprocedural optimizations.

Enter the - Qopt i on option with the applicable keywords to select particular
inline expansions and loop optimizations. The option must be entered with a - i p
or - 1 po specification, as follows:

-ip[-Qoption,tool, opts]

where t ool is Fortran (f) and opt s are - Qopt i on specifiers (see below). Also
refer to Criteria for Inline Function Expansion to see how these specifiers may
affect the inlining heuristics of the compiler.

See Passing Options to Other Tools (-Qoption,tool,opts) for details about -
Qopti on.

-Qoption Specifiers
If you specify -ip or -ipo without any - Qopt i on qualification, the compiler

« expands functions in line

« propagates constant arguments

« passes arguments in registers

« monitors module-level static variables.

You can refine interprocedural optimizations by using the following - Qopt i on
specifiers. To have an effect, the - Qopt i on option must be entered with either -
i p or-i po also specified, as in this example:

-ip -Qoption,f,ip_specifier

wherei p_specifier is one of the -Qoption specifiers
described in the table that follows.

82

Volume II: Optimizing Applications

- Qopt i on Specifiers

-ip_args_in_regs=0 Disables the passing of
arguments in registers. By
default, external functions can
pass arguments in registers
when called locally. Normally,
only static functions can pass
arguments in registers, provided
the address of the function is
not taken and the function does
not use a variable number of
arguments.

-ip_ninl _nmax_stats=n Sets the valid number of
intermediate language
statements for a function that is
expanded in line. The number n
is a positive integer. The
number of intermediate
language statements usually
exceeds the actual number of
source language statements.
The default value for n is 230.

-ip_ninl _m n_stats=n Sets the valid min number of
intermediate language
statements for a function that is
expanded in line. The number n
is a positive integer. The default
valueforip ninl _mn_stats
is:

IA-32 compiler :

ip_ninl_mn_ stats=7
[tanium® compiler :
ip_ninl_mn_stats =15

- Sets the maximum increase in
i p_ninl _max_total _stats=n | sjze of a function, measured in
intermediate language
statements, due to inlining. The
number n is a positive integer.
The default value for n is 2000.

The following command activates procedural and interprocedural optimizations
on source.f and sets the maximum increase in the number of intermediate
language statements to five for each function:

ifort -ip -Qoption,f,-ip_ninl_max_stats=5 source.f

83

Intel(R) Fortran User's Guide Vol lI

Inline Expansion of Functions

Criteria for Inline Function Expansion

For a call to be considered for inlining, it has to meet certain minimum criteria.
There are three main components of a call:

Call-site is the site of the call to the function that might be inlined.
Caller is the function that contains the call-site.

Callee is the function being called that might be inlined.

Minimum call-site criteria:

« The number of actual arguments must match the number of formal
arguments of the callee.

« The number of return values must match the number of return values of
the callee.

« The data types of the actual and formal arguments must be compatible.

« No multilingual inlining is permitted. Caller and callee must be written in
the same source language.

Minimum criteria for the caller:

« At most 2000 intermediate statements will be inlined into the caller from all
the call-sites being inlined into the caller. You can change this value by
specifying the option

-Qoption,f,-ip_ninl_max_total stats=new val ue

« The function must be called if it is declared as static. Otherwise, it will be
deleted.

Minimum criteria for the callee:

« Does not have variable argument list.

- Is not considered infrequent due to the name. Routines which contain the
following substrings in their names are not inlined: abort , al | oca,
denied,err,exit,fail,fatal,fault,halt,init,interrupt,
invalid,quit,rare,stop,tineout,trace,trap, andwarn.

« Is not considered unsafe for other reasons.

84

Volume II: Optimizing Applications

Selecting Routines for Inlining with or without
PGO

Once the above criteria are met, the compiler picks the routines whose inline
expansions will provide the greatest benefit to program performance. This is
done using the default heuristics. The inlining heuristics used by the compiler
differ based on whether you use profile-guided optimizations (- pr of _use) or
not.

When you use profile-guided optimizations with - i p or - i po, the compiler
uses the following heuristics:

« The default heuristic focuses on the most frequently executed call sites,
based on the profile information gathered for the program.

« By default, the compiler does not inline functions with more than 230
intermediate statements. You can change this value by specifying the
option
-Qoption, f,-ip_ninl_max_stat s=new val ue.

« The default inline heuristic will stop inlining when direct recursion is
detected.

« The default heuristic always inlines very small functions that meet the
minimum inline criteria.

- Default for Itanium®-based applications: i p_ninl _m n_stats = 15.
- Default for IA-32 applications: i p_ninl _mn_stats = 7.

These limits can be modified with the option:
-Qoption, f,-ip_ninl_mn_stats=new val ue.

See -Qoption Specifiers and Profile-Guided Optimization (PGO).

When you do not use profile-guided optimizations with -i p or -i po, the
compiler uses less aggressive inlining heuristics: it inlines a function if the inline
expansion does not increase the size of the final program.

Inlining and Preemption

Preemption of a function means that the code, which implements that function at
run-time, is replaced by different code. When a function is preempted, the new
version of this function is executed rather than the old version. Preemption can
be used to replace an erroneous or inferior version of a function with a correct or
improved version.

85

Intel(R) Fortran User's Guide Vol lI

The compiler assumes that when - i p is on, any externally visible function might
be preempted and therefore cannot be inlined. Currently, this means that all
Fortran subprograms, except for internal procedures, are not inlinable when - i p
is on.

However, if you use - i po and -i po_obj on a file-by-file basis, the functions
can be inlined. See Compilation with Real Object Files.

Controlling Inline Expansion of User

Functions

The compiler enables you to control the amount of inline function expansion, with
the options shown in the following summary.

Option Effect

-ip_no_inlining This option is only useful if -i p or - i po
is also specified. In such case, -

i p_no_i nli ni ng disables inlining that
would result from the -i p
interprocedural optimizations, but has no
effect on other interprocedural
optimizations.

- _ Preserve the source position of inlined
i nl'i ne_debug_i nfo | code instead of assigning the call-site
source position to inlined code.

IA-32 only: Disables partial inlining; can be used if -
-i p_no_pinlining i p or-ipo is also specified.

Inline Expansion of Library Functions

By default, the compiler automatically expands (inlines) a number of standard
and math library functions at the point of the call to that function, which usually
results in faster computation.

However, the inlined library functions do not set the er r no variable when being
expanded inline. In code that relies upon the setting of the er r no variable, you
should use the -nol i b_i nl i ne option. Also, if one of your functions has the
same name as one of the compiler-supplied library functions, then when this
function is called, the compiler assumes that the call is to the library function and
replaces the call with an inlined version of the library function.

86

Volume II: Optimizing Applications

So, if the program defines a function with the same name as one of the known
library routines, you must use the - nol i b_i nl i ne option to ensure that the
user-supplied function is used.

-nol i b_i nli ne disables inlining of all intrinsics.

f) Note

Automatic inline expansion of library functions is not related to the inline
expansion that the compiler does during interprocedural optimizations. For
example, the following command compiles the program sum f without
expanding the math library functions:

ifort -ip -nolib_inline sumf

Profile-guided Optimizations

Overview

Profile-guided optimizations (PGO) tell the compiler which areas of an application
are most frequently executed. By knowing these areas, the compiler is able to be
more selective and specific in optimizing the application. For example, the use of
PGO often enables the compiler to make better decisions about function inlining,
thereby increasing the effectiveness of interprocedural optimizations.

Instrumented Program

Profile-guided Optimization creates an instrumented program from your source
code and special code from the compiler. Each time this instrumented code is
executed, the instrumented program generates a dynamic information file. When
you compile a second time, the dynamic information files are merged into a
summary file. Using the profile information in this file, the compiler attempts to
optimize the execution of the most heavily travelled paths in the program.

Unlike other optimizations such as those strictly for size or speed, the results of
IPO and PGO vary. This is due to each program having a different profile and
different opportunities for optimizations. The guidelines provided help you
determine if you can benefit by using IPO and PGO. You need to understanding
the principles of the optimizations and the unique aspects of your source code.

Added Performance with PGO

In this version of the Intel® Fortran Compiler, PGO is improved in the following
ways:

87

Intel(R) Fortran User's Guide Vol lI

- Register allocation uses the profile information to optimize the location of
spill code.

« For indirect function calls, branch prediction is improved by identifying the
most likely targets. With the Intel® Pentium® 4 and Intel® Xeon(TM)
processors' longer pipeline, improving branch prediction translates into
high performance gains.

« The compiler detects and does not vectorize loops that execute only a
small number of iterations, reducing the run time overhead that
vectorization might otherwise add.

Profile-guided Optimizations

Methodology and Usage Model

PGO works best for code with many frequently executed branches that are
difficult to predict at compile time. An example is the code with intensive error-
checking in which the error conditions are false most of the time. The "cold"
error-handling code can be placed such that the branch is hardly ever
mispredicted. Minimizing "cold" code interleaved into the "hot" code improves
instruction cache behavior.

PGO Phases

The PGO methodology requires three phases and options:
1. Instrumentation compilation and linking with - pr of _gen

2. Instrumented execution by running the executable; as a result, the dynamic-
information files (. dyn) are produced.

3. Feedback compilation with - pr of _use

The flowcharts below illustrate this process for IA-32 compilation and Itanium®-
based compilation . A key factor in deciding whether you want to use PGO lies in
knowing which sections of your code are the most heavily used. If the data set
provided to your program is very consistent and it elicits a similar behavior on
every execution, then PGO can probably help optimize your program execution.
However, different data sets can elicit different algorithms to be called. This can
cause the behavior of your program to vary from one execution to the next.

Phases of Basic Profile-Guided Optimization

88

1. Instrumented Compilation:
ifort ~Prof_gen all

Volume II: Optimizing Applications

2. Instrumented Execution:

a.ault

Cutput executable files with
instrumented code:

a.out

S v

Cwtput dymamic information
files with unique names for

 }

3. Feedback Compilation:
ifort -prof_use -my opbtien a.f

each execution:

O hex digits.dyn

O

Creates and uses mergad

Profile-Guided
Crptimiized Code

PGO Usage Model

dynamic information
summary file:

pgopti.dpi

The chart that follows presents PGO usage model.

89

Intel(R) Fortran User's Guide Vol lI

Step One:
Cormnpile with Keep the static profile information
prof_genx .5pi for coverage analysis and PGT

¥ Step Three:
Instrumented Executables PGO Comnpile with
prof_use
app.exe l
¥ Qptimized Executables

N

\
Step two: J D app.Exe

Run instrurnented executables

Merge

Dynarmic Profile Information
Keep the dynamic profile information

.dpi for coverage analysis and PGT

Here are the steps for a simple example (nyApp. f 90) for IA-32 systems.
1. Set

PROF_DI R=c: / nyApp/ prof _dir
2. Issue command

ifort -prof_genx myApp.f90

This command compiles the program and generates instrumented binary
my App. exe as well as the corresponding static profile information pgopti . spi .

3. Execute myApp

Each invocation of my App runs the instrumented application and generates one
or more new dynamic profile information files that have an extension . dyn in the
directory specified by PROF_DI R.

4. Issue command

ifort -prof_use nyApp.f90

90

Volume II: Optimizing Applications

At this step, the compiler merges all the . dyn files into one . dpi file
representing the total profile information of the application and generates the
optimized binary. The default name of the . dpi file is pgopti . dpi .

Basic PGO Options

The options used for basic PGO optimizations are:

« - prof _gen to generate instrumented code
« - prof __use to generate a profile-optimized executable
- prof _format 32 to produce 32-bit counters for . dyn and . dpi files

In cases where your code behavior differs greatly between executions, you have
to ensure that the benefit of the profile information is worth the effort required to
maintain up-to-date profiles. In the basic profile-guided optimization, the following
options are used in the phases of the PGO:

Generating Instrumented Code, -prof_gen

The - pr of _gen option instruments the program for profiling to get the execution
count of each basic block. It is used in phase 1 of the PGO to instruct the
compiler to produce instrumented code in your object files in preparation for
instrumented execution. Parallel make is automatically supported for - pr of _gen
compilations.

Generating a Profile-optimized Executable, -
prof _use

The - pr of _use option is used in phase 3 of the PGO to instruct the compiler to
produce a profile-optimized executable and merges available dynamic-
information (. dyn) files into a pgopt i . dpi file.

Note:

The dynamic-information files are produced in phase 2 when you run the
instrumented executable.

If you perform multiple executions of the instrumented program, - pr of _use
merges the dynamic-information files again and overwrites the previous
pgopti . dpi file.

Using 32-bit Counters, -prof _format 32

91

Intel(R) Fortran User's Guide Vol lI

The Intel Fortran compiler by default produces profile data with 64-bit counters to
handle large numbers of events in the . dyn and . dpi files. The -

prof _format 32 option produces 32-bit counters for compatibility with the
earlier compiler versions. If the format of the . dyn and . dpi files is incompatible
with the format used in the current compilation, the compiler issues the following
message:

Error: xxx.dyn has old or inconpatible file fornmat - delete
file and redo instrunentation conpil ation/execution.

The 64-bit format for counters and pointers in . dyn and . dpi files eliminate the
incompatibilities on various platforms due to different pointer sizes.

Disabling Function Splitting, -fnsplit- (Itanium®
Compiler only)

-fnsplit- disables function splitting. Function splitting is enabled by -

pr of _use in phase 3 to improve code locality by splitting routines into different
sections: one section to contain the cold or very infrequently executed code and
one section to contain the rest of the code (hot code).

You can use - fnspl it - to disable function splitting for the following reasons:

« Most importantly, to get improved debugging capability. In the debug
symbol table, it is difficult to represent a split routine, that is, a routine with
some of its code in the hot code section and some of its code in the cold
code section.

The - f nspl it - option disables the splitting within a routine but enables
function grouping, an optimization in which entire routines are placed either
in the cold code section or the hot code section. Function grouping does
not degrade debugging capability.

« Another reason can arise when the profile data does not represent the
actual program behavior, that is, when the routine is actually used
frequently rather than infrequently.

FlNote

For Itanium®-based applications, if you intend to use the - pr of _use option with
optimizations at the - O3 level, the - O3 option must be on. If you intend to use the
- pr of _use option with optimizations at the - Q2 level or lower, you can generate
the profile data with the default options.

See an example of using PGO.

92

Volume II: Optimizing Applications

Advanced PGO Options

The options controlling advanced PGO optimizations are:

- prof _di rdirname
-prof _filefil enane.

Specifying the Directory for Dynamic Information
Files

Use the - pr of _di rdi rnane option to specify the directory in which you intend
to place the dynamic information (. dyn) files to be created. The default is the

directory where the program is compiled. The specified directory must already
exist.

You should specify - pr of _di r di r nane option with the same directory name
for both the instrumentation and feedback compilations. If you move the . dyn
files, you need to specify the new path.

Specifying Profiling Summary File

The - prof _fil efil ename option specifies file name for profiling summary
file.

Guidelines for Using Advanced PGO

When you use PGO, consider the following guidelines:

« Minimize the changes to your program after instrumented execution and
before feedback compilation. During feedback compilation, the compiler
ignores dynamic information for functions modified after that information
was generated.

FlNote

The compiler issues a warning that the dynamic information does not
correspond to a modified function.

- Repeat the instrumentation compilation if you make many changes to your
source files after execution and before feedback compilation.

93

Intel(R) Fortran User's Guide Vol lI

« Specify the name of the profile summary file using the -
prof filefil ename option

See PGO Environment Variables.

PGO Environment Variables

The environment variables determine the directory in which to store dynamic
information files or whether to overwrite pgopti . dpi . The PGO environment
variables are described in the table below.

Variable Description

PROF_DI R Specifies the directory in which dynamic
information files are created. This variable
applies to all three phases of the profiling
process.

PROF_DUMP_I NTERVAL | Initiates interval profile dumping in an
instrumented user application.

PROF_NO_CLOBBER Alters the feedback compilation phase slightly.
By default, during the feedback compilation
phase, the compiler merges the data from all
dynamic information files and creates a new
pgopti . dpi file, even if one already exists.
When this variable is set, the compiler does not
overwrite the existing pgopt i . dpi file. Instead,
the compiler issues a warning and you must
remove the pgopti . dpi file if you want to use
additional dynamic information files.

See also the documentation for your operating system for instructions on how to
specify environment variables and their values.

Example of Profile-Guided

Optimization
The following is an example of the basic PGO phases:

1. Instrumentation Compilation and Linking —Use - pr of _gen to produce an
executable with instrumented information. Use also the - pr of _di r option as
recommended for most programs, especially if the application includes the
source files located in multiple directories. - pr of _di r ensures that the profile
information is generated in one consistent place. For example:

94

Volume II: Optimizing Applications

ifort -prof_gen -prof_dir/usr/profdata -c al.f a2.f
a3. f

ifort -oal al.o a2.0 a3.o0

In place of the second command, you could use the linker (I d) directly to
produce the instrumented program. If you do this, make sure you link with the
['ibirc.albrary.

2. Instrumented Execution —Run your instrumented program with a
representative set of data to create a dynamic information file.

pronpt >al

The resulting dynamic information file has a unique name and . dyn suffix every
time you run al. The instrumented file helps predict how the program runs with a
particular set of data. You can run the program more than once with different
input data.

3. Feedback Compilation —Compile and link the source files with - pr of _use
to use the dynamic information to optimize your program according to its profile:

ifort -prof _use -prof _dir/usr/profdata -ipo al.f a2.f
a3. f

Besides the optimization, the compiler produces a pgopti . dpi file. You
typically specify the default optimizations (- Q2) for phase 1, and specify more

advanced optimizations (- i p or - i po) for phase 3. This example used - Q2 in
phase 1 and the - i po in phase 3.

f) Note

The compiler ignores the - i p or the - i po options with - pr of _gen.

See Basic PGO Options.
Merging the .dyn Files
To merge the . dyn files, use the pr of ner ge utility.

The profmerge Utility

The compiler executes pr of mer ge automatically during the feedback
compilation phase when you specify - pr of _use.

95

Intel(R) Fortran User's Guide Vol lI

The command-line usage for pr of nmer ge is as follows:
prof merge [-nol ogo] [-prof _dirdirnane]
where - pr of _di rdi rname is a pr of nmer ge utility option.

This merges all . dyn files in the current directory or the directory specified by -
prof _dir, and produces the summary file pgopti . dpi .

The - prof _fil efil enane option enables you to specify the name of the . dpi
file.

The command-line usage for pr of mer ge with - prof _filefil enane is as
follows:

prof merge [-nologo] [-prof _filefilenane]
where / prof _fil efil ename is a prof mer ge utility option.
Note

The pr of mer ge tool merges all the . dyn files that exist in the given
directory. It is very important to make sure that unrelated . dyn files,
oftentimes from previous runs, are not present in that directory. Otherwise,
profile information will be based on invalid profile data. This can negatively
impact the performance of optimized code as well as generate misleading
coverage information.

EJ Note

The . dyn files can be merged to a . dpi file by the pr of mer ge tool
without recompiling the application.

Dumping Profile Data

This subsection provides an example of how to call the C PGO API routines from
Fortran. For complete description of the PGO API support routines, see PGO
API: Profile Information Generation Support.

As part of the instrumented execution phase of profile-guided optimization, the
instrumented program writes profile data to the dynamic information file (. dyn
file). The file is written after the instrumented program returns normally from
mai n() or calls the standard exit function. Programs that do not terminate
normally, can use the _PGOPTI _Pr of _Dunp function. During the
instrumentation compilation

96

Volume II: Optimizing Applications

(- prof _gen) you can add a call to this function to your program. Here is an
example:

| NTERFACE

SUBROUTI NE PGOPTI _PROF_DUMP()

| DEC$ ATTRI BUTES C,

ALl AS: ' PGOPTI _Prof _Dunp' : : PGOPTI _PROF_DUMP
END SUBROUTI NE

END | NTERFACE

CALL PGOPTI _PROF_DUMP()

]

£ /Note

You must remove the call or comment it out prior to the feedback
compilation with - pr of _use.

Using profmerge to Relocate the

Source Files

The compiler uses the full path to the source file for each routine to look up the
profile summary information associated with that routine. By default, this prevents
you from:

+ Using the profile summary file (. dpi) if you move your application
sources.

- Sharing the profile summary file with another user who is building identical
application sources that are located in a different directory.

Source Relocation

To enable the movement of application sources, as well as the sharing of profile
summary files, use the pr of mer ge with - src_ol d and - sr c_new options. For
example:

pronpt >prof merge -prof _dir c:/work -src_old c:/work/sources
-src_new d:/project/src

The above command will read the c: / wor k/ pgopt i . dpi file. For each routine
represented in the pgopti . dpi file, whose source path begins with the

c: / wor k/ sour ces prefix, pr of mer ge replaces that prefix with

d:/ project/src. Thec:/work/ pgopti.dpi fileis updated with the new
source path information.

Note S

97

Intel(R) Fortran User's Guide Vol lI

« You can execute profmerge more than once on a given pgopti.dpi
file. You may need to do this if the source files are located in
multiple directories. For example:

profnerge -src_old "c:/programfiles" -src_new
"e:/programfiles”

profmerge -src_old c:/proj/application -src_new
d: /app

+ In the values specified for - src_ol d and - sr c_new, uppercase
and lowercase characters are treated as identical. Likewise,
forward slash (/) and backward slash (\) characters are treated as
identical.

- Because the source relocation feature of pr of ner ge modifies the
pgopti . dpi file, you may wish to make a backup copy of the file
prior to performing the source relocation.

Code-coverage Tool

The Intel® Compilers Code-coverage tool can be used for both 1A-32 and
Itanium® architectures, in a number of ways to improve development efficiency,
reduce defects, and increase application performance. The major features of the
Intel Compilers code-coverage tool are:

« Visual presentation of the application's code coverage information with the
code-coverage coloring scheme

« Display of the dynamic execution counts of each basic block of the
application

- Differential coverage, or comparison of the profiles of the application's two
runs

Command-line Syntax

The syntax for this tool is as follows:

codecov [-codecov_opti on]

where - codecov_opt i on is a tool option you choose to run the code coverage
with. If you do not use any option, the tool will provide the top level code
coverage for your whole program.

Tool Options

98

Volume II: Optimizing Applications

The tool uses options that are listed in the table that follows.

Option Description Default

-hel p Prints all the options of the code-coverage tool.

-spi file Sets the path name of the static profile information | pgopti . spi
file . spi .

-dpi file Sets the path name of the dynamic profile pgopti . dpi
information file . dpi .

-prj Sets the project name.

-counts Generates dynamic execution counts.

- Treats partially covered code as fully covered

nopartial | code.

-conmp Sets the filename that contains the list of files
of interest.

-ref Finds the differential coverage with respect to
ref_dpi_file.

- demang Demangles both function names and their
arguments.

- mane Sets the name of the web-page owner.

- maddr Sets the email address of the web-page owner.

- bcol or Sets the html color name or code of the #tfff99
uncovered blocks.

-fcol or Sets the html color name or code of the #ffcccc
uncovered functions.

- pcol or Sets the html color name or code of the #f af ad2
partially covered code.

-ccol or Sets the html color name or code of the HEFEFFS
covered code.

- ucol or Sets the html color name or code of the #EEFEES
unknown code.

Visual Presentation of the Application's Code

Coverage

Based on the profile information collected from running the instrumented binaries
when testing an application, Intel® Compiler creates HTML files using a code-
coverage tool. These HTML files indicate portions of the source code that were
or were not exercised by the tests. When applied to the profile of the
performance workloads, the code-coverage information shows how well the
training workload covers the application's critical code. High coverage of

99

Intel(R) Fortran User's Guide Vol lI

performance-critical modules is essential to taking full advantage of the profile-
guided optimizations.

The code-coverage tool can create two levels of coverage:

- Top level: for a group of selected modules
+ Individual module source view

Top Level Coverage

The top-level coverage reports the overall code coverage of the modules that
were selected. The following options are provided:

« You can select the modules of interest
- For the selected modules, the tool generates a list with their coverage
information. The information includes the total number of functions and
blocks in a module and the portions that were covered.
« By clicking on the title of columns in the reported tables, the lists may be
sorted in ascending or descending order based on:
« basic block coverage
« function coverage
+ function name.

The screenshot that follows shows a sample top-level coverage summary for a
project. By clicking on a module name (for example, SAMPLE. C), the browser will
display the coverage source view of that particular module.

-=]]r|hH:lj Conmpilers cod e -towerage dormation for Sanipke_Project - Microsolt Enbernet Expliorer i
Ele ESt YW Favofes ook Help “
deBack = = -)] o | Dseech [ilPaoctes GHedm o | S 28 [- 5]

(=

frddmss [] DulCoverageliakiicomper sanplel sample B CODE_COVERAGE, HTML =] e
| =]
| intg) sscweted by Intei comaa Coverage Summary of Sample_Project

o R e

_: Files Functions Blocks

1 total cwnd whevrd curg' dotal cend wncvnd | curg® todal cend wncerd | curg

| 32 1 |GEET 19 5 14| 263F 1 2 1M 1066

| b |
| .) =] o |
| Covered Files in Sample_Project 1 Uncovered Filez in Sample_Project

Functions Blacks 1 Functions Bincks

| Hanww 1 Hanin

1 total curd urg® iodal oerd | oerg 1 intal intal

| saMPlERC. ¢ 1 w2 W 2 4 | SawPiEIC 1 =

| SAWPLEC - B 4| E00D| 34 1 BTES

| | . sated by Loty

| intg SR wabsaga cuner

I-ﬁu gavarahed by Inbgll Soinpdges WakePepe Dwrir | Sl g Lo

| G g o Loitgl 1

| A |
é‘] i, ey Compuker &

100

Volume II: Optimizing Applications

Browsing the Frames

The coverage tool creates frames that facilitate browsing through the code to
identify uncovered code. The top frame displays the list of uncovered functions
while the bottom frame displays the list of covered functions. For uncovered
functions, the total number of basic blocks of each function is also displayed. For
covered functions, both the total number of blocks and the number of covered
blocks as well as their ratio (that is, the coverage rate) are displayed.

For example, 66.67(4/6) indicates that four out of the six blocks of the
corresponding function were covered. The block coverage rate of that function is
thus 66.67%. These lists can be sorted based on the coverage rate, number of
blocks, or function names. Function names are linked to the position in source
view where the function body starts. So, just by one click, the user can see the
least-covered function in the list and by another click the browser displays the
body of the function. The user can then scroll down in the source view and
browse through the function body.

Individual Module Source View

Within the individual module source views, the tool provides the list of uncovered
functions as well as the list of covered functions. The lists are reported in two
distinct frames that provide easy navigation of the source code. The lists can be
sorted based on:

« the number of blocks within uncovered functions
« the block coverage in the case of covered functions
« the function names.

The following screen shows the coverage source view of SAMPLE. C.

101

Intel(R) Fortran User's Guide Vol lI

T Irtel® Compilers code-coversgs information lor 0 COVERAGE, IR COMPILER) SAMPLE SASFLES SASFLE, - Microsolt Intermet Exp i (e |
Dbs Eit Mew Pgeorkes Tock el “
ik o~ = - (3 [H A | Doexch [(EFaecies Frade (] 3 o B - H
Sidrmss (2] 0 i a2 crgser' s sty e) CeondeCannaringeill_COVERAGE [AE COMPILER,_SAMPLE_SEMPLES SAMILE C.HTML | En
oy wold £l {int @) Ll
. iy
e intgl 11} 1L Ifmo== 1) 1] £ B o= oOd]
;l 12} princt |1 oe DyRY):
13} 1
urecyarenl fuactions 14 1
. 15)
blocks function 16% wold £2 (iR @)
E gE iTh o
1&) i€ jim == 1] || f B == O3] O
19y prince ["1 ae DyEY):
20 1
1)]
2
23y wold gi Jint m)
=l Ed) |
;l ZEY inme 4, k@
covered funclions ZE)
27 Lok (o= 0F 3 <om: 1 ok 0
) -] L e
GRYRFTR funt b 2o 1 —
64T (4M) I2 £V
. 31h
CESEY
8333 (sf0) Q1 324 wold g (iRt m)
100,00 (B8 ai 333
L0000 [15/15) main 34 inc), X
5
38y faE () & 0f 5 £omp § 4| O
3T a =
IE) 1
i VI |
=| a0y =]

£

{2 Wy Conpuber

=

Setting the Coloring Scheme for the Code Coverage

The tool provides a visible coloring distinction of the following coverage

categories:

« covered code

« uncovered basic blocks
« uncovered functions

+ partially covered code

« unknown.

The default colors that the tool uses for presenting the coverage information are

shown in the tables that follows.

This color Means

Covered code The portion of code colored in this color was exercised by the
tests. The default color can be overridden with the - ccol or
option.

Uncovered basic Basic blocks that are colored in this color were not exercised

block by any of the tests.

during the tests.

They were, however, within functions that were executed

The default color can be overridden with the - bcol or option.

Uncovered Functions that are colored in this color were never called

102

Volume II: Optimizing Applications

function during the tests. The default color can be overridden with the -
f col or option.

Partially covered More than one basic block was generated for the code at this

code position.

Some of the blocks were covered while some were not. The
default color can be overridden with the - pcol or option.

Unknown No code was generated for this source line. Most probably, the
source at this position is a comment, a header-file inclusion, or
a variable declaration. The default color can be overridden with
the - ucol or option.

The default colors can be customized to be any valid HTML by using the options
mentioned for each coverage category in the table above.

For code-coverage colored presentation, the coverage tool uses the following
heuristic. Source characters are scanned until reaching a position in the source
that is indicated by the profile information as the beginning of a basic block. If the
profile information for that basic block indicates that a coverage category
changes, then the tool changes the color corresponding to the coverage
condition of that portion of the code, and the coverage tool inserts the
appropriate color change in the HTML files.

Z:) Note

You need to interpret the colors in the context of the code. For instance,
comment lines that follow a basic block that was never executed would be
colored in the same color as the uncovered blocks. Another example is the
closing brackets in C/C++ applications.

Coverage Analysis of a Modules Subset

One of the capabilities of the Intel Compilers code-coverage tool is efficient
coverage analysis of an application' s subset of modules. This analysis is
accomplished based on the selected option - conp of the tool's execution.

You can generate the profile information for the whole application, or a subset of
it, and then break the covered modules into different components and use the
coverage tool to obtain the coverage information of each individual component. If
only a subset of the application modules is compiler with the - pr of _genx
option, then the coverage information is generated only for those modules that
are involved with this compiler option, thus avoiding the overhead incurred for
profile generation of other modules.

103

Intel(R) Fortran User's Guide Vol lI

To specify the modules of interest, use the tool's - conp option. This option takes
the name of a file as its argument. That file must be a text file that includes the
name of modules or directories you would like to analyze. Here is an example:

codecov -prj Project_Nane -conp conponentl
-f,fJNote

Each line of component file should include one, and only one, module
name.

Any module of the application whose full path name has an occurrence of any of
the names in the component file will be selected for coverage analysis. For
example, if a line of file conponent 1 in the above example contains nod1. f 90,
then all modules in the application that have such a name will be selected. The
user can specify a particular module by giving more specific path information. For
instance, if the line contains / cnpl1/ nod1. f 90, then only those modules with
the name mod1.c will be selected that are in a directory named cnpl. If no
component file is specified, then all files that have been compiled with -

pr of _genx are selected for coverage analysis.

Dynamic Counters

This feature displays the dynamic execution count of each basic block of the
application, and as such it is useful for both coverage and performance tuning.

The coverage tool can be configured to generate the information about the
dynamic execution counts. This configuration requires using the - count s option.
The counts information is displayed under the code after a ~ sign precisely under
the source position where the corresponding basic block begins. If more than one
basic block is generated for the code at a source position (for example, for
macros), then the total number of such blocks and the number of the blocks that
were executed are also displayed in front of the execution count.

For example, line 11 in the code is an | F statement:

11 IF ((N.EQ 1).0R (N .EQ 0))

N 10 (1/2)

12 PRI NT N

nNT

The coverage lines under code lines 11 and 12 contain the following information:

- Thel F statement in line 11 was executed 10 times.
« Two basic blocks were generated for the | F statement in line 11.

104

Volume II: Optimizing Applications

- Only one of the two blocks was executed, hence the partial coverage
color.
« Only seven out of the ten times variable n had a value of O or 1.

In certain situations, it may be desirable to consider all the blocks generated for a
single source position as one entity. In such cases, it is necessary to assume
that all blocks generated for one source position are covered when at least one
of the blocks is covered. This assumption can be configured with the

-noparti al option. When this option is specified, decision coverage is
disabled, and the related statistics are adjusted accordingly. The code lines 11
and 12 indicate that the PRI NT statement in line 12 was covered. However,
only one of the conditions in line 11 was ever true. With the - nopar ti al option,
the tool treats the partially covered code (like the code on line 11) as covered.

Differential Coverage

Using the code-coverage tool, you can compare the profiles of the application's
two runs: a reference run and a new run identifying the code that is covered by
the new run but not covered by the reference run. This feature can be used to
find the portion of the application’s code that is not covered by the application’s
tests but is executed when the application is run by a customer. It can also be
used to find the incremental coverage impact of newly added tests to an
application’s test space.

The dynamic profile information of the reference run for differential coverage is
specified by the - r ef option. such as in the following command:

codecov -prj Project Nane -dpi custoner.dpi -ref
appTests. dpi

The coverage statistics of a differential-coverage run shows the percentage of
the code that was exercised on a new run but was missed in the reference run. In
such cases, the coverage tool shows only the modules that included the code
that was uncovered.

The coloring scheme in the source views also should be interpreted accordingly.
The code that has the same coverage property (covered or not covered) on both
runs is considered as covered code. Otherwise, if the new run indicates that the
code was executed while in the reference run the code was not executed, then
the code is treated as uncovered. On the other hand, if the code is covered in the
reference run but not covered in the new run, the differential-coverage source
view shows the code as covered.

Running for Differential Coverage

105

Intel(R) Fortran User's Guide Vol lI

Files Required

To run the Intel Compilers code-coverage tool for differential coverage, the
following files are required:

« The application sources

« The. spi file generated by Intel Compilers when compiling the application
for the instrumented binaries with the - pr of _genx option.

« The . dpi file generated by Intel Compilers pr of mer ge utility as the result
of merging the dynamic profile information . dyn files or the . dpi file
generated implicitly by Intel Compilers when compiling the application with
the - pr of _use option.

See Usage Model of the Profile-guided Optimizations.
Running

Once the required files are available, the coverage tool may be launched from
this command line:

codecov -prj Project_Nane -spi pgopti.spi -dpi pgopti.dpi
The - spi and - dpi options specify the paths to the corresponding files.

The coverage tool also has the following additional options for generating a link
at the bottom of each HTML page to send an electronic message to a named
contact by using -mmane and - naddr options.

codecov -prj Project_Nane -mane John_Sm th -naddr
j s@onpany. com

Test Prioritization Tool

The Intel® Compilers Test-prioritization tool enables the profile-guided
optimizations to select and prioritize application's tests based on prior execution
profiles of the application. The tool offers a potential of significant time saving in
testing and developing large-scale applications where testing is the major
bottleneck. The tool can be used for both 1A-32 and Itanium® architectures.

This tool enables the users to select and prioritize the tests that are most relevant
for any subset of the application's code. When certain modules of an application
are changed, the test-prioritization tool suggests the tests that are most probably
affected by the change. The tool analyzes the profile data from previous runs of
the application, discovers the dependency between the application's components
and its tests, and uses this information to guide the process of testing.

106

Volume II: Optimizing Applications

Features and Benefits

The tool provides an effective testing hierarchy based on the application's code
coverage. The advantages of the tool usage can be summarized as follows:

« Minimizing the number of tests that are required to achieve a given overall
coverage for any subset of the application: the tool defines the smallest
subset of the application tests that achieve exactly the same code
coverage as the entire set of tests.

« Reducing the turn-around time of testing: instead of spending a long time
on finding a possibly large number of failures, the tool enables the users to

quickly find a small number of tests that expose the defects associated

with the regressions caused by a change set.
- Selecting and prioritizing the tests to achieve certain level of code
coverage in a minimal time based on the data of the tests' execution time.

Command-line Syntax

The syntax for this tool is as follows:

tselect -dpi _list file

where - dpi _| i st is a required tool option that sets the path to the DPI listfil e
that contains the list of the . dpi files of the tests you need to prioritize.

Tool Options

The tool uses options that are listed in the table that follows.

Option Description Default
-hel p Prints all the options of the test-prioritization
tool.
-spi file Sets the path name of the static profile pgopti . spi
information file . spi .
-dpi _I'i st Sets the path name of the file that contains
file the name of the dynamic profile information
(. dpi) files. Each line of the file should
contain one . dpi name optionally followed by
its execution time. The name must uniquely
identify the test.
- prof _dpi Sets the path name of the output report
file file.
-conp Sets the filename that contains the list of

files of interest.

107

Intel(R) Fortran User's Guide Vol lI

-cutof f Terminates when the cumulative block
val ue coverage reaches val ue% of pre-

computed total coverage. val ue must be
greater than 0.0 (for example, 99.00). It
may be set to 100.

- not ot al Does not pre-compute the total coverage.

-mntinme Minimizes testing execution time. The

execution time of each test must be
provided on the same line of dpi _| i st
file after the test name in dd: hh: nm ss
format.

-verbose Generates more logging information about

the program progress.

Usage Requirements

To run the test-prioritization tool on an application’s tests, the following files are
required:

108

The . spi file generated by Intel Compilers when compiling the application
for the instrumented binaries with the - pr of _genx option.

The . dpi files generated by Intel Compilers pr of mer ge tool as a result
of merging the dynamic profile information . dyn files of each of the
application tests. The user needs to apply the pr of ner ge tool to all . dyn
files that are generated for each individual test and name the resulting

. dpi in a fashion that uniquely identifies the test. The profmerge tool
merges all the . dyn files that exist in the given directory.

f)] Note

It is very important that the user makes sure that unrelated . dyn files,
oftentimes from previous runs or from other tests, are not present in that
directory. Otherwise, profile information will be based on invalid profile
data. This can negatively impact the performance of optimized code as well
as generate misleading coverage information.

User-generated file containing the list of tests to be prioritized.

Z:) Note

For successful tool execution, you should:

= Name each test . dpi file so that the file names uniquely
identify each test.

Volume II: Optimizing Applications

= Create a DPI list file: a text file that contains the names of all
. dpi test files. The name of this file serves as an input for
the test-prioritization tool execution command. Each line of
the DPI list file should include one, and only one, . dpi file
name. The name can optionally be followed by the duration
of the execution time for a corresponding test in the
dd: hh: mm ss format.

For example: Test 1. dpi 00: 00: 60: 35 informs that Testl
lasted 0 days, 0 hours, 60 minutes and 35 seconds.

The execution time is optional. However, if it is not provided, then the tool

will not prioritize the test for minimizing execution time. It will prioritize to
minimize the number of tests only.

Usage Model

The chart that follows presents the test-prioritization tool usage model.

—
Step 1@
L::-';";':m Eesp the static profile mformaton
- & for coverage analysis and PGT
. A

Instrumenbed Eomcuinbles

D app . axe |
" B

-
o T
_I-d- i

e & ¥ i e
il . . S
(- b, (" - Ly
1 | |
I.i' N L
Step 2.1 Step Z.n
\ Rum instrumented sxscutshles an Aun insTumanted sxeoutables on
gr= Test 1 — Tt _n
(f,---u - '\ }
s (7
gy g Il““'*-h
Marge Dy narmic Prodile Informalion : Margs iy narme: Prolile Inlormatson
dyr files | gy n files |
i g i, A
k. J ¥ k.
Test_1.dp Test_Z.dpi Test__.dpi Tiest_ni.cpi
~— \ / -
— ':,.- xt____.-
| Step 3:

| Aum Test Pricritizer

109

Intel(R) Fortran User's Guide Vol lI

Here are the steps for a simple example (nyApp. f 90) for IA-32 systems.
1. Set

PROF_DI R=c: / nyApp/ prof _dir

2. Issue command

ifort -prof_genx myApp.f90

This command compiles the program and generates instrumented binary
my App as well as the corresponding static profile information pgopti . spi .

3. Issue command

rm PROF_DIR /*.dyn

Make sure that there are no unrelated . dyn files present.
4. Issue command

nyApp < datal

Invocation of this command runs the instrumented application and generates

one or more new dynamic profile information files that have an extension
. dyn in the directory specified by PROF_DI R.

5. Issue command
prof merge -prof _dpi Test1l. dpi

At this step, the pr of nmer ge tool merges all the . dyn files into one file

(Test 1. dpi) that represents the total profile information of the application on
Testl.

6. Issue command

rm PROF_DIR /*.dyn

Make sure that there are no unrelated . dyn files present.

7. Issue command

nyApp < dat a2

110

Volume II: Optimizing Applications

This command runs the instrumented application and generates one or more
new dynamic profile information files that have an extension . dyn in the
directory specified by PROF_DI R

8. Issue command
prof merge -prof dpi Test 2. dpi
At this step, the pr of mer ge tool merges all the . dyn files into one file
(Test 2. dpi) that represents the total profile information of the application on

Test2.

9. Issue command

rm PROF_DIR /*. dyn
Make sure that there are no unrelated . dyn files present.

10. Issue command

myApp < data3

This command runs the instrumented application and generates one or more
new dynamic profile information files that have an extension . dyn in the
directory specified by PROF_DI R.

11. Issue Command
prof merge -prof dpi Test 3. dpi

At this step, the pr of mer ge tool merges all the . dyn files into one file
(Test 3. dpi) that represents the total profile information of the application on
Test3.

12. Create a file namedtests _|i st with three lines. The first line contains
Test 1. dpi , the second line contains Test 2. dpi , and the third line contains
Test 3. dpi .

When these items are available, the test-prioritization tool may be launched from
the command line in PROF_DI R directory as described in the following examples.
Note that in all examples, the discussion references the same set of data.

Example 1 Minimizing the Number of Tests

tselect -dpi _list tests list -spi pgopti.spi

111

Intel(R) Fortran User's Guide Vol lI

where the / spi option specifies the path to the . spi file.

Here is a sample output from this run of the test-prioritization tool.

Total nunber of tests = 3
Total bl ock coverage ~ 52.17
Total function coverage ~ 50.00
Num %RatCvrg %8l kCvrg %ncCvrg Test Nanme @
Opt i ons
1 87.50 45. 65 37.50 Test 3. dpi
2 100. 00 52. 17 50. 00 Test 2. dpi

In this example, the test-prioritization tool has provided the following information:

« By running all three tests, we achieve 52.17% block coverage and 50.00%
function coverage.

« Test3 by itself covers 45.65% of the basic blocks of the application, which
is 87.50% of the total block coverage that can be achieved from all three
tests.

- By adding Test2, we achieve a cumulative block coverage of 52.17% or
100% of the total block coverage of Testl, Test2, and Test3.

- Elimination of Testl has no negative impact on the total block coverage.

Example 2 Minimizing Execution Time

Suppose we have the following execution time of each testinthet ests_1i st
file.

Test 1. dpi 00: 00: 60: 35

Test 2. dpi 00: 00: 10: 15

Test 3. dpi 00: 00: 30: 45

The following command executes the test-prioritization tool to minimize the
execution time with the

-m nti me option:

tselect -dpi _list tests_ list -spi pgopti.spi -mntine
Here is a sample output.

3

Total number of tests

112

Volume II: Optimizing Applications

Total bl ock coverage ~ 52.17
Total function coverage ~ 50.00
Total execution tinme = 1:41:35

num el apsedTinme %RatCvrg 9Bl kCvrg %ncCvrg Test Nane

@ Opt i ons
1 10: 15 75. 00 39. 13 25. 00 Test 2. dpi
2 41: 00 100. 00 52.17 50. 00 Test 3. dpi

In this case, the results indicate that the running all tests sequentially would
require one hour, 45 minutes, and 35 seconds, while the selected tests would
achieve the same total block coverage in only 41 minutes.

f_:) Note

The order of tests when prioritization is based on minimizing time (first
Test2, then Test3) could be different than when prioritization is done based
on minimizing the number of tests. See example above: first Test3, then
Test2. In Example 2, Test2 is the test that gives the highest coverage per
execution time. So, it is picked as the first test to run.

Using Other Options

The - cut of f option enables the test-prioritization tool to exit when it reaches a
given level of basic block coverage.

tselect -dpi _list tests list -spi pgopti.spi -cutoff 85.00
If the tool is run with the cutoff value of 85.00 in the above example, only Test3

will be selected, as it achieves 45.65% block coverage, which corresponds to
87.50% of the total block coverage that is reached from all three tests.

The test-prioritization tool does an initial merging of all the profile information to
figure out the total coverage that is obtained by running all the tests. The -

not ot al option. enables you to skip this step. In such a case, only the absolute
coverage information will be reported, as the overall coverage remains unknown.

PGO API Support Overview

The Profile Information Generation Support (Profile IGS) enables you to control
the generation of profile information during the instrumented execution phase of
profile-guided optimizations.

113

Intel(R) Fortran User's Guide Vol lI

Normally, profile information is generated by an instrumented application when it
terminates by calling the standard exi t () function.

To ensure that profile information is generated, the functions described in this
section may be necessary or useful in the following situations:

« The instrumented application exits using a non-standard exit routine.

« The instrumented application is a non-terminating application: exi t () is
never called.

« The application requires control of when the profile information is
generated.

A set of functions and an environment variable comprise the Profile IGS.

The Profile IGS Functions

The Profile IGS functions are available to your application by inserting a header
file at the top of any source file where the functions may be used.

#i ncl ude "pgouser. h"

Note: The Profile IGS functions are written in C language. Fortran applications
need to call C functions.

The rest of the topics in this section describe the Profile IGS functions.

Note: Without instrumentation, the Profile IGS functions cannot provide PGO API
support.

The Profile IGS Environment Variable

The environment variable for Profile IGS is PROF_DUMP_I| NTERVAL. This
environment variable may be used to initiate Interval Profile Dumping in an
instrumented user application. See the recommended usage of

_PGOPTI _Set _Interval Prof Dunp() for more information.

Dumping Profile Information

The PGOPTI _Prof _Dunp() function dumps the profile information collected by
the instrumented application and has the following prototype:

void PGOPTI _Prof Dunp(void);

114

Volume II: Optimizing Applications

The profile information is generated in a . dyn file (generated in phase 2 of the
PGO).

Recommended usage

Insert a single call to this function in the body of the function which terminates the
user application. Normally, PGOPTI _Pr of Dunp() should be called just once.

It is also possible to use this function in conjunction with the
_PGOPTI _Prof _Reset () function to generate multiple . dyn files (presumably
from multiple sets of input data).

Example

I selectively collect profile

i nformation

I for the portion of the application
I involved in processing input data

i nput _data = get_i nput_data()
do while (input_data)

call _PGOPTI _Prof Reset ()

call process_data(input_data)
call _PGOPTI _Prof Dunmp();

i nput _data = get_input_data();
end do

Resetting the Dynamic Profile

Counters

The PGOPTI _Prof Reset () function resets the dynamic profile counters and
has the following prototype:

voi d _PGOPTI _Prof Reset (void);

Recommended usage

Use this function to clear the profile counters prior to collecting profile information
on a section of the instrumented application. See the example under
_PGOPTI _Prof _Dunp().

115

Intel(R) Fortran User's Guide Vol lI

Dumping and Resetting Profile

Information

The PGOPTI _Prof Dunp_And_Reset () function dumps the profile
information to a new . dyn file and then resets the dynamic profile counters.
Then the execution of the instrumented application continues. The prototype of
this function is:

voi d _PGOPTI _Prof _Dunp_And_Reset (voi d);

This function is used in non-terminating applications and may be called more
than once.

Recommended usage

Periodic calls to this function enables a non-terminating application to generate
one or more profile information files (. dyn files). These files are merged during
the feedback phase (phase 3) of profile-guided optimizations. The direct use of
this function enables your application to control precisely when the profile
information is generated.

Interval Profile Dumping

The PGOPTI _Set I nterval _Prof_Dunp() function activates Interval Profile
Dumping and sets the approximate frequency at which dumps occur. The
prototype of the function call is:

void PGOPTI _Set Interval Prof Dunp(int interval);

This function is used in non-terminating applications.

The i nt er val parameter specifies the time interval at which profile dumping
occurs and is measured in milliseconds. For example, if interval is set to 5000,
then a profile dump and reset will occur approximately every 5 seconds. The
interval is approximate because the time-check controlling the dump and reset
is only performed upon entry to any instrumented function in your application.

Notes

1. Setting interval to zero or a negative number will disable interval profile
dumping.

116

Volume II: Optimizing Applications

2. Setting a very small value for interval may cause the instrumented
application to spend nearly all of its time dumping profile information. Be
sure to set interval to a large enough value so that the application can
perform actual work and substantial profile information is collected.

Recommended usage

This function may be called at the start of a non-terminating user application, to
initiate Interval Profile Dumping. Note that an alternative method of initiating
Interval Profile Dumping is by setting the environment variable,

PROF_DUVP_| NTERVAL, to the desired interval value prior to starting the
application.

The intention of Interval Profile Dumping is to allow a non-terminating application
to be profiled with minimal changes to the application source code.

HLO Overview

High-level optimizations exploit the properties of source code constructs (for
example, loops and arrays) in the applications developed in high-level
programming languages, such as Fortran and C++. The high-level optimizations
include loop interchange, loop fusion, loop unrolling, loop distribution, unroll-and-
jam, blocking, data prefetch, scalar replacement, data layout optimizations and
loop unrolling techniques.

The option that turns on the high-level optimizations is - 3. The scope of
optimizations turned on by - O3 is different for IA-32 and Itanium®-based
applications. See Setting Optimization Levels.

|A-32 and Itanium®-based Applications

The - A3 option enables -O2 option and adds more aggressive optimizations; for
example, loop transformation and prefetching. - O3 optimizes for maximum
speed, but may not improve performance for some programs.

|A-32 Applications

In conjunction with the vectorization options, - ax{ K| W N| B| P} and -

x{ K| W N B| P}, the - 3 option causes the compiler to perform more aggressive
data dependency analysis than for default - Q2. This may result in longer
compilation times.

Itanium-based Applications

117

Intel(R) Fortran User's Guide Vol lI

The -i vdep_par al | el option asserts there is no loop-carried dependency in
the loop where | VDEP directive is specified. This is useful for sparse matrix
applications.

Loop Transformations

The loop transformation techniques include:

+ loop normalization

+ loop reversal

« loop interchange and permutation
« loop skewing

+ loop distribution

+ loop fusion

+ scalar replacement

The loop transformations listed above are supported by data dependence. The
loop transformation techniques also include:

« induction variable elimination
« constant propagation

« Copy propagation

- forward substitution

- and dead code elimination.

In addition to the loop transformations listed for both IA-32 and Itanium®
architectures above, the Itanium architecture enables implementation of the
collapsing techniques.

Scalar Replacement (IA-32 Only)

The goal of scalar replacement is to reduce memory references. This is done
mainly by replacing array references with register references.

While the compiler replaces some array references with register references when
- Ol or - @2 is specified, more aggressive replacement is performed when - G3 (-
scal ar _r ep) is specified. For example, with - O3 the compiler attempts
replacement when there are loop-carried dependences or when data-
dependence analysis is required for memory disambiguation.

-scal ar_rep[-] Enables (default) or disables scalar
replacement performed during loop

118

Volume II: Optimizing Applications

transformations (requires - O3).

Loop Unrolling with -unroll[n]

The - unr ol | [n] option is used in the following way:

« -unrol | nspecifies the maximum number of times you want to unroll a
loop. The following example unrolls a loop at most four times:

ifort -unroll4 a.f

To disable loop unrolling, specify n as 0. The following example disables loop
unrolling:

ifort -unroll 0 a.f

« -unroll (n omitted) lets the compiler decide whether to perform unrolling
or not. This is the default; the compiler uses default heuristics or defines n.
« -unroll 0 (n=0)disables unroller.

Itanium® compiler currently uses only n = 0; any other value is NOP.

Benefits and Limitations of Loop Unrolling

The benefits are:

« Unrolling eliminates branches and some of the code.

« Unrolling enables you to aggressively schedule (or pipeline) the loop to
hide latencies if you have enough free registers to keep variables live.

« The Intel® Pentium® 4 or Intel® Xeon(TM) processors can correctly
predict the exit branch for an inner loop that has 16 or fewer iterations, if
that number of iterations is predictable and there are no conditional
branches in the loop. Therefore, if the loop body size is not excessive, and
the probable number of iterations is known, unroll inner loops for:

- Pentium 4 or Intel Xeon processor, until they have a maximum of 16
iterations
- Pentium 11l or Pentium Il processors, until they have a maximum of 4
iterations

The potential cost: excessive unrolling, or unrolling of very large loops can lead
to increased code size.

119

Intel(R) Fortran User's Guide Vol lI

For more information on how to optimize with - unr ol | [n] , refer to Intel®
Pentium® 4 and Intel® Xeon(TM) Processor Optimization Reference Manual.

Absence of Loop-carried Memory

Dependency with IVDEP Directive

For Itanium®-based applications, the - i vdep_par al | el option indicates there
is absolutely no loop-carried memory dependency in the loop where | VDEP
directive is specified. This technique is useful for some sparse matrix
applications.

For example, the following loop requires - i vdep_par al | el in addition to the
directive | VDEP to ensure there is no loop-carried dependency for the store into

a().

! DI R$ | VDEP

do j=1,n

a(b(j)) = a(b(j))+1
enddo

See | VDEP directive for Vectorization Support.

Prefetching

The goal of - pr ef et ch insertion is to reduce cache misses by providing hints to
the processor about when data should be loaded into the cache. The prefetching
optimizations implement the following options:

-prefetch[-] Enable or disable (- pr ef et ch-)
prefetch insertion. This option
requires that - O3 be specified. The
default with - 3 is - pr ef et ch.

To facilitate compiler optimization:
« Minimize use of global variables and pointers.
« Minimize use of complex control flow.
« Choose data types carefully and avoid type casting.

For more information on how to optimize with - pr ef et ch[-], refer to Intel®
Pentium® 4 and Intel® Xeon(TM) Processor Optimization Reference Manual.

120

Volume II: Optimizing Applications

In addition to the - pr ef et ch option, an intrinsic subroutine, MM PREFETCH, is
also available. This intrinsic subroutine prefetches data from the specified
address on one memory cache line. For details, refer to the Intel® Fortran
Language Reference.

Parallel Programming with Intel®

Fortran

Parallelism: an Overview

This section discusses the three major features of parallel programming
supported by the Intel® Fortran compiler: OpenMP*, Auto-parallelization, and
Auto-vectorization. Each of these features contributes to the application
performance depending on the number of processors, target architecture (IA-32
or Itanium® architecture), and the nature of the application. The three features
OpenMP, Auto-parallelization and Auto-vectorization, can be combined arbitrarily
to contribute to the application performance.

Parallel programming can be explicit , that is, defined by a programmer using
OpenMP directives. Parallel programming can be implicit , that is, detected
automatically by the compiler. Implicit parallelism implements Auto-parallelization
of outer-most loops and Auto-vectorization of innermost loops.

Parallelism defined with OpenMP and Auto-parallelization directives is based on
thread-level parallelism (TLP). Parallelism defined with Auto-vectorization
techniques is based on instruction-level parallelism (ILP).

The Intel Fortran compiler supports OpenMP and Auto-parallelization on both IA-
32 and Itanium architectures for multiprocessor systems as well as on single 1A-
32 processors with Hyper-Threading Technology (for Hyper-Threading
Technology, refer to the IA-32 Intel® Architecture Optimization Reference
Manual). Auto-vectorization is supported on the families of the Pentium®,
Pentium with MMX(TM) technology, Pentium II, Pentium Ill, and Pentium 4
processors. To enhance the compilation of the code with Auto-vectorization, the
users can also add vectorizer directives to their program. A closely related
technique that is available on the Itanium-based systems is software pipelining
(SWP).

The table below summarizes the different ways in which parallelism can be
exploited with the Intel Fortran compiler.

Parallelism

121

Intel(R) Fortran User's Guide Vol lI

Explicit Implicit
Parallelism programmed | Parallelism generated by compiler and by user-
by the user supplied hints
OpenMP* (TLP) Auto-parallelization Auto-vectorization
(TLP) (ILP)
IA-32 and Itanium of outer-most loops of inner-most loops

architectures
IA-32 and Itanium IA-32 only
architectures
Software pipelining

for Itanium
architecture
Supported on Supported on
IA-32 or Itanium-based Multiprocessor systems; Pentium®, Pentium
with MMX™
IA-32 Hyper-Threading Technology-enabled Technology, Pentium
systems. [I, Pentium Ill, and

Pentium 4 processors

Parallel Program Development

The Intel Fortran Compiler supports the OpenMP Fortran version 2.0 API
specification available from the www.openmp.org web site. The OpenMP
directives relieve the user from having to deal with the low-level details of
iteration space partitioning, data sharing, and thread scheduling and
synchronization.

The Auto-parallelization feature of the Intel Fortran Compiler automatically
translates serial portions of the input program into semantically equivalent
multithreaded code. Automatic parallelization determines the loops that are good
worksharing candidates, performs the dataflow analysis to verify correct parallel
execution, and partitions the data for threaded code generation as is needed in
programming with OpenMP directives. The OpenMP and Auto-parallelization
applications provide the performance gains from shared memory on
multiprocessor systems and IA-32 processors with the Hyper-Threading
Technology.

Auto-vectorization detects low-level operations in the program that can be done
in parallel, and then converts the sequential program to process 2, 4, 8 or up to
16 elements in one operation, depending on the data type. In some cases auto-
parallelization and vectorization can be combined for better performance results.
For example, in the code below, TLP can be exploited in the outermost loop,
while ILP can be exploited in the innermost loop.

122

Volume II: Optimizing Applications

DOl =1, 100 I execute groups of
iterations in different
I threads (TLP)
DOJ =1, 32 I execute in SIMD style with
mul ti medi a
I extension (ILP)
A(J, 1) = A(J, 1) +1
ENDDO
ENDDO

Auto-vectorization can help improve performance of an application that runs on
the systems based on Pentium®, Pentium with MMX(TM) technology, Pentium
11, Pentium Ill, and Pentium 4 processors.

The following table lists the options that enable Auto-vectorization, Auto-
parallelization, and OpenMP support.

Auto-vectorization, 1A-32 only

-x{K| WN B| P} Generates specialized code to run exclusively
on processors with the extensions specified by
{ KW N[B[P}.

-ax{ K| WN| Bl P} Generates, in a single binary, code specialized

to the extensions specified by { K| W N| B| P}
and also generic IA-32 code. The generic
code is usually slower.

- Controls the diagnostic messages from the
vec_report{0]| 1| 2| 3| 4] 5} \vectorizer, see subsection that follows the

table.
Auto-parallelization, 1A-32 and Itanium architectures
-parall el Enables the auto-parallelizer to generate

multithreaded code for loops that can be
safely executed in parallel. Default: OFF.

- par _t hr eshol d{ n} Sets a threshold for the auto-parallelization of
loops based on the probability of profitable
execution of the loop in parallel, n=0 to 100.
n=0 implies "always." Default: n=100.

- par _report{0] 1| 2| 3} Controls the auto-parallelizer's diagnostic
levels.

Default: - par _report1.

OpenMP, 1A-32 and Itanium architectures

- opennp Enables the parallelizer to generate
multithreaded code based on the OpenMP
directives. Default: OFF.
-opennp_report{0] 1] 2} [Controls the OpenMP parallelizer's diagnostic
levels. Default: / Qopennp_report 1.

- opennp_st ubs Enables compilation of OpenMP programs in

123

Intel(R) Fortran User's Guide Vol lI

sequential mode. The OpenMP directives are
ignored and a stub OpenMP library is linked.
Default: OFF.

Note

When both - opennp and - par al | el are specified on the command line,
the - par al | el option is only honored in routines that do not contain
OpenMP Directives. For routines that contain OpenMP directives, only the
- opennp option is honored.

With the right choice of options, the programmers can:

+ increase the performance of your application with minimum effort
« use compiler features to develop multithreaded programs faster

With a relatively small effort of adding the OpenMP directives to their code, the
programmers can transform a sequential program into a parallel program. The
following are examples of the OpenMP directives within the code:

| OMP$ PARALLEL PRI VATE(NUM), SHARED (X, A B, C
I Defines a parallel region
OWS$ PARALLEL DO ! Specifies a parallel region that
I inplicitly contains a single DO directive
DO I =1, 1000
NUM = FOOQ(B(i), C(1))
X(1') = BAR(A(l), NUM
I Assunme FQOO and BAR have no side effects
ENDDO

See examples of the Auto-parallelization and Auto-vectorization directives in the
respective sections.

Auto-vectorization (IA-32 Only)

Vectorization Overview

The vectorizer is a component of the Intel® Fortran Compiler that automatically
uses SIMD instructions in the MMX(TM), SSE, and SSE2 instruction sets. The
vectorizer detects operations in the program that can be done in parallel, and
then converts the sequential operations like one SIMD instruction that processes
2,4, 8 or up to 16 elements in parallel, depending on the data type.

124

Volume II: Optimizing Applications

This section provides options description, guidelines, and examples for Intel
Fortran Compiler vectorization implemented by IA-32 compiler only. For
additional information, see Publications on Compiler Optimizations.

The following list summarizes this section contents.

Descriptions of compiler options to control vectorization
Vectorization Key Programming Guidelines
Discussion and general guidelines on vectorization levels:

—automatic vectorization

—vectorization with user intervention

Examples demonstrating typical vectorization issues and resolutions

The Intel compiler supports a variety of directives that can help the compiler to
generate effective vector instructions. See compiler directives supporting
vectorization.

Vectorizer Options

Vectorization is an I1A-32-specific feature and can be summarized by the
command line options described in the following tables. Vectorization depends
upon the compiler's ability to disambiguate memory references. Certain options
may enable the compiler to do better vectorization. These options can enable
other optimizations in addition to vectorization. When an - x{ K| W N| B| P} or
-ax{ K| WN] B| P} is used and - @2 (which is ON by default) is also in effect, the
vectorizer is enabled. The - x{ K| W N| B| P} or - ax{ K| W N| B| P} options
enable vectorizer with - Ol and - O3 options also.

-x{ K| WN| B| P} Generate specialized code to run
exclusively on the processors
supporting the extensions indicated by
{K| W N| B| P}. See Processor-specific
Optimization (IA-32 only) for details.

- ax{ K| W N| B[P} Generates, in a single binary, code
specialized to the extensions specified
by { K| W N| B| P} and also generic IA-
32 code. The generic code is usually
slower. See Automatic Processor-
specific Optimization (IA-32 only) for

details.
-vec_report Controls the diagnostic messages from
{0 1] 2| 3] 4] 5} the vectorizer, see subsection that

125

Intel(R) Fortran User's Guide Vol lI

Default: follows the table.
-vec_reportl

Vectorization Reports

The -vec_report{0]| 1| 2| 3| 4| 5} options directs the compiler to generate the
vectorization reports with different level of information as follows:

-vec_report 0: no diagnostic information is displayed

-vec_report 1: display diagnostics indicating loops successfully vectorized
(default)

-vec_report 2: same as -vec_report 1, plus diagnostics indicating loops not
successfully vectorized

-vec_report 3:same as - vec_r eport 2, plus additional information about any
proven or assumed dependences

-vec_report 4: indicate non-vectorized loops

-vec_report 5:indicate non-vectorized loops and the reason why they were not
vectorized.

Usage with Other Options

The vectorization reports are generated in the final compilation phase when
executable is generated. Therefore if you use the - ¢ option and a -
vec_report{n} option in the command line, no report will be generated.

If you use - ¢, -i po and -x{K| WN| B| P} or-ax{K| W N| B|] P} and -
vec_report{n}, the compiler issues a warning and no report is generated.

To produce a report when using the above mentioned options, you need to add
the - i po_obj option. The combination of - ¢ and - i po_obj produces a single
file compilation, and hence does generate object code, and eventually a report is
generated.

The following commands generate vectorization report:

ifort -x{K|WN| Bl P} -vec report3 file.f

ifort -x{K|WN B|P} -ipo -ipo_obj -vec report3 file.f

ifort -c -x{KfWN| B|P} -ipo -ipo_obj -vec report3 file.f

126

Volume II: Optimizing Applications

Loop Parallelization and Vectorization

Combining the - par al | el and - x{ K| W N| B| P} options instructs the compiler
to attempt both automatic loop parallelization and automatic loop vectorization in
the same compilation. In most cases, the compiler will consider outermost loops
for parallelization and innermost loops for vectorization. If deemed profitable,
however, the compiler may even apply loop parallelization and vectorization to
the same loop. See Guidelines for Effective Auto-parallelization Usage and
Vectorization Key Programming Guidelines.

Note that in some rare cases successful loop parallelization (either automatically
or by means of OpenMP* directives) may affect the messages reported by the
compiler for a non-vectorizable loop in a non-intuitive way.

Vectorization Key Programming

Guidelines

The goal of vectorizing compilers is to exploit single-instruction multiple data
(SIMD) processing automatically. Users can help however by supplying the
compiler with additional information; for example, directives. Review these
guidelines and restrictions, see code examples in further topics, and check them
against your code to eliminate ambiguities that prevent the compiler from
achieving optimal vectorization.

Guidelines

You will often need to make some changes to your loops.
For loop bodies -
Use:

- Straight-line code (a single basic block)

« Vector data only; that is, arrays and invariant expressions on the right
hand side of assignments. Array references can appear on the left hand
side of assignments.

« Only assignment statements

Avoid :

« Function calls
« Unvectorizable operations (other than mathematical)

127

Intel(R) Fortran User's Guide Vol lI

« Mixing vectorizable types in the same loop

- Data-dependent loop exit conditions

« Loop unrolling (compiler does it)

« Decomposing one loop with several statements in the body into several
single-statement loops.

Restrictions

Vectorization depends on the two major factors:

« Hardware. The compiler is limited by restrictions imposed by the
underlying hardware. In the case of Streaming SIMD Extensions, the
vector memory operations are limited to st ri de- 1 accesses with a
preference to 16-byte-aligned memory references. This means that if the
compiler abstractly recognizes a loop as vectorizable, it still might not
vectorize it for a distinct target architecture.

« Style. The style in which you write source code can inhibit optimization.
For example, a common problem with global pointers is that they often
prevent the compiler from being able to prove that two memory references
refer to distinct locations. Consequently, this prevents certain reordering
transformations.

Many stylistic issues that prevent automatic vectorization by compilers are found
in loop structures. The ambiguity arises from the complexity of the keywords,
operators, data references, and memory operations within the loop bodies.

However, by understanding these limitations and by knowing how to interpret
diagnostic messages, you can modify your program to overcome the known
limitations and enable effective vectorization. The following sections summarize
the capabilities and restrictions of the vectorizer with respect to loop structures.

Data Dependence

Data dependence relations represent the required ordering constraints on the
operations in serial loops. Because vectorization rearranges the order in which
operations are executed, any auto-vectorizer must have at its disposal some
form of data dependence analysis.

An example where data dependencies prohibit vectorization is shown below. In
this example, the value of each element of an array is dependent on the value of
its neighbor that was computed in the previous iteration.

Data-dependent Loop

REAL DATA(O: N)

128

Volume II: Optimizing Applications

| NTEGER |
DO =1, N1

DATA(1) =DATA(I-1)*0. 25+DATA(1)*0. 5+DATA(I +1) *0. 25
END DO

The loop in the above example is not vectorizable because the WRI TE to the
current element DATA(|) is dependent on the use of the preceding element
DATA(| - 1) , which has already been written to and changed in the previous
iteration. To see this, look at the access patterns of the array for the first two
iterations as shown below.

Data Dependence Vectorization
Patterns

=1. READ DATA (0)
READ DATA (1)
READ DATA (2)

WRI TE DATA (1)

| =2: READ DATA(1)
READ DATA (2)
READ DATA (3)

WRI TE DATA (2)

In the normal sequential version of this loop, the value of DATA(1) read from
during the second iteration was written to in the first iteration. For vectorization, it
must be possible to do the iterations in parallel, without changing the semantics
of the original loop.

Data Dependence Analysis

Data dependence analysis involves finding the conditions under which two
memory accesses may overlap. Given two references in a program, the
conditions are defined by:

- whether the referenced variables may be aliases for the same (or
overlapping) regions in memory, and, for array references
+ the relationship between the subscripts

For 1A-32, data dependence analyzer for array references is organized as a
series of tests, which progressively increase in power as well as in time and
space costs. First, a number of simple tests are performed in a dimension-by-
dimension manner, since independence in any dimension will exclude any
dependence relationship. Multidimensional arrays references that may cross their
declared dimension boundaries can be converted to their linearized form before
the tests are applied. Some of the simple tests that can be used are the fast
greatest common divisor (GCD) test and the extended bounds test. The GCD
test proves independence if the GCD of the coefficients of loop indices cannot

129

Intel(R) Fortran User's Guide Vol lI

evenly divide the constant term. The extended bounds test checks for potential
overlap of the extreme values in subscript expressions. If all simple tests fail to
prove independence, we eventually resort to a powerful hierarchical dependence
solver that uses Fourier-Motzkin elimination to solve the data dependence
problem in all dimensions. For more details of data dependence theory and data
dependence analysis, refer to the Publications on Compiler Optimizations.

Loop Constructs

Loops can be formed with the usual DO- ENDDOand DO WHI LE, or by using a
GOTOand a label. However, the loops must have a single entry and a single exit
to be vectorized. Following are the examples of correct and incorrect usages of
loop constructs.

Correct Usage

SUBROUTI NE FOO (A, B, O
DI MENSI ON A(100) , B(100) ,
C(100)

| NTEGER |

| =1

DO WH LE (I .LE. 100)
ACl) = B(1) * C(1)

IF (A1) .LT. 0.0) A(l) =
0.0

I =1 + 1
ENDDO
RETURN
END

Incorrect Usage

SUBROUTI NE FOO (A, B, O
DI MENSI ON A(100), B(100),
C(100)

| NTEGER |

| =1

DO WH LE (I .LE. 100)
ACl) = B(1) * (1)

C The next statenent
allows early

Cexit fromthe | oop and
prevents

C vectorization of the

| oop.

IF (A(l) .LT. 0.0) GOro 10
I =1 + 1

ENDDO

10 CONTI NUE

RETURN

130

Volume II: Optimizing Applications

| END |

Loop Exit Conditions

Loop exit conditions determine the number of iterations that a loop executes. For
example, fixed indexes for loops determine the iterations. The loop iterations
must be countable; that is, the number of iterations must be expressed as one of
the following:

- aconstant
« aloop invariant term
« alinear function of outermost loop indices

Loops whose exit depends on computation are not countable. Examples below
show countable and non-countable loop constructs.

Correct Usage for Countable Loop,
Example 1

SUBROUTI NE FOO (A, B, C, N, LB)
DI MENSI ON A(N), B(N), C(N)

| NTEGER N, LB, |, COUNT

I Number of iterations is "N - LB
+ 1"

COUNT = N

DO VHI LE(CClJNT GE. LB)

A(l) =B(1) * C(l)

COUNT = COUNT -

I =1 + 1

ENDDO ! LB is not defined within
| oop

RETURN

END

Correct Usage for Countable Loop,

Example 2

I' Nunber of iterations is (N M2)
/2

SUBROUTINE FOO (A, B, C, M N, LB)
DI MENSI ON A(N), B(N) C(N

INTEGER |, L, M

I = 1,

ﬁ(l)
| =1 +
ENDDO
RETURN
END

M N
B(1) * 1)
1

131

Intel(R) Fortran User's Guide Vol lI

Incorrect Usage for Non-countable Loop

I Nunber of iterations is
dependent on A(l)
SUBRQUTI NE FOO (A, B, O
DI MENSI ON A(100), B(100), C(100)
| NTEGER |

| =1

DO VHI LE (A(l) .GI. 0.0)
ACl) =B(1) * 1)

Il =1 + 1

ENDDO

RETURN

END

Types of Loop Vectorized

For integer loops, the 64-bit MMX(TM) technology and 128-bit Streaming SIMD
Extensions (SSE) provide SIMD instructions for most arithmetic and logical
operators on 32-bit, 16-bit, and 8-bit integer data types. Vectorization may
proceed if the final precision of integer wrap-around arithmetic will be preserved.
A 32-bit shift-right operator, for instance, is not vectorized in 16-bit mode if the
final stored value is a 16-bit integer. Because the MMX(TM) and SSE instruction
sets are not fully orthogonal (shifts on byte operands, for instance, are not
supported), not all integer operations can actually be vectorized.

For loops that operate on 32-bit single-precision and 64-bit double-precision
floating-point numbers, SSE provides SIMD instructions for the arithmetic
operators '+, -, "', and '/'. In addition, SSE provides SIMD instructions for the
binary M N and MAX and unary SQRT operators. SIMD versions of several other
mathematical operators (like the trigonometric functions SI N, CCS, TAN) are
supported in software in a vector mathematical run-time library that is provided
with the Intel® Fortran Compiler, of which the compiler takes advantage.

Strip-mining and Cleanup

Strip-mining, also known as loop sectioning, is a loop transformation technique
for enabling SIMD-encodings of loops, as well as providing a means of improving
memory performance. By fragmenting a large loop into smaller segments or
strips, this technique transforms the loop structure in two ways:

- Itincreases the temporal and spatial locality in the data cache if the data
are reusable in different passes of an algorithm.

« It reduces the number of iterations of the loop by a factor of the length of
each "vector," or number of operations being performed per SIMD
operation. In the case of Streaming SIMD Extensions, this vector or strip-

Volume II: Optimizing Applications

length is reduced by 4 times: four floating-point data items per single
Streaming SIMD Extensions single-precision floating-point SIMD operation
are processed.

First introduced for vectorizers, this technique consists of the generation of code
when each vector operation is done for a size less than or equal to the maximum
vector length on a given vector machine.

The compiler automatically strip-mines your loop and generates a cleanup loop.

Stripmining and Cleanup Loops

Bef ore Vectorization

i =1

do while (i<=n)

a(i) =Db(i) + c(i) ! Oiginal |oop
code

i =i +1

end do

After Vectorization

I The vectorizer generates the
followi ng two | oops

i =1

do while (i < (n - nod(n,4)))
I Vector strip-mned | oop.
a(i:i+3) = b(i:i+3) + c(i:i+3)

i =i + 4

end do

do while (i <= n)

a(i) =b(i) + c(i) I Scal ar
cl ean-up | oop

i =i +

end do

Loop Blocking

It is possible to treat loop blocking as strip-mining in two or more dimensions.
Loop blocking is a useful technique for memory performance optimization. The
main purpose of loop blocking is to eliminate as many cache misses as possible.
This technique transforms the memory domain into smaller chunks rather than
sequentially traversing through the entire memory domain. Each chunk should be
small enough to fit all the data for a given computation into the cache, thereby
maximizing data reuse.

133

Intel(R) Fortran User's Guide Vol lI

Consider the following example. The two-dimensional array A is referenced in the
j (column) direction and then in the i (row) direction (column-major order); array
B is referenced in the opposite manner (row-major order). Assume the memory
layout is in column-major order; therefore, the access strides of array A and B for
the code would be 1 and MAX, respectively.

In the B. example: BS = block_size; MAX must be evenly divisible by BS.

Loop Blocking of Arrays

A. Oiginal |oop

REAL A(MAX, MAX), B(MAX, MAX)
DO | =1, MAX
DOJ = 1, MAX
ACl,Jd) = A(1,J) + B(J,1)

B. Transforned Loop after bl ocking

REAL A(MAX, MAX), B(MAX, MAX)
DO | =1, MAX, BS
DO J
DO

=1, MAX, BS
Il =1, |+MAX, BS-1
DO J = J, J+MAX, BS-1
ACLT,33) = A(IL,Jd) +
B(JJ, 1)
ENDDO
ENDDO
ENDDO
ENDDO

Statements in the Loop Body

The vectorizable operations are different for floating point and integer data.

Floating-point Array Operations

The statements within the loop body may be REAL operations (typically on
arrays). Arithmetic operations supported are addition, subtraction, multiplication,
division, negation, square root, MAX, M N, and mathematical functions such as
SI Nand CGCS. Note that conversion to/from some types of floats is not valid.
Operation on DOUBLE PRECI SI ONtypes is not valid, unless optimizing for an
Intel®

134

Volume II: Optimizing Applications

Pentium® 4 and Intel® Xeon(TM) processors' system, and Intel® Pentium® M
processor, using the - xXWor - axWcompiler option.

Integer Array Operations

The statements within the loop body may be arithmetic or logical operations
(again, typically for arrays). Arithmetic operations are limited to such operations
as addition, subtraction, ABS, M N, and MAX. Logical operations include bitwise
AND, OR and XOR operators. You can mix data types only if the conversion can be
done without a loss of precision. Some example operators where you can mix
data types are multiplication, shift, or unary operators.

Other Operations

No statements other than the preceding floating-point and integer operations are
permitted. The loop body cannot contain any function calls other than the ones
described above.

Vectorization Examples

This section contains simple examples of some common issues in vector
programming.

Argument Aliasing: A Vector Copy

The loop in the example of a vector copy operation does not vectorize because
the compiler cannot prove that DEST(A(1)) and DEST(B(1)) are distinct.

Unvectorizable Copy Due to
Unproven Distinction

SUBROUTI NE
VEC COPY(DEST, A, B, LEN)
DI MENSI ON DEST(*)

| NTEGER A(*), B(*)

| NTEGER LEN, |

DO | =1, LEN

DEST(A(1)) = DEST(B(1))
END DO

RETURN

END

Data Alignment

135

Intel(R) Fortran User's Guide Vol lI

A 16-byte or greater data structure or array should be aligned so that the
beginning of each structure or array element is aligned in a way that its base
address is a multiple of 16.

The Misaligned Data Crossing 16-Byte Boundary figure shows the effect of a
data cache unit (DCU) split due to misaligned data. The code loads the
misaligned data across a 16-byte boundary, which results in an additional
memory access causing a six- to twelve-cycle stall. You can avoid the stalls if
you know that the data is aligned and you specify to assume alignment

Misaligned Data Crossing 16-Byte

Boundary
16 Byte 16 Byte
L Boundaries + Boundaries 1

I:I:—:I:I

Misaligned Data

After vectorization, the loop is executed as shown in figure below.

Vector and Scalar Clean-up Iterations

2 vactor iterations 2 clean-up iterations
in scalar moda
il i -l -
i=1,2,3.4 i=56,7.8 j=g9 10

Both the vector iterations A(1: 4) = B(1:4);and A(5:8) = B(5:8);canbe
implemented with aligned moves if both the elements A(1) and B(1) are 16-
byte aligned.

.&Caution

If you specify the vectorizer with incorrect alignment options, the compiler
will generate code with unexpected behavior. Specifically, using aligned
moves on unaligned data, will result in an illegal instruction exception!

Alignment Strategy

The compiler has at its disposal several alignment strategies in case the
alignment of data structures is not known at compile-time. A simple example is
shown below (several other strategies are supported as well). If in the loop
shown below the alignment of A is unknown, the compiler will generate a prelude
loop that iterates until the array reference, that occurs the most, hits an aligned
address. This makes the alignment properties of A known, and the vector loop is

136

Volume II: Optimizing Applications

optimized accordingly. In this case, the vectorizer applies dynamic loop peeling,
a specific Intel® Fortran feature.

Data Alignment Example

Original loop:

SUBROUTI NE DO T(A)

REAL A(100) I alignnent of argunent
A i s unknown

DO | 1, 100

A(l) A(l) + 1.0

ENDDO

END SUBROUTI NE

Aligning Data

I The vectorizer will apply dynam c | oop
peeling as foll ows:
SUBROUTI NE DA T(A)

REAL A(100)
I let P be (A%6)where A is address of
A(1)
IF (P .NE. 0) THEN
P=1(16 - P) /4 I determ ne run-tine
peel i ng
I factor
DOl =1, P
A(l) = A(l) + 1.0
ENDDO
ENDI F
I Now this loop starts at a 16-byte
boundary,
I and will be vectorized accordingly
DOI =P + 1, 100
A(l) = A(l) + 1.0
ENDDO

END SUBROUTI NE

Loop Interchange and Subscripts:

Matrix Multiply

Matrix multiplication is commonly written as shown in the following example.

137

Intel(R) Fortran User's Guide Vol lI

c1,3) =Cl1,3) +
A(l, K) *B(K, J)
END DO

END DO

END DO

The use of B(K, J), isnotastri de- 1 reference and therefore will not normally
be vectorizable. If the loops are interchanged, however, all the references will
become stri de- 1 as in the Matrix Multiplication with Stride-1 example that
follows.

Fl Note
Interchanging is not always possible because of dependencies, which can
lead to different results.

Matrix Mul

—*

iplication with Stride-1

For additional information, see Publications on Compiler Optimizations.

Auto-parallelization Overview

The auto-parallelization feature of the Intel® Fortran Compiler automatically
translates serial portions of the input program into equivalent multithreaded code.
The auto-parallelizer analyzes the dataflow of the program’s loops and generates
multithreaded code for those loops which can be safely and efficiently executed
in parallel. This enables the potential exploitation of the parallel architecture
found in symmetric multiprocessor (SMP) systems.

Automatic parallelization relieves the user from:

« having to deal with the details of finding loops that are good worksharing
candidates

- performing the dataflow analysis to verify correct parallel execution

+ partitioning the data for threaded code generation as is needed in
programming with OpenMP* directives.

138

Volume II: Optimizing Applications

The parallel run-time support provides the same run-time features as found in
OpenMP, such as handling the details of loop iteration modification, thread
scheduling, and synchronization.

While OpenMP directives enable serial applications to transform into parallel
applications quickly, the programmer must explicitly identify specific portions of
the application code that contain parallelism and add the appropriate compiler
directives. Auto-parallelization triggered by the - par al | el option automatically
identifies those loop structures, which contain parallelism. During compilation, the
compiler automatically attempts to decompose the code sequences into separate
threads for parallel processing. No other effort by the programmer is needed.

The following example illustrates how a loop’s iteration space can be divided so
that it can be executed concurrently on two threads:

Original Serial Code

do i =1, 100
a(i) = a(i) + b(i) * c(i)

enddo

Transformed Parallel Code

Thread 1

do i=1,50

a(i) =a(i) + b(i) * c(i)
enddo

Thread 2

do i =51, 100

a(i) =a(i) + b(i) * c(i)
enddo

Programming with Auto-

parallelization

Auto-parallelization feature implements some concepts of OpenMP, such as
worksharing construct (with the PARALLEL DOdirective). See Programming with
OpenMP for worksharing construct. This section provides specifics of auto-
parallelization.

Guidelines for Effective Auto-parallelization
Usage

139

Intel(R) Fortran User's Guide Vol lI

A loop is parallelizable if:

« The loop is countable at compile time: this means that an expression
representing how many times the loop will execute (also called "the loop
trip count”) can be generated just before entering the loop.

+ There are no FLOW(READ after WRI TE), OQUTPUT (WRI TE after WRI TE) or
ANTI (WRI TE after READ) loop-carried data dependences. A loop-carried
data dependence occurs when the same memory location is referenced in
different iterations of the loop. At the compiler's discretion, a loop may be
parallelized if any assumed inhibiting loop-carried dependencies can be
resolved by run-time dependency testing.

The compiler may generate a run-time test for the profitability of executing in
parallel for loop with loop parameters that are not compile-time constants.

Coding Guidelines

Enhance the power and effectiveness of the auto-parallelizer by following these
coding guidelines:

- Expose the trip count of loops whenever possible; specifically use constants
where the trip count is known and save loop parameters in local variables.

« Avoid placing structures inside loop bodies that the compiler may assume to
carry dependent data, for example, procedure calls, ambiguous indirect
references or global references.

« Insertthe ! DEC$ PARALLEL directive to disambiguate assumed data
dependencies.

« Insertthe ! DEC$ NOPARALLEL directive before loops known to have
insufficient work to justify the overhead of sharing among threads.

Auto-parallelization Data Flow

For auto-parallelization processing, the compiler performs the following steps:

Data flow analysis ---> Loop classifica tion ---> Dependence analysis --->
High-level parallelization --> Data partitioning ---> Multi-threaded code
generation .

These steps include:

- Data flow analysis: compute the flow of data through the program

« Loop classification: determine loop candidates for parallelization based on
correctness and efficiency as shown by threshold analysis

+ Dependence analysis: compute the dependence analysis for references in
each loop nest

140

Volume II: Optimizing Applications

» High-level parallelization:

- analyze dependence graph to determine loops which can execute in
parallel.

- compute run-time dependency
- Data partitioning: examine data reference and partition based on the
following types of access: SHARED, PRI VATE, and FI RSTPRI VATE
« Multi-threaded code generation:
- modify loop parameters

- generate entry/exit per threaded task

- generate calls to parallel run-time routines for thread creation and
synchronization

Auto-parallelization: Enabling,

Options, Directives, and Environment
Variables

To enable the auto-parallelizer, use the - par al | el option. The - par al | el
option detects parallel loops capable of being executed safely in parallel and
automatically generates multithreaded code for these loops. An example of the
command using auto-parallelization is as follows:

ifort -c -parallel nyprog.f

Auto-parallelization Options

The - par al | el option enables the auto-parallelizer if the - Q2 (or - C3)
optimization option is also on (the default is - Q2). The - par al | el option detects
parallel loops capable of being executed safely in parallel and automatically
generates multithreaded code for these loops.

-paral | el Enables the auto-parallelizer
- par _t hreshol d{0- | Controls the work threshold
100} needed for auto-parallelization,

see later subsection.

- Controls the diagnostic
par _report{1]| 2| 3} | messages from the auto-

141

Intel(R) Fortran User's Guide Vol lI

parallelizer, see later
subsection.

Auto-parallelization Directives

Auto-parallelization uses two specific directives,
| DEC$ PARALLEL and! DEC$ NOPARALLEL.

Auto-parallelization Directives Format and Syntax
The format of Intel Fortran auto-parallelization compiler directive is:
<prefix> <directive>
where the brackets above mean:
« <xxx>: the prefix and directive are required
For fixed form source input, the prefix is ! DEC$ or CDEC$
For free form source input, the prefix is ! DECS$ only.
The prefix is followed by the directive name; for example:
I DEC$ PARALLEL

Since auto-parallelization directives begin with an exclamation point, the
directives take the form of comments if you omit the - par al | el option.

Examples

The ! DEC$ PARALLEL directive instructs the compiler to ignore dependencies
which it assumes may exist and which would prevent correct parallelization in the
immediately following loop. However, if dependencies are proven, they are not
ignored.

The ! DEC$ NOPARALLEL directive disables auto-parallelization for the
immediately following loop.

program main
par anmet er (n=100)
i nteger x(n),a(n)

| DEC$ NOPARALLEL
do i=1,n

142

Volume II: Optimizing Applications

x(1) =1

enddo

| DEC$ PARALLEL
do i=1,n

a(x(i)) =i
enddo

end

Auto-parallelization Environment Variables

Option Description Default
OVP_NUM _THREADS | Controls the number of Number of processors
threads used. currently installed in

the system while
generating the
executable

OVP_SCHEDULE Specifies the type of run- | static
time scheduling.

Auto-parallelization Threshold

Control and Diagnostics

Threshold Control

The - par _t hr eshol d{ n} option sets a threshold for auto-parallelization of
loops based on the probability of profitable execution of the loop in parallel. The
value of n can be from 0 to 100. The default value is 100. The -

par _t hreshol d{ n} option should be used when the computation work in loops
cannot be determined at compile-time.

The meaning for various values of n is as follows:

« n =100. Parallelization will only proceed when performance gains are
predicted based on the compiler analysis data. This is the default. This
value is used when - par _t hr eshol d{ n} is not specified on the command
line or is used without specifying a value of n.

« n=0,-par_threshol dO is specified. The loops get auto-parallelized
regardless of computation work volume, that is, parallelize always.

« The intermediate 1 to 99 values represent the percentage probability for
profitable speed-up. For example, n=50 would mean: parallelize only if there
is a 50% probability of the code speeding up if executed in parallel.

143

Intel(R) Fortran User's Guide Vol lI

The compiler applies a heuristic that tries to balance the overhead of creating
multiple threads versus the amount of work available to be shared amongst the
threads.

Diagnostics

The - par _report{0]| 1| 2| 3} option controls the auto-parallelizer's diagnostic
levels 0, 1, 2, or 3 as follows:

- par _r epor t 0 = no diagnostic information is displayed.

- par _report 1 =indicates loops successfully auto-parallelized (default). Issues
a"LOOP AUTO PARALLELI ZED' message for parallel loops.

- par _report 2 = indicates successfully auto-parallelized loops as well as
unsuccessful loops.

- par _report 3 =same as 2 plus additional information about any proven or

assumed dependences inhibiting auto-parallelization (reasons for not
parallelizing).

Example of Parallelization Diagnostics Report

Example below shows an output generated by - par _r eport 3 as a result from
the command:

ifort -c -parallel -par_report3 nyprog.f90

where the program nmypr og. f 90 is as follows:

program nmypr og
i nteger a(10000), ¢
C Assuned side effects
do i =1, 10000
a(i) = foo(i)
enddo
C Actual dependence
do i =1, 10000
a(i) =a(i-1) + i
enddo
end

Example of - par _r eport Output

program mypr og

144

Volume II: Optimizing Applications

procedure: myprog

serial loop: line 5: not a parallel candidate
due to statenent at line 6
serial loop: line 9

fl ow data dependence fromline 10 to line
10, due to "a"
12 Lines Conpiled

Troubleshooting Tips

+ Use-par _threshol dO to see if the compiler assumed there was not
enough computational work

+ Use-par _report 3 to view diagnostics

« Use! D R$ PARALLEL directive to eliminate assumed data dependencies

+ Use -1 po to eliminate assumed side-effects done to function calls.

Parallelization with OpenMP*

Overview

The Intel® Fortran Compiler supports the OpenMP* Fortran version 2.0 API
specification, except for the WORKSHARE directive. OpenMP provides symmetric
multiprocessing (SMP) with the following major features:

- Relieves the user from having to deal with the low-level details of iteration
space partitioning, data sharing, and thread scheduling and
synchronization.

« Provides the benefit of the performance available from shared memory,
multiprocessor systems; and, for I1A-32 systems, from Hyper-Threading
Technology-enabled systems (for Hyper-Threading Technology, refer to
the 1A-32 Intel® Architecture Optimization Reference Manual).

The Intel Fortran Compiler performs transformations to generate multithreaded
code based on the user's placement of OpenMP directives in the source program
making it easy to add threading to existing software. The Intel compiler supports
all of the current industry-standard OpenMP directives, except wor kshar e, and
compiles parallel programs annotated with OpenMP directives.

In addition, the Intel Fortran Compiler provides Intel-specific extensions to the
OpenMP Fortran version 2.0 specification including run-time library routines and
environment variables.

See parallelization options summary for all options of the OpenMP feature in the
Intel Fortran Compiler. For complete information on the OpenMP standard, visit

145

Intel(R) Fortran User's Guide Vol lI

the www.openmp.org web site. For complete Fortran language specifications,
see the OpenMP Fortran version 2.0 specifications.

Parallel Processing with OpenMP

To compile with OpenMP, you need to prepare your program by annotating the
code with OpenMP directives in the form of the Fortran program comments. The
Intel Fortran Compiler first processes the application and produces a
multithreaded version of the code which is then compiled. The output is a Fortran
executable with the parallelism implemented by threads that execute parallel
regions or constructs. See Programming with OpenMP.

Performance Analysis

For performance analysis of your program, you can use the VTune(TM) analyzer
and/or the Intel® Threading Tools to show performance information. You can
obtain detailed information about which portions of the code that require the
largest amount of time to execute and where parallel performance problems are
located.

Programming with OpenMP

The Intel® Fortran Compiler accepts a Fortran program containing OpenMP
directives as input and produces a multithreaded version of the code. When the
parallel program begins execution, a single thread exists. This thread is called
the master thread. The master thread will continue to process serially until it
encounters a parallel region.

Parallel Region

A parallel region is a block of code that must be executed by a team of threads in
parallel. In the OpenMP Fortran API, a parallel construct is defined by placing
OpenMP directives par al | el at the beginning and end paral | el atthe end
of the code segment. Code segments thus bounded can be executed in parallel.

A structured block of code is a collection of one or more executable statements
with a single point of entry at the top and a single point of exit at the bottom.

The Intel Fortran Compiler supports worksharing and synchronization constructs.
Each of these constructs consists of one or two specific OpenMP directives and
sometimes the enclosed or following structured block of code. For complete
definitions of constructs, see the OpenMP Fortran version 2.0 specifications.

146

Volume II: Optimizing Applications

At the end of the parallel region, threads wait until all team members have
arrived. The team is logically disbanded (but may be reused in the next parallel
region), and the master thread continues serial execution until it encounters the
next parallel region.

Worksharing Construct

A worksharing construct divides the execution of the enclosed code region
among the members of the team created on entering the enclosing parallel
region. When the master thread enters a parallel region, a team of threads is
formed. Starting from the beginning of the parallel region, code is replicated
(executed by all team members) until a wor kshar i ng construct is encountered.
A worksharing construct divides the execution of the enclosed code among the
members of the team that encounter it.

The OpenMP sect i ons or do constructs are defined as wor kshar i ng
constructs because they distribute the enclosed work among the threads of the
current team. A wor kshar i ng construct is only distributed if it is encountered
during dynamic execution of a parallel region. If the wor kshar i ng construct
occurs lexically inside of the parallel region, then it is always executed by
distributing the work among the team members. If the wor kshar i ng construct is
not lexically (explicitly) enclosed by a parallel region (that is, it is or phaned),
then the wor kshar i ng construct will be distributed among the team members of
the closest dynamically-enclosing parallel region, if one exists. Otherwise, it will
be executed serially.

When a thread reaches the end of a wor kshar i ng construct, it may wait until all
team members within that construct have completed their work. When all of the
work defined by the worksharing construct is finished, the team exits the
worksharing construct and continues executing the code that follows.

A combined parallel/worksharing construct denotes a parallel region that contains
only one wor kshar i ng construct.

Parallel Processing Directive Groups
The parallel processing directives include the following groups:
Parallel Region
« PARALLEL and END PARALLEL
Worksharing Construct

- The DOand END DOdirectives specify parallel execution of loop iterations.

147

Intel(R) Fortran User's Guide Vol lI

« The SECTI ONS and END SECTI ONS directives specify parallel execution for
arbitrary blocks of sequential code. Each SECTI ONis executed once by a
thread in the team.

« The SI NGLE and END SI NGLE directives define a section of code where
exactly one thread is allowed to execute the code; threads not chosen to
execute this section ignore the code.

Combined Parallel/Worksharing Constructs

The combined parallel/worksharing constructs provide an abbreviated way to
specify a parallel region that contains a single worksharing construct. The
combined parallel/worksharing constructs are:

« PARALLEL DOand END PARALLEL DO
« PARALLEL SECTI ONS and END PARALLEL SECTI ONS

Synchronization and MASTER

Synchronization is the interthread communication that ensures the consistency of
shared data and coordinates parallel execution among threads. Shared data is
consistent within a team of threads when all threads obtain the identical value
when the data is accessed. A synchronization construct is used to insure this
consistency of the shared data.

« The OpenMP synchronization directives are CRI Tl CAL, ORDERED, ATOM C,
FLUSH, and BARRI ER.

« Within a parallel region or a wor kshar i ng construct only one
thread at a time is allowed to execute the code within a CRI Tl CAL
construct.

- The ORDERED directive is used in conjunction with a DO or
SECTI ONS construct to impose a serial order on the execution of a
section of code.

« The ATOM Cdirective is used to update a memory location in an
uninterruptable fashion.

« The FLUSH directive is used to insure that all threads in a team
have a consistent view of memory.

+ A BARRI ERdirective forces all team members to gather at a
particular point in code. Each team member that executes a
BARRI ER waits at the BARRI ER until all of the team members have
arrived. A BARRI ER cannot be used within wor kshar i ng or other
synchronization constructs due to the potential for deadlock.

- The MASTER directive is used to force execution by the master thread.

See the list of OpenMP Directives and Clauses.

148

Volume II: Optimizing Applications

Data Sharing

Data sharing is specified at the start of a parallel region or wor kshari ng
construct by using the shar ed and pr i vat e clauses. All variables in the

shar ed clause are shared among the members of a team. It is the application’s
responsibility to:

« synchronize access to these variables. All variables in the pri vat e
clause are private to each team member. For the entire parallel region,
assuming t team members, there are t +1 copies of all the variables in the
pri vat e clause: one global copy that is active outside parallel regions
and a pri vat e copy for each team member.

« initialize pri vat e variables at the start of a parallel region, unless the
firstprivate clause is specified. In this case, the pri vat e copy is
initialized from the global copy at the start of the construct at which the
firstprivat e clause is specified.

« update the global copy of a pri vat e variable at the end of a parallel
region. However, the | ast pri vat e clause of a DOdirective enables
updating the global copy from the team member that executed serially the
last iteration of the loop.

In addition to shar ed and pri vat e variables, individual variables and entire
cormuon blocks can be privatized using the t hr eadpri vat e directive.

Orphaned Directives

OpenMP contains a feature called orphaning which dramatically increases the
expressiveness of parallel directives. Orphaning is a situation when directives
related to a parallel region are not required to occur lexically within a single
program unit. Directives such ascritical ,barrier,sections,single,
mast er, and do, can occur by themselves in a program unit, dynamically
“binding” to the enclosing parallel region at run time.

Orphaned directives enable parallelism to be inserted into existing code with a
minimum of code restructuring. Orphaning can also improve performance by
enabling a single parallel region to bind with multiple do directives located within
called subroutines. Consider the following code segment:

I $onp parall el
cal |l phasel

cal |l phase2

I $onp end parall el

149

Intel(R) Fortran User's Guide Vol lI

subrouti ne phasel

' $onp do private(i)
shar ed(n)

doi =1, n

call sonme_work(i)
end do

' $onmp end do

end

subrouti ne phase2

' $onp do private(j)
shar ed(n)

doj =1, n

call nore_work(j)
end do

I $onmp end do

end

Orphaned Directives Usage Rules

« Anorphaned wor kshar i ng construct (secti on, si ngl e, do) is
executed by a team consisting of one thread, that is, serially.

« Any collective operation (wor kshar i ng construct or bar ri er) executed
inside of a wor kshar i ng construct is illegal.

« lItisillegal to execute a collective operation (wor kshar i ng construct or
bar ri er) from within a synchronization region (cri t i cal /or der ed).

- The opening and closing directives of a directive pair (for example, do -
end do) must occur in a single block of the program.

- Private scoping of a variable can be specified at a wor kshar i ng
construct. Shared scoping must be specified at the parallel region. For
complete details, see the OpenMP Fortran version 2.0 specifications.

Preparing Code for OpenMP Processing

The following are the major stages and steps of preparing your code for using
OpenMP. Typically, the first two stages can be done on uniprocessor or
multiprocessor systems; later stages are typically done only on multiprocessor
systems.

Before Inserting OpenMP Directives

Before inserting any OpenMP parallel directives, verify that your code is safe for
parallel execution by doing the following:

« Place local variables on the stack. This is the default behavior of the Intel
Fortran Compiler when - opennp is used.

150

Volume II: Optimizing Applications

« Use - aut o or similar (- aut o_scal ar) compiler option to make the locals
automatic. This is the default behavior of the Intel Fortran Compiler when
- opennp is used. Avoid using compiler options that inhibit stack allocation
of local variables. By default
(- aut o_scal ar) local scalar variables become shared across threads,
so you may need to add synchronization code to ensure proper access by
threads.

Analyze
The analysis includes the following major actions:

- Profile the program to find out where it spends most of its time. This is the
part of the program that benefits most from parallelization efforts. This
stage can be accomplished using VTune(TM) analyzer or basic PGO
options.

« Wherever the program contains nested loops, choose the outer-most loop,
which has very few cross-iteration dependencies.

Restructure

To restructure your program for successful OpenMP implementation, you can
perform some or all of the following actions:

1. If achosen loop is able to execute iterations in parallel, introduce a
par al | el do construct around this loop.

2. Try to remove any cross-iteration dependencies by rewriting the
algorithm.

3. Synchronize the remaining cross-iteration dependencies by placing
critical constructs around the uses and assignments to variables
involved in the dependencies.

4. List the variables that are present in the loop within appropriate
shared, private,lastprivate,firstprivate,orreduction
clauses.

List the do index of the parallel loop as pri vat e. This step is optional.
common block elements must not be placed on the pri vat e list if their
global scope is to be preserved. The t hr eadpri vat e directive can be
used to privatize to each thread the comon block containing those
variables with global scope. t hr eadpr i vat e creates a copy of the
conmon block for each of the threads in the team.

Any 1/O in the parallel region should be synchronized.

Identify more parallel loops and restructure them.

If possible, merge adjacent par al | el do constructs into a single
parallel region containing multiple do directives to reduce execution
overhead.

o o

© oo N

151

Intel(R) Fortran User's Guide Vol lI

Tune

The tuning process should include minimizing the sequential code in critical
sections and load balancing by using the schedul e clause or the
onp_schedul e environment variable.

Note

This step is typically performed on a multiprocessor system.

Parallel Processing Thread Model

This topic explains the processing of the parallelized program and adds more
definitions of the terms used in the parallel programming.

The Execution Flow

As mentioned in previous topic, a program containing OpenMP Fortran API
compiler directives begins execution as a single process, called the master
thread of execution. The master thread executes sequentially until the first
parallel construct is encountered.

In OpenMP Fortran API, the PARALLEL and END PARALLEL directives define
the parallel construct. When the master thread encounters a parallel construct, it
creates a team of threads, with the master thread becoming the master of the
team. The program statements enclosed by the parallel construct are executed in
parallel by each thread in the team. These statements include routines called
from within the enclosed statements.

The statements enclosed lexically within a construct define the static extent of
the construct. The dynamic extent includes the static extent as well as the
routines called from within the construct. When the END PARALLEL directive is
encountered, the threads in the team synchronize at that point, the team is
dissolved, and only the master thread continues execution. The other threads in
the team enter a wait state.

You can specify any number of parallel constructs in a single program. As a

result, thread teams can be created and dissolved many times during program
execution.

152

Volume II: Optimizing Applications

Using Orphaned Directives

In routines called from within parallel constructs, you can also use directives.
Directives that are not in the lexical extent of the parallel construct, but are in the
dynamic extent, are called orphaned directives. Orphaned directives allow you to
execute major portions of your program in parallel with only minimal changes to
the sequential version of the program. Using this functionality, you can code
parallel constructs at the top levels of your program call tree and use directives to
control execution in any of the called routines. For example:

subroutine F
| SOMP
parallel...
" call G
subroutine G

| SOWP DO. . .

The ! $OMP DOis an orphaned directive because the parallel region it will
execute in is not lexically present in G.

Data Environment Directive

A data environment directive controls the data environment during the execution
of parallel constructs.

You can control the data environment within parallel and worksharing constructs.
Using directives and data environment clauses on directives, you can:

+ Privatize named common blocks by using THREADPRI VATE directive
« Control data scope attributes by using the THREADPRI VATE directive's
clauses.

The data scope attribute clauses are:

COPYI N
DEFAULT

PRI VATE

FI RSTPRI VATE
LASTPRI VATE
REDUCT! ON
SHARED

O OO OO0 Oo0Oo

153

Intel(R) Fortran User's Guide Vol lI

You can use several directive clauses to control the data scope attributes of
variables for the duration of the construct in which you specify them. If you do not
specify a data scope attribute clause on a directive, the default is SHARED for
those variables affected by the directive.

For detailed descriptions of the clauses, see the OpenMP Fortran version 2.0
specifications.

Pseudo Code of the Parallel Processing Model

A sample program using some of the more common OpenMP directives is shown
in the code example that follows. This example also indicates the difference
between serial regions and parallel regions.

program mai n I Begin Serial Execution
. I Only the master thread executes
I $onp parall el I Begin a Parallel Construct,
forma team
I This is Replicated Code where
each team! nenber executes the
sanme code
I $onp sections I Begin a Wbrksharing Construct
I $onp section I One unit of work
!
I $onp section I Anot her unit of work
- !
I $onp end I Wit until both units of work
sections conpl ete
. I More Replicated Code
' $onp do ' Begin a Wbrksharing Construct,
do l each iteration is a unit of work
I Wrk is distributed anong the
t eam
end do !
' $onp end do I End of Worksharing Construct,
nowai t nowait is
I specified
. I More Replicated Code
I $onp end ' End of Parallel Construct,
par al | el di sband team ! and continue with
serial execution
' Possibly nore Parall el

154

Volume II: Optimizing Applications

Constructs
end | End serial execution

Compiling with OpenMP, Directive

Format, and Diagnostics

To run the Intel® Fortran Compiler in OpenMP mode, you need to invoke the
Intel compiler with the
- opennp option:

ifort -opennp input file(s)

Before you run the multithreaded code, you can set the number of desired
threads to the OpenMP environment variable, OVP_NUM THREADS. See the
OpenMP Environment Variables section for further information. The Intel
Extensjon Routines topic describes the OpenMP extensions to the specification
that have been added by Intel in the Intel® Fortran Compiler.

-openmp Option

The - opennp option enables the parallelizer to generate multithreaded code
based on the OpenMP directives. The code can be executed in parallel on both
uniprocessor and multiprocessor systems.

The - opennp option works with both - Q0 (no optimization) and any optimization
level of - O1,

- 2 (default) and - G3. Specifying - Q0 with - opennp helps to debug OpenMP
applications.

When you use the - opennp option, the compiler sets the - aut o option (causes

all variables to be allocated on the stack, rather than in local static storage.) for
the compiler unless you specified it on the command line.

OpenMP Directive Format and Syntax

The OpenMP directives use the following format:
<prefix> <directive> [<clause> [[,] <clause> . . .]]
where the brackets above mean:

« <xxx>: the prefix and directive are required

155

Intel(R) Fortran User's Guide Vol lI

« [<xxx>]: if adirective uses one clause or more, the clause(s) is
required
« [,]: commas between the <cl ause>s are optional.

For fixed form source input, the prefix is ! $onp or c$onp
For free form source input, the prefix is ! $onp only.

The prefix is followed by the directive name; for example:

I $onp parall el

Since OpenMP directives begin with an exclamation point, the directives take the
form of comments if you omit the - opennp option.

Syntax for Parallel Regions in the Source Code

The OpenMP constructs defining a parallel region have one of the following
syntax forms:

I'$onp <directive>
<structured bl ock of code>
'$onp end <directive>

or
I'$onp <directive>
<structured bl ock of code>

or

' $onp <directive>
where <di r ect i ve> is the name of a particular OpenMP directive.

OpenMP Diagnostic Reports

The - opennp_report {0] 1| 2} option controls the OpenMP parallelizer's
diagnostic levels 0, 1, or 2 as follows:

- opennp_r eport 0 = no diagnostic information is displayed.

- opennp_report 1 = display diagnostics indicating loops, regions, and
sections successfully parallelized.

-opennp_report 2 =same as - opennp_r eport 1 plus diagnostics indicating

mast er constructs, si ngl e constructs, cri ti cal constructs, or der ed
constructs, at om c directives, etc. successfully handled.

156

Volume II: Optimizing Applications

The default is - opennp_report 1.

OpenMP Directives and Clauses

Summary

This topic provides a summary of the OpenMP directives and clauses. For
detailed descriptions, see the OpenMP Fortran version 2.0 specifications.

OpenMP Directives

Directive

Description

par al | el
end parall el

Defines a parallel region.

do

Identifies an iterative wor kshar i ng construct in

end do which the iterations of the associated loop should
be executed in parallel.
sections Identifies a non-iterative wor kshar i ng construct

end sections

that specifies a set of structured blocks that are to
be divided among threads in a team.

section Indicates that the associated structured block
should be executed in parallel as part of the
enclosing sections construct.

single Identifies a construct that specifies that the

end single

associated structured block is executed by only
one thread in the team.

paral | el do
end parall el
do

A shortcut for a par al | el region that contains a
single do directive.

f) Note

The paral | el do or do OpenMP directive
must be immediately followed by a do
statement (do- st nt as defined by R818 of
the ANSI Fortran standard). If you place
another statement or an OpenMP directive
between the paral | el do or do directive
and the do statement, the Intel Fortran
Compiler issues a syntax error.

paral | el
sections
end parall el

Provides a shortcut form for specifying a parallel
region containing a single sect i ons construct.

157

Intel(R) Fortran User's Guide Vol lI

secti ons

mast er
end nmster

Identifies a construct that specifies a structured
block that is executed by only the mast er thread
of the team.

critical [l ock]
end
critical [l ock]

Identifies a construct that restricts execution of
the associated structured block to a single thread
at a time. Each thread waits at the beginning of
the critical construct until no other thread is
executing a critical construct with the same | ock
argument.

barrier Synchronizes all the threads in a team. Each
thread waits until all of the other threads in that
team have reached this point.

atom c Ensures that a specific memory location is

updated atomically, rather than exposing it to the
possibility of multiple, simultaneously writing
threads.

fTush [(Tist)]

Specifies a "cross-thread" sequence point at
which the implementation is required to ensure
that all the threads in a team have a consistent
view of certain objects in memory. The optional
| i st argument consists of a comma-separated
list of variables to be flushed.

ordered
end ordered

The structured block following an or der ed
directive is executed in the order in which
iterations would be executed in a sequential loop.

t hreadprivate
(l'ist)

Makes the named comon blocks or variables
private to a thread. The | i st argument consists
of a comma-separated list of conmron blocks or
variables.

OpenMP Clauses

Clause

Description

private (list)

Declares variablesin | i st to be
pri vat e To each thread in a
team.

firstprivate

(list) Same as pri vat e, but the copy
of each variable inthe | i st is
initialized using the value of the
original variable existing before
the construct.

| astprivate (

list) Same as pri vat e, but the

158

Volume II: Optimizing Applications

original variables in | i st are
updated using the values
assigned to the corresponding
privat e variables in the last
iteration in the do construct loop
or the last sect i on construct.

copyprivate (list) Uses private variables in | i st to
broadcast values, or pointers to
shared objects, from one
member of a team to the other
members at the end of a single
construct.

nowai t Specifies that threads need not
wait at the end of wor kshari ng
constructs until they have
completed execution. The
threads may proceed past the
end of the wor kshari ng
constructs as soon as there is no
more work available for them to

execute.
shared (list) Shares variables in | i st among
all the threads in a team.
default (node) Determines the default data-

scope attributes of variables not
explicitly specified by another

clause. Possible values for node
are pri vat e, shar ed, or none.

reduction ({operator|intrinsic}:list) Performs a reduction on variables
that appear in | i st with the
operator oper at or or the
intrinsic procedure name

i ntrinsic;operator isone of
the following: +, *, . and. , . or .,
.eqVv.,.neqv.;intrinsic
refers to one of the following:
max, m n,iand,ior,orieor.

ordered Used in conjunction with a do or
end ordered sect i ons construct to impose a
serial order on the execution of a
section of code. If or der ed
constructs are contained in the
dynamic extent of the do
construct, the ordered clause
must be present on the do

159

Intel(R) Fortran User's Guide Vol lI

directive.

if (scalar_logical _expression)

The enclosed parallel region is
executed in parallel only if the
scal ar _| ogi cal _expressi on

evaluates to . t r ue. ; otherwise
the parallel region is serialized.

num t hr eads(scal ar _i nt eger _expr essi on)

Requests the number of threads
specified by

scal ar _i nt eger _expressi on
for the parallel region.

schedul e (type[, chunk])

Specifies how iterations of the do
construct are divided among the
threads of the team. Possible
values for the t ype argument are
static,dynam c, gui ded, and
runt i me. The optional chunk
argument must be a positive
scalar integer expression.

copyin (list)

Specifies that the master thread's
data values be copied to the

t hr eadpri vat e's copies of the
common blocks or variables
specified in | i st at the
beginning of the parallel region.

Directives and Clauses Cross-reference

Directive Uses These Clauses

par al | el copyi n,defaul t, private,

end parall el firstprivate,reduction,shared

do private,firstprivate,lastprivate,

end do reducti on, schedul e

sections private,firstprivate,|astprivate,

end sections reduction

section private,firstprivate,|astprivate,
reducti on

singl e private,firstprivate

end single

paral | el do copyi n,defaul t, private,

end parallel do firstprivate,|lastprivate,reduction
shar ed, schedul e

paral | el sections copyi n,defaul t, private,

end parall el firstprivate,|lastprivate,reduction,

160

Volume II: Optimizing Applications

secti ons shar ed
mast er None
end nmster

critical [l ock] None
end critical [l ock]

barrier None
atom c None
flush [(list)] None
ordered None
end ordered

t hreadprivate (list) |None

OpenMP Directive Descriptions

Parallel Region Directives

The PARALLEL and END PARALLEL directives define a parallel region as
follows:

I $OVP PARALLEL
I parallel region
I $SOVP END PARALLEL

When a thread encounters a parallel region, it creates a team of threads and
becomes the master of the team. You can control the number of threads in a
team by the use of an environment variable or a run-time library call, or both.

Clauses Used

The PARALLEL directive takes an optional comma-separated list of clauses that
specify as follows:

« | F: whether the statements in the parallel region are executed in parallel
by a team of threads or serially by a single thread.

+ PRI VATE, FI RSTPRI VATE, SHARED, or REDUCTI ON: variable types

- DEFAULT: variable data scope attribute

161

Intel(R) Fortran User's Guide Vol lI

« COPYI N: master thread common block values are copied to
THREADPRI VATE copies of the common block

Changing the Number of Threads

Once created, the number of threads in the team remains constant for the
duration of that parallel region. To explicitly change the number of threads used
in the next parallel region, call the OMP_SET_NUM_THREADS run-time library
routine from a serial portion of the program. This routine overrides any value you
may have set using the OVP_NUM THREADS environment variable.

Assuming you have used the OVP_NUM_THREADS environment variable to set
the number of threads to 6, you can change the number of threads between
parallel regions as follows:

CALL OWP_SET_NUM THREADS(3)
| SOVP PARALLEL

| SOMP END PARALLEL
CALL OVP_SET_NUM THREADS(4)
I SOVP PARALLEL DO

i$C]VP END PARALLEL DO

Setting Units of Work

Use the worlsharing directives such as DO, SECTI ONS, and SI NGLE to divide the
statements in the parallel region into units of work and to distribute those units so
that each unit is executed by one thread.

In the following example, the ! $OMP DOand ! $OVP END DOdirectives and all
the statements enclosed by them comprise the static extent of the parallel region:

I $OMP PARALLEL
| $OVP DO
DO 1 =1, N
B(1) = (A(l) + A(1-1))/ 2.0
END DO
I $OMP END DO
| $OMP END PARALLEL

162

Volume II: Optimizing Applications

In the following example, the ! $OVP DOand ! $OMP END DOdirectives and all
the statements enclosed by them, including all statements contained in the
WORK subroutine, comprise the dynamic extent of the parallel region:

I $OVP PARALLEL
DEFAUL T(SHARED)
I SOVP DO
DO I =1, N
CALL WORK(I, N)
END DO
I $OVP END DO
| SOVP END PARALLEL

Setting Conditional Parallel Region Execution

When an | F clause is present on the PARALLEL directive, the enclosed code
region is executed in parallel only if the scalar logical expression evaluates to

. TRUE. . Otherwise, the parallel region is serialized. When there is no | F clause,
the region is executed in parallel by default.

In the following example, the statements enclosed within the ! $OvP DOand
I $OVP END DOdirectives are executed in parallel only if there are more than
three processors available. Otherwise the statements are executed serially:

I $OVP PARALLEL | F (OVP_GET_NUM PROCS() . GT.
3)
I $OVP DO
DO 1=1,N
Y(1) = SQRT(Z(1))
END DO
I $OVP END DO
| $OVP END PARALLEL

If a thread executing a parallel region encounters another parallel region, it
creates a new team and becomes the master of that new team. By default,
nested parallel regions are always executed by a team of one thread.

Note

To achieve better performance than sequential execution, a parallel region
must contain one or more worksharing constructs so that the team of
threads can execute work in parallel. It is the contained worksharing
constructs that lead to the performance enhancements offered by parallel
processing.

163

Intel(R) Fortran User's Guide Vol lI

Worksharing Construct Directives

A worksharing construct must be enclosed dynamically within a parallel region if
the worksharing directive is to execute in parallel. No new threads are launched
and there is no implied barrier on entry to a worksharing construct.

The worksharing constructs are:

- DOand END DOdirectives
« SECTI ONS, SECTI ON, and END SECTI ONS directives
+ SI NGLE and END S| NGLE directives

DO and END DO

The DOdirective specifies that the iterations of the immediately following DOloop
must be dispatched across the team of threads so that each iteration is executed
by a single thread. The loop that follows a DO directive cannot be a DO WHI LE or
a DOloop that does not have loop control. The iterations of the DOloop are
dispatched among the existing team of threads.

The DOdirective optionally lets you:

« Control data scope attributes (see Controlling Data Scope Attributes)
« Use the SCHEDULE clause to specify schedule type and chunk size (see
Specifying Schedule Type and Chunk Size)

Clauses Used
The clauses for DOdirective specify:

« Whether variables are PRI VATE, FI RSTPRI VATE, LASTPRI VATE, or
REDUCTI ON

« How loop iterations are SCHEDULEd onto threads

« In addition, the ORDERED clause must be specified if the ORDERED directive
appears in the dynamic extent of the DO directive.

« If you do not specify the optional NOMI T clause on the END DOdirective,
threads syncronize at the END DOdirective. If you specify NOMI T, threads
do not synchronize, and threads that finish early proceed directly to the
instructions following the END DOdirective.

Usage Rules

« You cannot use a GOTOstatement, or any other statement, to transfer
control onto or out of the DO construct.

164

Volume II: Optimizing Applications

« If you specify the optional END DOdirective, it must appear immediately
after the end of the DOloop. If you do not specify the END DOdirective, an
END DOdirective is assumed at the end of the DO loop, and threat=ds
synchronize at that point.

« The loop iteration variable is private by default, so it is not necessary to
declare it explicitly.

SECTIONS, SECTION and END SECTIONS

Use the noniterative worksharing SECTI ONS directive to divide the enclosed
sections of code among the team. Each section is executed just one time by one
thread.

Each section should be preceded with a SECTI ON directive, except for the first
section, in which the SECTI ON directive is optional. The SECTI ON directive
must appear within the lexical extent of the SECTI ONS and END SECTI ONS
directives.

The last section ends at the END SECTI ONS directive. When a thread completes
its section and there are no undispatched sections, it waits at the END SECTI ON
directive unless you specify NOMI T.

The SECTI ONS directive takes an optional comma-separated list of clauses that
specifies which variables are PRI VATE, FI RSTPRI VATE, LASTPRI VATE, or
REDUCTI ON.

The following example shows how to use the SECTI ONS and SECTI ON directives
to execute subroutines X_AXI S, Y_AXI S, and Z_AXI S in parallel. The first
SECTI ON directive is optional:

' $OVP PARALLEL
' $OVP SECTI ONS
' $OVP SECTI ON
CALL X AXI' S
' $OVP SECTI ON
CALL Y_AXI'S
I $OVP SECTI ON
CALL Z_AXI'S
' $OVP END SECTI ONS
' $OVP END PARALLEL

SINGLE and END SINGLE

Use the SI NGLE directive when you want just one thread of the team to execute
the enclosed block of code.

165

Intel(R) Fortran User's Guide Vol lI

Threads that are not executing the SI NGLE directive wait at the END SI NGLE
directive unless you specify NOMI T.

The SI NGLE directive takes an optional comma-separated list of clauses that
specifies which variables are PRI VATE or FI RSTPRI VATE.

When the END SI NGLE directive is encountered, an implicit barrier is erected
and threads wait until all threads have finished. This can be overridden by using
the NOWMAI T option.

In the following example, the first thread that encounters the SI NGLE directive
executes subroutines OQUTPUT and | NPUT:

I $OVP PARALLEL

DEFAUL T(SHARED)
CALL WORK(X)

I $OVP BARRI ER

I SOVP S| NGLE
CALL OUTPUT(X)
CALL | NPUT(Y)

I SOVP END S| NGLE
CALL WORK(Y)

I $OVP END PARALLEL

Combined Parallel/\Worksharing

Constructs

The combined parallel/worksharing constructs provide an abbreviated way to
specify a parallel region that contains a single worksharing construct. The
combined parallel/worksharing constructs are:

« PARALLEL DO
- PARALLEL SECTI ONS

PARALLEL DO and END PARALLEL DO

Use the PARALLEL DOdirective to specify a parallel region that implicitly
contains a single DOdirective.

You can specify one or more of the clauses for the PARALLEL and the DO
directives.

166

Volume II: Optimizing Applications

The following example shows how to parallelize a simple loop. The loop iteration
variable is private by default, so it is not necessary to declare it explicitly. The
END PARALLEL DOdirective is optional:

'$OVP PARALLEL DO
DO =1, N
B(1) = (A(1) + A(1-1)) / 2.0
END DO
I $OVP END PARALLEL DO

PARALLEL SECTIONS and END PARALLEL
SECTIONS

Use the PARALLEL SECTI ONS directive to specify a parallel region that implicitly
contains a single SECTI ONS directive.

You can specify one or more of the clauses for the PARALLEL and the
SECTI ONS directives.

The last section ends at the END PARALLEL SECTI ONS directive.

In the following example, subroutines X_AXI S, Y_AXI S, and Z_AXI S can be
executed concurrently. The first SECTI ON directive is optional. Note that all
SECTI ON directives must appear in the lexical extent of the PARALLEL
SECTI ONS/END PARALLEL SECTI ONS construct:

' $OVP PARALLEL SECTI ONS
' $OVP SECTI ON
CALL X_AXI S
' $OVP SECTI ON
CALL Y_AXIS
' $OVP SECTI ON
CALL Z _AXI' S
' $OVP END PARALLEL SECTI ONS

Synchronization Constructs

Synchronization constructs are used to ensure the consistency of shared data
and to coordinate parallel execution among threads.

The synchronization constructs are:

« ATOM Cdirective

167

Intel(R) Fortran User's Guide Vol lI

« BARRI ER directive
« CRI TI CAL directive
« FLUSH directive

- MASTER directive

« ORDERED directive

ATOMIC Directive

Use the ATOMIC directive to ensure that a specific memory location is updated
atomically instead of exposing the location to the possibility of multiple,
simultaneously writing threads.

This directive applies only to the immediately following statement, which must
have one of the following forms:

X = X operator expr

X = expr operator X
X = intrinsic (x, expr)
X = intrinsic (expr, X)

In the preceding statements:

« X is a scalar variable of intrinsic type

« expr is a scalar expression that does not reference x

« intrinsiciseither MAX, M N, | AND, | OR, or | ECR

«+ operator iseither+,*,-,/,. AND.,.OR. ,. EQV., or. NEQV.

This directive permits optimization beyond that of a critical section around the
assignment. An implementation can replace all ATOM C directives by enclosing
the statement in a critical section. All of these critical sections must use the same
unique name.

Only the load and store of x are atomic; the evaluation of expr is not atomic. To
avoid race conditions, all updates of the location in parallel must be protected by
using the ATOM C directive, except those that are known to be free of race
conditions. The function i ntri nsi ¢, the operator oper at or, and the
assignment must be the intrinsic function, operator, and assignment.

This restriction applies to the ATOM C directive: All references to storage location
X must have the same type parameters.

In the following example, the collection of Y locations is updated atomically:

168

Volume II: Optimizing Applications

I$OVP ATOM C
Y=Y+ B(I)

BARRIER Directive

To synchronize all threads within a parallel region, use the BARRI ER directive.
You can use this directive only within a parallel region defined by using the
PARALLEL directive. You cannot use the BARRI ER directive within the DO,
PARALLEL DO, SECTI ONS, PARALLEL SECTI ONS, and SI NGLE directives.

When encountered, each thread waits at the BARRI ER directive until all threads
have reached the directive.

In the following example, the BARRI ER directive ensures that all threads have
executed the first loop and that it is safe to execute the second loop:

c$OVP PARALLEL
c$OVP DO PRI VATE(i)
DOi = 1, 100
b(i) =i
END DO
c$OVP BARRI ER
c$OVP DO PRI VATE(i)
DOi = 1, 100
a(i) = b(101-i)
END DO
c$OVP END PARALLEL

CRITICAL and END CRITICAL

Use the CRI Tl CAL and END CRI Tl CAL directives to restrict access to a block of
code, referred to as a critical section, to one thread at a time.

A thread waits at the beginning of a critical section until no other thread in the
team is executing a critical section having the same name.

When a thread enters the critical section, a latch variable is set to closed and all
other threads are locked out. When the thread exits the critical section at the END
CRI Tl CAL directive, the latch variable is set to open, allowing another thread
access to the critical section.

If you specify a critical section name in the CRI Tl CAL directive, you must specify
the same name in the END CRI TI CAL directive. If you do not specify a name for
the CRI TI CAL directive, you cannot specify a name for the END CRI Tl CAL
directive.

169

Intel(R) Fortran User's Guide Vol lI

All unnamed CRI Tl CAL directives map to the same name. Critical section names
are global to the program.

The following example includes several CRI Tl CAL directives, and illustrates a
gueuing model in which a task is dequeued and worked on. To guard against
multiple threads dequeuing the same task, the dequeuing operation must be in a
critical section. Because there are two independent queues in this example, each
gueue is protected by CRI Tl CAL directives having different names, X_AXIS and
Y_AXIS, respectively:

I $OVP PARALLEL
DEFAULT(PRI VATE, SHARED(X, Y)
I SOVP CRI Tl CAL(X_AXI S)
CALL DEQUEUE(| X_NEXT, X)
I $OVP END CRI Tl CAL(X_AXI S)
CALL WORK(1 X_NEXT, X)
I SOMP CRI Tl CAL(Y_AXI S)
CALL DEQUEUE(!Y_NEXT,Y)
I SOVP END CRI Tl CAL(Y_AXI S)
CALL WORK(1Y_NEXT, V)
| SOVP END PARALLEL

Unnamed critical sections use the global lock from the Pthread package. This
allows you to synchronize with other code by using the same lock. Named locks
are created and maintained by the compiler and can be significantly more
efficient.

FLUSH Directive

Use the FLUSH directive to identify a synchronization point at which a consistent
view of memory is provided. Thread-visible variables are written back to memory
at this point.

To avoid flushing all thread-visible variables at this point, include a list of comma-
separated named variables to be flushed.

The following example uses the FLUSH directive for point-to-point
synchronization between thread 0 and thread 1 for the variable | SYNC:

I $OVP PARALLEL DEFAULT(PRI VATE) , SHARED(| SYNC)
| AM = OMP_GET_THREAD NUM)
| SYINC(IAM = 0
I $OW BARRI ER
CALL WORK()
I I Am Done Wth My Wrk, Synchronize Wth My
Nei ghbor
| SYNC(I AM) = 1

170

Volume II: Optimizing Applications

I $OMP FLUSH(| SYNC)
I Wait Till Neighbor |Is Done
DO WHI LE (I SYNC(NEI GH) .EQ 0)
| $OMP FLUSH(| SYNC)
END DO
I $SOVP END PARALLEL

MASTER and END MASTER

Use the MASTER and END MASTER directives to identify a block of code that is
executed only by the master thread.

The other threads of the team skip the code and continue execution. There is no
implied barrier at the END MASTER directive.

In the following example, only the master thread executes the routines QUTPUT
and | NPUT:

' $OVP PARALLEL
DEFAUL T(SHARED)
CALL WORK(X)
| SOVP MASTER
CALL OUTPUT(X)
CALL | NPUT(Y)
| SOVP END MASTER
CALL WORK(Y)
| SOVP END PARALLEL

ORDERED and END ORDERED

Use the ORDERED and END ORDERED directives within a DO construct to allow
work within an ordered section to execute sequentially while allowing work
outside the section to execute in parallel.

When you use the ORDERED directive, you must also specify the ORDERED clause
on the DOdirective.

Only one thread at a time is allowed to enter the ordered section, and then only
in the order of loop iterations.

In the following example, the code prints out the indexes in sequential order:

ISOVP DO ORDERED, SCHEDULE(DYNAM C)
DO | =LB, UB, ST
CALL WORK(1)
END DO

171

Intel(R) Fortran User's Guide Vol lI

SUBROUTI NE WORK(K)
| $OVP ORDERED

WRI TE(*, *) K
| $OMP END ORDERED

THREADPRIVATE Directive

You can make named common blocks private to a thread, but global within the
thread, by using the THREADPRI VATE directive.

Each thread gets its own copy of the common block with the result that data
written to the common block by one thread is not directly visible to other threads.
During serial portions and MASTER sections of the program, accesses are to the
master thread copy of the common block.

You cannot use a thread private common block or its constituent variables in any
clause other than the COPYI N clause.

In the following example, common blocks BLK1 and Fl ELDS are specified as
thread private:

COVMON / BLK1/ SCRATCH

COMMVON / FI ELDS/ XFI ELD, YFI ELD,
ZFI ELD
I $OVP THREADPRI VATE(/ BLK1/, / FI ELDS/)

OpenMP Clause Descriptions

Data Scope Attribute Clauses Overview

You can use several directive clauses to control the data scope attributes of
variables for the duration of the construct in which you specify them. If you do not
specify a data scope attribute clause on a directive, the default is SHARED for
those variables affected by the directive.

Each of the data scope attribute clauses accepts a list, which is a comma-
separated list of named variables or named common blocks that are accessible
in the scoping unit. When you specify named common blocks, they must appear
between slashes (/nane/).

Not all of the clauses are allowed on all directives, but the directives to which
each clause applies are listed in the clause descriptions.

172

Volume II: Optimizing Applications

The data scope attribute clauses are:

COPYI N
DEFAULT

PRI VATE

FI RSTPRI VATE
LASTPRI VATE
REDUCTI ON
SHARED

COPYIN Clause

Use the COPYI N clause on the PARALLEL, PARALLEL DO, and PARALLEL
SECTI ONS directives to copy the data in the master thread common block to the
thread private copies of the common block. The copy occurs at the beginning of
the parallel region. The COPYI N clause applies only to common blocks that have
been declared THREADPRI VATE.

You do not have to specify a whole common block to be copied in; you can
specify named variables that appear in the THREADPRI VATE common block. In
the following example, the common blocks BLK1 and FI ELDS are specified as
thread private, but only one of the variables in common block FI ELDS is
specified to be copied in:

COVMON / BLK1/ SCRATCH
COWMON / FI ELDS/ XFI ELD, YFI ELD, ZFI ELD
I $OVWP THREADPRI VATE(/ BLK1/, /FIELDS/)
' $OWP PARALLEL
DEFAULT(PRI VATE) , COPYI N(/ BLK1/, ZFI ELD)

DEFAULT Clause

Use the DEFAULT clause on the PARALLEL, PARALLEL DO, and PARALLEL
SECTI ONS directives to specify a default data scope attribute for all variables
within the lexical extent of a parallel region. Variables in THREADPRI VATE
common blocks are not affected by this clause. You can specify only one
DEFAULT clause on a directive. The default data scope attribute can be one of
the following:

« PRI VATE

Makes all named objects in the lexical extent of the parallel region private to a
thread. The objects include common block variables, but exclude
THREADPRI VATE variables.

173

Intel(R) Fortran User's Guide Vol lI

« SHARED

Makes all named objects in the lexical extent of the parallel region shared
among all the threads in the team.

- NONE

Declares that there is no implicit default as to whether variables are
PRI VATE or SHARED. You must explicitly specify the scope attribute for each
variable in the lexical extent of the parallel region.

If you do not specify the DEFAULT clause, the default is DEFAULT(SHARED) .
However, loop control variables are always PRI VATE by default.

You can exempt variables from the default data scope attribute by using other
scope attribute clauses on the parallel region as shown in the following example:

I'$OVP PARALLEL DO DEFAULT(PRI VATE),
FI RSTPRI VATE(1), SHARED(X) ,
| $OVP& SHARED(R) LASTPRI VATE(I)

PRIVATE, FIRSTPRIVATE, and

LASTPRIVATE Clauses
PRIVATE

Use the PRI VATE clause on the PARALLEL, DO, SECTI ONS, SI NGLE, PARALLEL
DO, and PARALLEL SECTI ONS directives to declare variables to be private to
each thread in the team.

The behavior of variables declared PRI VATE is as follows:

+ A new object of the same type and size is declared once for each thread
in the team, and the new object is no longer storage associated with the
original object.

« All references to the original object in the lexical extent of the directive
construct are replaced with references to the private object.

+ Variables defined as PRI VATE are undefined for each thread on entering
the construct, and the corresponding shared variable is undefined on exit
from a parallel construct.

- Contents, allocation state, and association status of variables defined as
PRI VATE are undefined when they are referenced outside the lexical

174

Volume II: Optimizing Applications

extent, but inside the dynamic extent, of the construct unless they are
passed as actual arguments to called routines.

In the following example, the values of | and J are undefined on exit from the
parallel region:

I NTEGER |, J
I =1
J =2
I $OVWP PARALLEL PRI VATE(1) FI RSTPRI VATE(J)
I =3
J =J+ 2
I $OVP END PARALLEL
PRINT *, I, J

FIRSTPRIVATE

Use the FI RSTPRI VATE clause on the PARALLEL, DO, SECTI ONS, SI NGLE,
PARALLEL DO, and PARALLEL SECTI ONS directives to provide a superset of
the PRI VATE clause functionality.

In addition to the PRI VATE clause functionality, private copies of the variables
are initialized from the original object existing before the parallel construct.

LASTPRIVATE

Use the LASTPRI VATE clause on the DO, SECTI ONS, PARALLEL DO, and
PARALLEL SECTI ONS directives to provide a superset of the PRI VATE clause
functionality.

When the LASTPRI VATE clause appears on a DOor PARALLEL DOdirective, the
thread that executes the sequentially last iteration updates the version of the
object it had before the construct.

When the LASTPRI VATE clause appears on a SECTI ONS or PARALLEL
SECTI ONS directive, the thread that executes the lexically last section updates
the version of the object it had before the construct.

Subobijects that are not assigned a value by the last iteration of the DO loop or
the lexically last SECTI ON directive are undefined after the construct.

Correct execution sometimes depends on the value that the last iteration of a
loop assigns to a variable. You must list all such variables as arguments to a
LASTPRI VATE clause so that the values of the variables are the same as when
the loop is executed sequentially. As shown in the following example, the value

175

Intel(R) Fortran User's Guide Vol lI

of | at the end of the parallel region is equal to N+1, as it would be with sequential
execution.

' $OVP PARALLEL
| $OMP DO LASTPRI VATE(1)
DO I =1, N
A1) = B(1) + C(1)
END DO
| $OVMP END PARALLEL
CALL REVERSE(I)

REDUCTION Clause

Use the REDUCTI ON clause on the PARALLEL, DO, SECTI ONS, PARALLEL DO,
and PARALLEL SECTI ONS directives to perform a reduction on the specified
variables by using an operator or intrinsic as shown:

REDUCTI ON (
oper at or
or
intrinsic
list)

Oper at or can be one of the following: +, *,-,. AND., . OR., . EQV. , or
. NEQV. .

I nt ri nsi c can be one of the following: MAX, M N, I AND, | OR, or | EOR.

The specified variables must be named scalar variables of intrinsic type and must
be SHARED in the enclosing context. A private copy of each specified variable is
created for each thread as if you had used the PRI VATE clause. The private copy
is initialized to a value that depends on the operator or intrinsic as shown in the
Table Operators/Intrinsics and Initialization Values for Reduction Variables. The
actual initialization value is consistent with the data type of the reduction variable.

Operators/Intrinsics and Initializa tion Values for Reduction Variables

Operator/Intrinsic Initialization
Value
0

* 1

- 0

. AND. . TRUE.

. OR . FALSE.

. EQV. . TRUE.

176

Volume II: Optimizing Applications

. NEQV. . FALSE.

MAX Largest
representable
number

MN Smallest
representable
number

| AND All bits on

| OR 0

| EOR 0

At the end of the construct to which the reduction applies, the shared variable is
updated to reflect the result of combining the original value of the SHARED
reduction variable with the final value of each of the private copies using the
specified operator.

Except for subtraction, all of the reduction operators are associative and the
compiler can freely reassociate the computation of the final value. The partial
results of a subtraction reduction are added to form the final value.

The value of the shared variable becomes undefined when the first thread
reaches the clause containing the reduction, and it remains undefined until the
reduction computation is complete. Normally, the computation is complete at the
end of the REDUCTI ON construct. However, if you use the REDUCTI ON clause on
a construct to which NOMI T is also applied, the shared variable remains
undefined until a barrier synchronization has been performed. This ensures that
all of the threads have completed the REDUCTI ON clause.

The REDUCTI ON clause is intended to be used on a region or worksharing
construct in which the reduction variable is used only in reduction statements
having one of the following forms:

X operator expr

expr operator x (except for subtraction)
intrinsic (x,expr)

intrinsic (expr, X)

X X X X

Some reductions can be expressed in other forms. For instance, a MAX reduction
might be expressed as follows:

IF (x .LT. expr) x = expr
Alternatively, the reduction might be hidden inside a subroutine call. Be careful

that the operator specified in the REDUCTI ON clause matches the reduction
operation.

177

Intel(R) Fortran User's Guide Vol lI

Any number of reduction clauses can be specified on the directive, but a variable
can appear only once in a REDUCTI ON clause for that directive as shown in the
following example:

I $OVP DO REDUCTI ON(+: A, Y), REDUCTI ON(. OR. : AM)

The following example shows how to use the REDUCTI ON clause:

' $OVP PARALLEL DO
DEFAULT(PRI VATE) , SHARED(A, B, REDUCTI ON(+: A, B)
DO | =1, N
CALL WORK(ALOCAL, BLOCAL)
A = A + ALOCAL
B = B + BLOCAL
END DO
| $OMP END PARALLEL DO

SHARED Clause

Use the SHARED clause on the PARALLEL, PARALLEL DO, and PARALLEL
SECTI ONS directives to make variables shared among all the threads in a team.

In the following example, the variables X and NPO NTS are shared among all the
threads in the team:

I $OVP PARALLEL
DEFAULT(PRI VATE) , SHARED(X, NPOl NTS)
| AM = OVP_GET_THREAD NUM)
NP = OVP_GET_NUM THREADS()
| PO NTS = NPO NTS/ NP
CALL SUBDOMAI N(X, | AM | POl NTS)
| SOVMP END PARALLEL

Specifying Schedule Type and Chunk

Size

The SCHEDULE clause of the DOor PARALLEL DOdirective specifies a
scheduling algorithm that determines how iterations of the DOloop are divided
among and dispatched to the threads of the team. The SCHEDULE clause applies
only to the current DOor PARALLEL DOdirective.

Within the SCHEDULE clause, you must specify a schedule type and, optionally,
a chunk size . A chunk is a contiguous group of iterations dispatched to a
thread. Chunk size must be a scalar integer expression.

178

Volume II: Optimizing Applications

The following list describes the schedule types and how the chunk size affects
scheduling:

-« STATIC

The iterations are divided into pieces having a size specified by chunk. The
pieces are statically dispatched to threads in the team in a round-robin
manner in the order of thread number.

When chunk is not specified, the iterations are first divided into contiguous
pieces by dividing the number of iterations by the number of threads in the
team. Each piece is then dispatched to a thread before loop execution
begins.

- DYNAM C

The iterations are divided into pieces having a size specified by chunk. As
each thread finishes its currently dispatched piece of the iteration space,
the next piece is dynamically dispatched to the thread.

When no chunk is specified, the default is 1.

- QU DED

The chunk size is decreased exponentially with each succeeding dispatch.
Chunk specifies the minimum number of iterations to dispatch each time. If
there are less than chunk number of iterations remaining, the rest are
dispatched.

When no chunk is specified, the default is 1.

« RUNTI ME

The decision regarding scheduling is deferred until run time. The schedule
type and chunk size can be chosen at run time by using the
OVP_SCHEDULE environment variable.

When you specify RUNTI ME, you cannot specify a chunk size.
The following list shows which schedule type is used, in priority order:
1. The schedule type specified in the SCHEDULE clause of the current DO or
PARALLEL DOdirective
2. If the schedule type for the current DOor PARALLEL DOdirective is

RUNTI ME, the default value specified in the OMP_SCHEDULE environment
variable

179

Intel(R) Fortran User's Guide Vol lI

3. The compiler default schedule type of STATI C
The following list shows which chunk size is used, in priority order:

1. The chunk size specified in the SCHEDULE clause of the current DO or
PARALLEL DOdirective

2. For RUNTI ME schedule type, the value specified in the OVP_SCHEDULE

environment variable

For DYNAM C and GUI DED schedule types, the default value 1

If the schedule type for the current DOor PARALLEL DOdirective is

STATI C, the loop iteration space divided by the number of threads in the

team.

OpenMP Support Libraries

The Intel Fortran Compiler with OpenMP support provides a production support
library, | i bgui de. a. This library enables you to run an application under
different execution modes. It is used for normal or performance-critical runs on
applications that have already been tuned.

B w

Execution modes

The compiler with OpenMP enables you to run an application under different
execution modes that can be specified at run time. The libraries support the
serial, turnaround, and throughput modes. These modes are selected by using
the knp_| i brary environment variable at run time.

Turnaround

In a multi-user environment where the load on the parallel machine is not
constant or where the job stream is not predictable, it may be better to design
and tune for throughput. This minimizes the total time to run multiple jobs
simultaneously. In this mode, the worker threads will yield to other threads while
waiting for more parallel work.

The throughput mode is designed to make the program aware of its environment
(that is, the system load) and to adjust its resource usage to produce efficient
execution in a dynamic environment. This mode is the default.

After completing the execution of a parallel region, threads wait for new parallel
work to become available. After a certain period of time has elapsed, they stop
waiting and sleep. Sleeping allows the threads to be used, until more parallel
work becomes available, by non-OpenMP threaded code that may execute
between parallel regions, or by other applications. The amount of time to wait

180

Volume II: Optimizing Applications

before sleeping is set either by the KMP_BLCOKTI IVE environment variable or by
the knp_set bl ockti ne() function. A small KMP_BLOCKTI ME value may offer
better overall performance if your application contains non-OpenMP threaded
code that executes between parallel regions. A larger KMP_BLOCKTI ME value
may be more appropriate if threads are to be reserved solely for use for OpenMP
execution, but may penalize other concurrently-running OpenMP or threaded
applications.

Throughput

In a dedicated (batch or single user) parallel environment where all processors
are exclusively allocated to the program for its entire run, it is most important to
effectively utilize all of the processors all of the time. The turnaround mode is
designed to keep active all of the processors involved in the parallel computation
in order to minimize the execution time of a single job. In this mode, the worker
threads actively wait for more parallel work, without yielding to other threads.

Note

Avoid over-allocating system resources. This occurs if either too many
threads have been specified, or if too few processors are available at run
time. If system resources are over-allocated, this mode will cause poor
performance. The throughput mode should be used instead if this occurs.

OpenMP Environment Variables

This topic describes the standard OpenMP environment variables (with the
OMP__ prefix) and Intel-specific environment variables (with the KIVP_ prefix) that
are Intel extensions to the standard Fortran Compiler .

Standard Environment Variables

Variable Description Default
OVP_SCHEDULE Sets the run-time schedule | stati c,
type and chunk size. no chunk
size
specified
OVP_NUM _THREADS | Sets the number of threads | Number of
to use during execution. processors
OVP_DYNAM C Enables (t r ue) or disables | fal se
(f al se) the dynamic
adjustment of the number
of threads.

181

Intel(R) Fortran User's Guide Vol lI

OVP_NESTED

Enables (t r ue) or disables
(f al se)nested parallelism.

fal se

Intel Extension Environment Variables

Environment Variable Description Default

KMP_ALL_ THREADS Sets the max(32, 4 *
maximum OVP_NUM_THREADS,
number of 4 * nunber of

threads that can
be used by any
parallel region.

processors)

KMP_BLOCKTI VE

Sets the time, in
milliseconds,
that a thread
should walit,
after completing
the execution of
a parallel
region, before
sleeping.

See also the
throughput
execution mode
and the
KMP_LI BRARY
environment
variable. Use
the optional
character suffix
s, m, h,ord,to
specify
seconds,
minutes, hours,
or days.

200 milliseconds

182

Volume II: Optimizing Applications

KMP_LI BRARY

Selects the
OpenMP run-
time library
throughput. The
options for the
variable value
are: seri al ,

t ur nar ound,
or t hr oughput
indicating the
execution mode.
The default
value of

t hr oughput is
used if this
variable is not
specified.

t hr oughput
(execution mode)

KMP_NMONI TOR_STACKSI ZE

Sets the number
of bytes to
allocate for the
monitor thread,
which is used
for book-
keeping during
program
execution. Use
the optional
suffix b, k, m g,
ort, to specify
bytes, kilobytes,

max(32k, system
m ni mum t hr ead
stack size)

megabytes,
gigabytes, or
terabytes.
KMP_STACKSI ZE Sets the number | 1A-32: 2m
of bytes to [tanium compiler: 4m

allocate for each
parallel thread
to use as its
private stack.
Use the optional
suffix b, k, m g,
ort, to specify
bytes, kilobytes,
megabytes,
gigabytes, or
terabytes.

183

Intel(R) Fortran User's Guide Vol lI

KMP_VERSI ON Enables (set) or | Disabled
disables (unset)
the printing of
OpenMP run-
time library
version
information
during program
execution.

OpenMP Run-time Library Routines

OpenMP provides several run-time library routines to assist you in managing
your program in parallel mode. Many of these run-time library routines have
corresponding environment variables that can be set as defaults. The run-time
library routines enable you to dynamically change these factors to assist in
controlling your program. In all cases, a call to a run-time library routine overrides
any corresponding environment variable.

The following table specifies the interface to these routines. The names for the
routines are in user name space. Theonp i b.f,onmp |ib. hand

onp_l i b. nod header files are provided in the i ncl ude directory of your
compiler installation. The onp_| i b. h header file is provided in the i ncl ude
directory of your compiler installation for use with the Fortran | NCLUDE
statement. The onp_I i b. nod file is provided in the Include directory for use with
the Fortran USE statement.

There are definitions for two different locks, onp_| ock_t and
onp_nest _| ock_t, which are used by the functions in the table that follows.

This topic provides a summary of the OpenMP run-time library routines. For
detailed descriptions, see the OpenMP Fortran version 2.0 specifications.

Function Description
Execution Environment Routines

subrouti ne Sets the number of

onp_set _num_t hr eads(num_t hr eads) threads to use for

i nteger num.threads subsequent parallel

regions.

i nteger function onp_get_numthreads() | Returnsthe number of
threads that are being
used in the current
parallel region.

184

Volume II: Optimizing Applications

i nteger function onp_get_max_threads() | Returns the maximum
number of threads that
are available for parallel
execution.

i nteger function onp_get thread num) Determines the unique
thread number of the
thread currently
executing this section of
code.

i nteger function onp_get _num procs() Determines the number
of processors available
to the program.

l'ogi cal function onp_in_parallel() Returns . t r ue. if called
within the dynamic
extent of a parallel
region executing in
parallel; otherwise
returns . f al se. .

subrouti ne _ _ Enables or disables
onp_set _dynani c(dynam c_t hr eads) dynamic adjustment of
| ogi cal dynanmic_t hreads the number of threads

used to execute a
parallel region. If
dynam c_t hreads is
.true. , dynamic
threads are enabled. If
dynam c_t hreads is
. fal se., dynamic
threads are disabled.
Dynamics threads are
disabled by default.

| ogi cal function onp_get _dynam c() Returns . t r ue. if
dynamic thread
adjustment is enabled,
otherwise returns

.fal se..
jsubr outi ne onp_set nested(nested) Enables or disables
i nt eger nested nested parallelism. If

nestedis.true.,
nested parallelism is
enabled. Ifnestedis
.fal se., nested
parallelism is disabled.
Nested parallelism is
disabled by default.

185

Intel(R) Fortran User's Guide Vol lI

| ogi cal function onp_get_nested()

Returns . true. if
nested parallelism is
enabled, otherwise
returns . f al se. .

Lock Routines

subroutine onp_init_|ock(lock)
i nt eger (kind=onmp_l| ock _kind)::Iock

Initializes the lock
associated with | ock for
use in subsequent calls.

subrouti ne onp_destroy | ock(l ock)
i nteger (kind=onp_l ock_kind)::Ilock

Causes the lock
associated with | ock to
become undefined.

subrouti ne onp_set | ock(l ock)
i nteger (kind=onp_I| ock_kind)::lock

Forces the executing
thread to wait until the
lock associated with

| ock is available. The
thread is granted
ownership of the lock
when it becomes
available.

subroutine onp_unset _| ock(| ock)
i nteger (kind=onp_I| ock_kind)::1lock

Releases the executing
thread from ownership of
the lock associated with

| ock. The behavior is
undefined if the
executing thread does
not own the lock
associated with | ock.

| ogi cal onp_test | ock(lock)
i nteger (kind=onp_I| ock_kind)::lock

Attempts to set the lock
associated with | ock. If
successful, returns

. true. , otherwise
returns . f al se. .

subroutine onp_init_nest | ock(l ock)
i nt eger (ki nd=onp_nest | ock_kind)::1ock

Initializes the nested
lock associated with
| ock for use in the
subsequent calls.

subrouti ne onp_destroy_nest _| ock(I| ock)
i nt eger (ki nd=onp_nest | ock_kind):: I ock

Causes the nested lock
associated with | ock to
become undefined.

subroutine onp_set nest | ock(Il ock)
i nt eger (ki nd=onp_nest _| ock_ki nd):: 1 ock

Forces the executing
thread to wait until the
nested lock associated
with | ock is available.
The thread is granted

186

Volume II: Optimizing Applications

ownership of the nested
lock when it becomes
available.

subrouti ne onp_unset _nest | ock(l ock) Releases the executing

i nt eger (ki nd=onp_nest _| ock_kind)::1ock | thread from ownership of
the nested lock
associated with | ock if
the nesting count is zero.
Behavior is undefined if
the executing thread
does not own the nested
lock associated with

| ock.

i nteger onp_test nest | ock(l ock) Attempts to set the

i nt eger (ki nd=onp_nest _| ock_ki nd)::1ock | nested lock associated
with | ock. If successful,
returns the nesting
count, otherwise returns

zero.
Timing Routines

doubl e- preci sion function Returns a double-

onp_get _wti me() precision value equal to

the elapsed wallclock
time (in seconds) relative
to an arbitrary reference
time. The reference time
does not change during
program execution.

doubl e- preci sion function Returns a double-
onp_get _wtick() precision value equal to
the number of seconds
between successive
clock ticks.

Intel Extension Routines

The Intel® Fortran Compiler implements the following group of routines as an
extension to the OpenMP run-time library: getting and setting stack size for
parallel threads and memory allocation.

The Intel extension routines described in this section can be used for low-level
debugging to verify that the library code and application are functioning as
intended. It is recommended to use these routines with caution because using
them requires the use of the - opennp_st ubs command-line option to execute

187

Intel(R) Fortran User's Guide Vol lI

the program sequentially. These routines are also generally not recognized by
other vendor's OpenMP-compliant compilers, which may cause the link stage to
fail for these other compilers.

Stack Size

In most cases, environment variables can be used in place of the extension
library routines. For example, the stack size of the parallel threads may be set
using the KMP_STACKSI ZE environment variable rather than the

knmp_set st acksi ze() library routine.

Note

A run-time call to an Intel extension routine takes precedence over the
corresponding environment variable setting.

The routines knp_set _st acksi ze() and knp_get st acksi ze() take a 32-
bit argument only. The routines knp_set st acksi ze_s() and

knmp_get st acksi ze_s() take a si ze_t argument, which can hold 64-bit
integers.

On Itanium-based systems, it is recommended to always use
knmp_set st acksi ze() and knp_get _st acksi ze() . These _s() variants
must be used if you need to set a stack size ¢ 2**32 bytes (4 gigabytes).

See the definitions of stack size routines in the table that follows.

Memory Allocation

The Intel® Fortran Compiler implements a group of memory allocation routines
as an extension to the OpenMP* run-time library to enable threads to allocate
memory from a heap local to each thread. These routines are: knp_mal | oc,
knp_cal | oc, and knp_real | oc.

The memory allocated by these routines must also be freed by the knp_free
routine. While it is legal for the memory to be allocated by one thread and
knp_f r ee'd by a different thread, this mode of operation has a slight
performance penalty.

See the definitions of these routines in the table that follows.

Function/Routine | Description

Stack Size

function knp_get stacksize s() | Returns the number of bytes that

188

Volume II: Optimizing Applications

i nt eger (ki nd=knp_si ze_t _ki nd) knp_get
_stacksi ze_s

will be allocated for each parallel
thread to use as its private stack.
This value can be changed via
the knp_get _stacksi ze_s
routine, prior to the first parallel
region or via the

KMP_STACKSI ZE environment
variable.

function knp_get stacksi ze()
i nt eger knp_get _stacksi ze

This routine is provided for
backwards compatibility only; use
knp_get _stacksi ze_s

routine for compatibility across
different families of Intel
processors.

subroutine knp_set _stacksi ze_s(size)
i nteger (kind=knp_size_t_kind) size

Sets to si ze the number of bytes
that will be allocated for each
parallel thread to use as its
private stack. This value can also
be set via the KMP_STACKSI ZE
environment variable. In order for
knp_set _stacksi ze_s to have
an effect, it must be called before
the beginning of the first
(dynamically executed) parallel
region in the program.

subroutine knp_set _stacksi ze(size)
i nt eger size

This routine is provided for
backward compatibility only; use
knp_set stacksi ze_s(size)
for compatibility across different
families of Intel processors.

Memory Allocation

function knp_mal | oc(si ze)
i nt eger (ki nd=knp_poi nt er _ki nd) knp_nal | oc
i nt eger (ki nd=knp_si ze_t _ki nd) si ze

Allocate memory block of si ze
bytes from thread-local heap.

function knp_cal l oc(nel em el si ze)

i nt eger (ki nd=knp_poi nter ki nd) knp_cal | oc
i nt eger (ki nd=knp_si ze_t _ki nd) nel em

i nt eger (ki nd=knp_si ze_t _kind)el si ze

Allocate array of nel emelements
of size el si ze from thread-local
heap.

function knp_realloc(ptr, size)

i nt eger (ki nd=knp_poi nter_ki nd) knp_real | oc
i nt eger (ki nd=knp_poi nter ki nd)ptr

i nt eger (ki nd=knp_si ze_t _ki nd) si ze

Reallocate memory block at
address ptr and si ze bytes
from thread-local heap.

subroutine knp_free(ptr)
i nt eger (kind=knp_poi nter_kind) ptr

Free memory block at address
pt r from thread-local heap.
Memory must have been
previously allocated with

189

Intel(R) Fortran User's Guide Vol lI

kmp_mal | oc, knp_cal | oc, or
knmp_real |l oc.

Examples of OpenMP Usage

The following examples show how to use the OpenMP feature. See more
examples in the OpenMP Fortran version 2.0 specifications.

do: A Simple Difference Operator

This example shows a simple parallel loop where each iteration contains a
different number of instructions. To get good load balancing, dynamic scheduling
is used. The end do has a nowai t because there is an implicit barri er at the

end of the parallel region.

subroutine do_1 (a,b,n)
real a(n,n), b(n,n)
c$onp parall el
c$onp& shared(a, b, n)
c$omp& private(i,j)
c$onmp do schedul e(dynam c, 1)

doi =2, n

doj =1, i

b(j,i) =(Ca(j,i) +a(j,i-1)) 1 2
enddo

enddo

c$onp end do nowait
c$onp end parall el
end

do: Two Difference Operators

This example shows two parallel regions fused to reduce f or k/ j oi n overhead.
The first end do has a nowai t because all the data used in the second loop is

different than all the data used in the first loop.

subroutine do_2
(a,b,c,d, mn)
real a(n,n), b(n,n), c(mm,
d(mm
c$onp parall el
c$omp& shared(a, b, c,d, mn)
cPonp& private(i,j)

190

Volume II: Optimizing Applications

c$onp do schedul e(dynanic, 1)

doi =2, n

doj =1, i

b(j,i) = a(j,i) +a(j,i-1)) [/ 2
enddo

enddo

c$onp end do nowait
c$onp do schedul e(dynani c, 1)

doi =2, m

doj =1, i

d(j,i) = (Cc(j,i) +c(j,i-1)) 1 2
enddo

enddo

c$onmp end do nowait
c$onp end parall el
end

sections: Two Difference Operators

This example demonstrates the use of the sect i ons directive. The logic is
identical to the preceding do example, but uses sect i ons instead of do. Here
the speedup is limited to 2 because there are only two units of

work whereas in do: Two Difference Operators above therearen-1 + m 1

units of work.

subroutine sections_1
(a,b,c,d, mn)
real a(n,n), c(mm,
d(m m
I $onp parall el
I $onmp& shared(a, b, ¢c,d, mn)
' $omp& private(i,j)
I $onp sections
' $onmp section

b(n,n),

doi =2, n

doj =1, 1 o
g(J’I):(a(j,i) +a(j,i-1))/
enddo

enddo

' $onp section

do i 2, m

do | 1, i

g(l,l =(c(j,i) +c(j,i-1))/
enddo

enddo

~ 1l 1l

191

Intel(R) Fortran User's Guide Vol lI

'$onp end sections nowait
I $onp end parall el
end

single: Updating a Shared Scalar

This example demonstrates how to use a si ngl e construct to update an
element of the shared array a. The optional nowai t after the first loop is omitted
because it is necessary to wait at the end of the loop before proceeding into the
si ngl e construct.

subroutine sp_la

(a, b, n)
real a(n), b(n)
I $onp parall el

I $onp& shared(a, b, n)
I $onp& private(i)

I $onp do

do i
a(i)
enddo
' $onmp single

a(l) =mn(a(l), 1.0

1, n
1.0/ a(i)

' $onp end single

' $onp do

doi =1, n

b(i) = b(i) / a(i)
enddo

' $onmp end do nowait
'$onp end parall el
end

Debugging Multithread Programs

Overview

The debugging of multithreaded program discussed in this section applies to both
the OpenMP Fortran API and the Intel Fortran parallel compiler directives. When
a program uses parallel decomposition directives, you must take into
consideration that the bug might be caused either by an incorrect program
statement or it might be caused by an incorrect parallel decomposition directive.
In either case, the program to be debugged can be executed by multiple threads
simultaneously.

192

Volume II: Optimizing Applications

To debug the multithreaded programs, you can use:

- Intel Debugger for IA-32 and Intel Debugger for Itanium-based applications
(idb)

+ Intel Fortran Compiler debugging options and methods; in particular,
Compiling Source Lines with Debugging Statements.

- Intel parallelization extension routines for low-level debugging.

« VTune(TM) Performance Analyzer to define the problematic areas.

Other best known debugging methods and tips include:

« Correct the program in single-threaded, uni-processor environment
- Statically analyze locks
« Use trace statement (such as pri nt statement)
« Think in parallel, make very few assumptions
« Step through your code
« Make sense of threads and callstack information
« ldentify the primary thread
« Know what thread you are debugging
« Single stepping in one thread does not mean single stepping in others

« Watch out for context switch

Debugger Limitations for Multithread Programs

Debuggers such as Intel Debugger for 1A-32 and Intel Debugger for Itanium-
based applications support the debugging of programs that are executed by
multiple threads. However, the currently available versions of such debuggers do
not directly support the debugging of parallel decomposition directives, and
therefore, there are limitations on the debugging features.

Some of the new features used in OpenMP are not yet fully supported by the
debuggers, so it is important to understand how these features work to know how
to debug them. The two problem areas are:

- Multiple entry points
« Shared variables

You can use routine names (for example, padd) and entry names (for example,
_PADD, __ PADD 6__par _| oop0). Fortran Compiler, by default, first mangles
lower/mixed case routine names to upper case. For example, pAdD() becomes
PADD() , and this becomes entry name by adding one underscore. The
secondary entry name mangling happens after that. That's why " par _| oop"
part of the entry name stays as lower case. Debugger for some reason didn't

193

Intel(R) Fortran User's Guide Vol lI

take the upper case routine name "PADD" to set the breakpoint. Instead, it
accepted the lower case routine name "padd".

Debugging Parallel Regions

The compiler implements a parallel region by enabling the code in the region and
putting it into a separate, compiler-created entry point. Although this is different
from outlining — the technique employed by other compilers, that is, creating a
subroutine, — the same debugging technique can be applied.

Constructing an Entry-point Name

The compiler-generated parallel region entry point name is constructed with a
concatenation of the following strings:

« " _"character

« entry point name for the original routine (for example, paral | el)
« " "character

+ line number of the parallel region

« __ par _regi on for OpenMP parallel regions (! $OVP PARALLEL)

__par _| oop for OpenMP parallel loops (! $OVP PARALLEL DO),

__par _secti on for OpenMP parallel sections (! $OVP PARALLEL
SECTI ONS)

- sequence number of the parallel region (for each source file, sequence
number starts from zero.)

Debugging Code with Parallel Region

Example 1 illustrates the debugging of the code with parallel region. Example 1 is
produced by this command:

ifort -opennp -g -Q0 -S file.f90

Let us consider the code of subroutine par al | el in Example 1.

Subroutine PARALLEL() source listing

1 subroutine parall el

2 i nteger id, OWP_GET_THREAD NUM
3 '$OWP PARALLEL PRI VATE(i d)

4 id = OW_GET_THREAD NUM)

5 '$OVWP END PARALLEL

6 end

194

Volume II: Optimizing Applications

The parallel region is at line 3. The compiler created two entry points:
parall el _and__ parallel _3__par_regi on0. The first entry point
corresponds to the subroutine par al | el (), while the second entry point
corresponds to the OpenMP parallel region at line 3.

Example 1 Debuging Code with Parallel Region

Machine Code Listing of the Subroutine paral | el ()
.gl obl parallel _

paral l el _:

..Bl.1: # Preds ..B1.0

.. LN1:

pushl %ebp #1.0

nov| Y%esp, %ebp #1.0

subl $44, %esp #1.0

pushl Yedi #1.0

.. Bl1.13: # Preds ..B1.9

addl $-12, %esp #6.0

novl $.2.1 2 knmpc_l oc_struct _pack. 2, (%esp) #6.0

nov| $0, 4(%esp) #6.0

nov| $ parallel 6 par_regionl, 8(%esp) #6.0

cal | __knmpc_fork_call #6.0
LCE

.. Bl. 31: # Preds ..B1.13

addl $12, %esp #6. 0
LCE

.. B1. 14: # Preds ..B1.31 ..B1.30

.. LN4:

| eave #9.0

ret #9.0
LCE

.type parallel , @unction

.Size parallel ,.-parallel_

.globl _parallel 3 par_regionO

_parallel 3 par_regionO:

paraneter 1: 8 + %bp

paraneter 2: 12 + %bp

.. Bl.15: # Preds ..B1.0

pushl %ebp #9.0

novl Y%esp, %ebp #9.0

subl $44, %esp #9.0

.. LN5:

cal l onp_get _thread_num_ #4.0
LOE eax

.. Bl. 32: # Preds ..Bl.15

novl Y%eax, -32(%bp) #4.0
LOE

195

Intel(R) Fortran User's Guide Vol lI

.. Bl. 16: # Preds ..Bl.32

novl -32(%bp), %eax #4.0

novl Y%eax, -20(%bp) #4.0

.. LNG6:

| eave #9.0

ret #9.0
LCE

.type _parallel 3 par_region0, @unction

.size

_parallel 3 par _regionO,. parallel 3 par_regionO
.globl _parallel_ 6 par_regionl
_parallel 6 par_regionl

paraneter 1: 8 + %bp

parameter 2: 12 + %bp

.. Bl.17: # Preds ..B1.0

pushl %ebp #9.0

novl Y%esp, %ebp #9.0

subl $44, Y%esp #9.0

.. LN7:

cal | onp_get thread _num_ #7.0
LOE eax

.. Bl. 33: # Preds ..Bl.17

novl Y%eax, -28(%bp) #7.0
LCE

.. Bl1. 18: # Preds ..B1.33

nov| -28(%bp), %Yeax #7.0

novl %eax, -16(%ebp) #7.0

.. LN8:

| eave #9.0

ret #9.0

.align 4, 0x90
mar k_end;

Debugging the program at this level is just like debugging a program that uses
POSIX threads directly. Breakpoints can be set in the threaded code just like any
other routine. With GNU debugger, breakpoints can be set to source-level routine
names (such as parallel). Breakpoints can also be set to entry point names (such
as parallel_and _parallel 3 par_region0). Note that Intel Fortran Compiler for
Linux converted the upper case Fortran subroutine name to the lower case one.

Debugging Multiple Threads

When in a debugger, you can switch from one thread to another. Each thread
has its own program counter so each thread can be in a different place in the
code. Example 2 shows a Fortran subroutine PADD() . A breakpoint can be set at
the entry point of OpenMP parallel region.

196

Volume II: Optimizing Applications

Source listing of the Subroutine PADD()

12. SUBROUTI NE PADDX A, B, C, N)

13. | NTEGER N

14. | NTEGER A(N), B(N), C(N

15. | NTEGER |, I D, OVP_GET_THREAD NUM
16. !$OWP PARALLEL DO SHARED (A, B, C, N
PRI VATE(| D)

17. DOl =1, N

18. | D = OVP_GET_THREAD NUM)

19. C(l1) = A(l) + B(l) +1D

20. ENDDO

21. !'$OVWP END PARALLEL DO

22. END

The Call Stack Dumps

The first call stack below is obtained by breaking at the entry to subroutine PADD
using GNU debugger. At this point, the program has not executed any OpenMP
regions, and therefore has only one thread. The call stack shows a system run-
time __|ibc_start_mai n function calling the Fortran main program

parall el (),andparallel () calls subroutine padd() . When the program is
executed by more than one thread, you can switch from one thread to another.
The second and the third call stacks are obtained by breaking at the entry to the
parallel region. The call stack of master contains the complete call sequence. At
the top of the call stack is _padd__6__par _| oopO() . Invocation of a threaded
entry point involves a layer of Intel OpenMP library function calls (that is,
functions with __knp prefix). The call stack of the worker thread contains a
partial call sequence that begins with a layer of Intel OpenMP library function
calls.

ERRATA: GNU debugger sometimes fails to properly unwind the call stack of the
immediate caller of Intel OpenMP library function __knpc_fork_cal | ().

Call Stack Dump of Master Thr ead upon Entry to Subroutine PADD

(gdb} bt
He Bx08042031 in padd {a=(), b={), c=(), n=18) at parallel.f:1
1 Bx0804a595 in parallel () at parallel.f:27

B2 Bx400a6507 in __1 il!l:_‘-.[.-lr'l_ll.-lill adbh <parallell, argc=1, ubp_auv=8xbffFFafy,
init=-0x804085h < init>, Fini-0 : i rtld Fini-Bx80008dci1h < dl Fipil,
I-.l.-'u"_k_ui'u'l—1'13:t'|+'+'l'?a'\'#|:] at ..fsysdepssgeneric/libc start.c:129 -7

{qdb)

Switching from One Thread to Another

197

Intel(R) Fortran User's Guide Vol lI

134 g in __poll (fds=0x80abd5c, nfds=1,
inux/poll.c:63
Ax0804a38a in _padd__6__par_loop@ () at parallel.f:13

(gdb} bt
N0 Ox0804338a in _paad__6__par_loop® () at parallel.f:13
1 Bu@80763d? in .invoke_3 () at protonslibifgetstat.c:21

BxBBA7b26c in _ kmpc_invoke_task_Ffunc () at proton/libi/getstat.c:241

(gdb) bt
A Bx4BbbRaab
at ../s R
Bx 4007 e @7 E 3 % Pebed) at pthread.c:967
Bx4B0fabdc : W (C) WB6GE) at restart.h:3h
BxBEB75SCF2
98

Example 2 Debugging Code Using Multiple Threads with Shared Variables

Subroutine PADD() Machine Code Listing

. gl obl padd_
padd_:
parameter 1. 8 + %bp
parameter 2: 12 + %bp
paraneter 3: 16 + %bp
paraneter 4(n): 20 + %bp
..Bl.1: # Preds ..B1.0
.. LN1:
pushl %ebp #1.0
.. Bl1.109: # Preds ..B1.15
addl $- 28, %esp #6.0
novl $.2.1 2 knmpc_l oc_struct _pack. 1, (%sp) #6.0
nov| $4, 4(%esp) #6.0
novl $ _padd__6__par_| oop0O, 8(%esp) #6. 0
novl -196(%bp), %eax #6. 0
novl Y%eax, 12(%esp) #6.0
novl -152(%bp), %ax #6. 0
nov| Yeax, 16(%esp) #6.0
novl -112(%bp), %ax #6. 0

198

Volume II: Optimizing Applications

nov| Yeax, 20(%esp)
| ea 20(%bp), %eax
novl Y%eax, 24(%esp)
cal l __knpc_fork_call

LOE
.. B1. 39: # Preds ..Bl.19
addl $28, %esp
j mp .. B1.31 # Prob 100%

LCE

. B1. 20: # Preds ..B1.30

cal | __knpc _for_static_init_4

LOE
.. B1. 40: # Preds ..B1l.20
addl $36, %esp

LCE
.. B1. 26: # Preds ..B1.28 ..B1
addl $-8, %esp
novl $.2.1 2 knmpc_l oc_struct _pack. 1, (%esp)
novl -8(%bp), %ax
novl Y%eax, 4(%esp)
cal | __knpc_for_static_fini

LCE
.. Bl. 41: # Preds ..B1.26
addl $8, %esp
j mp .. B1.31 # Prob 100%

LOE
.. Bl. 27: # Preds ..Bl.28 ..Bl.
.. LN7:
cal | onp_get _thread_num_

LOE eax

.. Bl. 42: # Preds ..Bl.27
cnpl %edx, %eax
jle .. Bl. 27 # Prob 50%
j mp .. B1. 26 # Prob 100%

LOE

.type padd_, @unction
.Size padd_,.-padd_

.globl _padd__6__par_I| oopO
_padd__6__par_| oopO:

paraneter 1: 8 + %bp
paraneter 2: 12 + %bp
paraneter 3: 16 + %bp
parameter 4: 20 + %bp
paraneter 5: 24 + %bp
parameter 6: 28 + %bp

#6.
#6.
#6.
#6.

[eoleoloNe

#6.
#6.

oo

#6. 0

#6. 0

21

#6.
#6.
#6.
#6.
#6.

[eoleoloNoNe]

#6.
#6.

oo

25
#8.0

#10.0
#10.0
#10.0

199

Intel(R) Fortran User's Guide Vol lI

.. B1. 30: # Preds ..Bl1.0

.. LN16:

pushl %ebp #13.0

novl Y%esp, %ebp #13.0

subl $208, %esp #13.0

nov| Y%ebx, -4(%bp) #13.0

.. LN17:

novl 8(%bp), %Y%eax #6. 0

novl (%eax), %eax #6.0

novl Y%eax, -8(%bp) #6. 0

nov| 28(%bp), %eax #6. 0

.. LN18:

novl (%eax), %eax #7.0

novl (%eax), %eax #7.0

novl %eax, -80(%bp) #7.0

nov| $1, -76(%bp) #7.0

novl -80(%&ebp), %eax #7.0

testl Yeax, %Yeax #7.0

] g .. B1.20 # Prob 50% #7.0
LOE

.. Bl. 31: # Preds ..Bl1.41 ..B1.39

..B1.38 ..B1.30

.. LN19:

novl -4(%bp), %ebx #13.0

| eave #13.0

ret #13.0

.align 4, 0x90

mar k_end;

Debugging Shared Variables

When a variable appears in a PRI VATE, FI RSTPRI VATE, LASTPRI VATE, or
REDUCTI ON clause on some block, the variable is made private to the parallel
region by redeclaring it in the block. SHARED data, however, is not declared in the
threaded code. Instead, it gets its declaration at the routine level. At the machine
code level, these shared variables become incoming subroutine call arguments
to the threaded entry points (suchas __ PADD 6 par | oop0).

In Example 2, the entry point __ PADD 6_par _| oopO has six incoming
parameters. The corresponding OpenMP parallel region has four shared
variables. First two parameters (parameters 1 and 2) are reserved for the
compiler's use, and each of the remaining four parameters corresponds to one
shared variable. These four parameters exactly match the last four parameters to
__knmpc_fork_cal | () inthe machine code of PADD.

200

Volume II: Optimizing Applications

ﬂ Note

The FI RSTPRI VATE, LASTPRI VATE, and REDUCTI ON variables also
require shared variables to get the values into or out of the parallel region.

Due to the lack of support in debuggers, the correspondence between the shared
variables (in their original names) and their contents cannot be seen in the
debugger at the threaded entry point level. However, you can still move to the
call stack of one of the subroutines and examine the contents of the variables at
that level. This technique can be used to examine the contents of shared
variables. In Example 2, contents of the shared variables A, B, C, and N can be
examined if you move to the call stack of PARALLEL() .

Optimization Support Features

Overview

This section describes the Intel® Fortran features such as directives, intrinsics,
run-time library routines and various utilities which enhance your application
performance in support of compiler optimizations. These features are Intel
Fortran language extensions that enable you optimize your source code directly.
This section includes examples of optimizations supported by Intel extended
directives and intrinsics or library routines that enhance and/or help analyze
performance.

For complete detail of the Intel® Fortran Compiler directives and examples of
their use, see Chapter 14, "Directive Enhanced Compilation," in the Intel®
Fortran Language Reference. For intrinsic procedures, see Chapter 9, "Intrinsic
Procedures," in the Intel® Fortran Language Reference.

A special topic describes options that enable you to generate optimization reports
for major compiler phases and major optimizations. The optimization report
capability is used for Itanium®-based applications only.

Compiler Directives Overview

This section discusses the Intel® Fortran language extended directives that
enhance optimizations of application code, such as software pipelining, loop

201

Intel(R) Fortran User's Guide Vol lI

unrolling, prefetching and vectorization. For complete list, descriptions and code
examples of the Intel® Fortran Compiler directives, see "Directive Enhanced
Compilation™ in the Intel® Fortran Language Reference.

Pipelining for Itanium®-based

Applications

The SWP | NOSWP directives indicate preference for a loop to get software-
pipelined or not. The SWP directive does not help data dependence, but overrides
heuristics based on profile counts or lop-sided control flow.

The syntax for this directive is:
I DEC$ SWP or CDEC$ SWP
| DEC$ NOSWP or CDEC$ NOSWP

The software pipelining optimization triggered by the SWP directive applies
instruction scheduling to certain innermost loops, allowing instructions within a
loop to be split into different stages, allowing increased instruction level
parallelism. This can reduce the impact of long-latency operations, resulting in
faster loop execution. Loops chosen for software pipelining are always innermost
loops that do not contain procedure calls that are not inlined. Because the
optimizer no longer considers fully unrolled loops as innermost loops, fully
unrolling loops can allow an additional loop to become the innermost loop (see -
unrol I [n]]). You can request and view the optimization report to see whether
software pipelining was applied (see Optimizer Report Generation).

SWP
| DEC$ SWP
doi =1, m

if (a(i) .eq. 0) then
b(i) = a(i) + 1

el se

b(i) = a(i)/c(i)

endi f

enddo

Loop Count and Loop Distribution

LOOP COUNT (N) Directive

202

Volume II: Optimizing Applications

The LOOP COUNT (' n) directive indicates the loop count is likely to be n.
The syntax for this directive is:

I DEC$ LOOP COUNT(n) or CDEC$ LOOP COUNT(n)

where n is an integer constant.

The value of loop count affects heuristics used in software pipelining,
vectorization and loop-transformations.

LOOP COUNT (N)

'DECS LOOP COUNT (10000)

doi =1, m
b(i) =a(i) +1 ! This is likely to
enabl e

I the loop to get software-
I pipelined
enddo

Loop Distribution Directive

The DI STRI BUTE PO NT directive indicates to compiler a preference of
performing loop distribution.

The syntax for this directive is:
I DEC$ DI STRI BUTE PO NT or CDEC$ DI STRI BUTE PO NT

Loop distribution may cause large loops be distributed into smaller ones. This
may enable more loops to get software-pipelined. If the directive is placed inside
a loop, the distribution is performed after the directive and any loop-carried
dependency is ignored. If the directive is placed before a loop, the compiler will
determine where to distribute and data dependency is observed. Currently only
one distribute directive is supported if it is placed inside the loop.

DISTRIBUTE POINT

I'DEC$ DI STRI BUTE PO NT

doi =1, m
b(i) = a(i) +1
c(i) =a(i) + b(i) ! Conpiler will decide

wher e
I to distribute.
| Data dependency is observed

203

Intel(R) Fortran User's Guide Vol lI

d(i) =c(i) +1
enddo

doi =1, m
b(i) = a(i) +1

| DEC$ DI STRI BUTE POl NT

call sub(a, n) I Distribution will start
her e,
I ignoring all |oop-carried
I dependency
c(i) = a(i) + b(i)
d(i) =c(i) +1
enddo

Loop Unrolling Support

The UNROLL directive tells the compiler how many times to unroll a counted loop.
The syntax for this directive is:

CDEC$ UNROLL or! DEC$ UNROLL

CDEC$ UNROLL (n) or!DEC$ UNROLL (n)

CDEC$ NOUNROLL or ! DEC$ NOUNROLL

where n is an integer constant. The range of n is 0 through 255.

The UNROLL directive must precede the do statement for each do loop it affects.
If n is specified, the optimizer unrolls the loop n times. If n is omitted or if it is
outside the allowed range, the optimizer assigns the number of times to unroll the

loop.

The UNROLL directive overrides any setting of loop unrolling from the command
line.

Currently, the directive can be applied only for the innermost loop nest. If applied
to the outer loop nests, it is ignored. The compiler generates correct code by
comparing n and the loop count.

UNROLL
CDEC$ UNROLL(4)
doi =1, m

204

Volume II: Optimizing Applications

b(i) =a(i) + 1
d(i) =c(i) +1
enddo

Prefetching Support

The PREFETCH and NOPREFTCH directives assert that the data prefetches be
generated or not generated for some memory references. This affects the
heuristics used in the compiler.

The syntax for this directive is:

CDEC$ PREFETCHor! DEC$ PREFETCH

CDEC$ NOPRFETCHor ! DEC$ NOPREFETCH

CDEC$ PREFETCH a, b or! DEC$ PREFETCH a, b

CDEC$ NOPREFETCH a, b or! DEC$ NOPREFETCH a, b

If loop includes expression a(j), placing PREFETCH a in front of the loop,

instructs the compiler to insert prefetches for a(j + d) within the loop. d is
determined by the compiler. This directive is supported when option - Q3 is on.

PREFETCH

CDEC$ NOPREFETCH c
CDEC$ PREFETCH a

doi =1, m
b(i) = a(c(i)) + 1
enddo

Vectorization Support

The directives discussed in this topic support vectorization.

IVDEP Directive

Syntax :

CDEC$ | VDEP
I DEC$ | VDEP

205

Intel(R) Fortran User's Guide Vol lI

The | VDEP directive instructs the compiler to ignore assumed vector
dependences. To ensure correct code, the compiler treats an assumed
dependence as a proven dependence, which prevents vectorization. This
directive overrides that decision. Use | VDEP only when you know that the
assumed loop dependences are safe to ignore.

For example, if the expressionj >= 0 is always true in the code fragment
bellow, the | VDEP directive can communicate this information to the compiler.
This directive informs the compiler that the conservatively assumed loop-carried
flow dependences for valuesj < 0 can be safely ignored:

| DEC$ | VDEP
doi =1,
100

a(i) =
a(i+j)
enddo

f) Note

The proven dependences that prevent vectorization are not ignored, only
assumed dependences are ignored.

The usage of the directive differs depending on the loop form, see
examples below.

Loop 1

Do i
= a(*) + 1
a(*) =

enddo

Loop 2

Do i

a(*) =
=a(*) +1

enddo

For loops of the form 1, use old values of a, and assume that there is no loop-
carried flow dependencies from DEF to USE.

For loops of the form 2, use new values of a, and assume that there is no loop-
carried anti-dependencies from USE to DEF.

In both cases, it is valid to distribute the loop, and there is no loop-carried output
dependency.

Example 1

206

Volume II: Optimizing Applications

CDEC$ | VDEP

do j=1,n

a(j) =a(j+rm +1
enddo

Example 2

CDECS$ | VDEP

do j=1,n

a(j) =b(j) +1
b(j) =a(j+m + 1
enddo

Example 1 ignores the possible backward dependencies and enables the loop to
get software pipelined.

Example 2 shows possible forward and backward dependencies involving array
a in this loop and creating a dependency cycle. With | VDEP, the backward
dependencies are ignored.

| VDEP has options: | VDEP: LOOP and | VDEP: BACK. The | VDEP: LOOP option
implies no loop-carried dependencies. The | VDEP: BACK option implies no
backward dependencies.

The | VDEP directive is also used with the - i vdep_par al | el option for
Itanium®-based applications.

For more details on the | VDEP directive, see "Directive Enhanced Compilation,"
in the Intel® Fortran Language Reference.

Overriding Vectorizer's Efficiency Heuristics

In addition to | VDEP directive, there are more directives that can be used to
override the efficiency heuristics of the vectorizer:

VECTOR ALVWAYS
NOVECTOR

VECTOR ALI GNED
VECTOR UNALI GNED
VECTOR NONTEMPORAL

The VECTOR directives control the vectorization of the subsequent loop in the
program, but the compiler does not apply them to nested loops. Each nested

loop needs its own directive preceding it. You must place the vector directive
before the loop control statement.

The VECTOR ALWAYS and NOVECTOR Directives

207

Intel(R) Fortran User's Guide Vol lI

The VECTOR ALWAYS directive overrides the efficiency heuristics of the
vectorizer, but it only works if the loop can actually be vectorized, that is: use
| VDEP to ignore assumed dependences.

Syntax:

I DEC$ VECTOR ALWAYS
! DEC$ NOVECTOR

The VECTOR ALWAYS directive can be used to override the default behavior of
the compiler in the following situation. Vectorization of non-unit stride references
usually does not exhibit any speedup, so the compiler defaults to not vectorizing
loops that have a large number of non-unit stride references (compared to the
number of unit stride references). The following loop has two references with
stride 2. Vectorization would be disabled by default, but the directive
overrides this behavior.

Vector Aligned

' DEC$ VECTOR ALWAYS

doi =1, 100, 2
a(i) = b(i)
enddo

If, on the other hand, avoiding vectorization of a loop is desirable (if vectorization
results in a performance regression rather than improvement), the NOVECTOR
directive can be used in the source text to disable vectorization of a loop. For
instance, the Intel® Compiler vectorizes the following example loop by default. If
this behavior is not appropriate, the NOVECTOR directive can be used, as shown
below.

NOVECTOR

| DEC$ NOVECTOR
do i 1, 100
a(i) b(i) + c(i)
enddo

The VECTOR ALIGNED and UNALIGNED Directives

Syntax:

I DEC$ VECTOR ALI GNED
I DEC$ VECTOR UNALI GNED

Like VECTOR ALWAYS, these directives also override the efficiency heuristics.
The difference is that the qualifiers UNALI GNED and ALI GNED instruct the
compiler to use, respectively, unaligned and aligned data movement instructions
for all array references. This disables all the advanced alignment optimizations of

208

Volume II: Optimizing Applications

the compiler, such as determining alignment properties from the program context
or using dynamic loop peeling to make references aligned.

Note

The directives VECTOR [ALVAYS, UNALI GNED, ALI GNED] should be used
with care. Overriding the efficiency heuristics of the compiler should only
be done if the programmer is absolutely sure the vectorization will improve
performance. Furthermore, instructing the compiler to implement all array
references with aligned data movement instructions will cause a run-time
exception in case some of the access patterns are actually unaligned.

The VECTOR NONTEMPORAL Directive

Syntax: ! DEC$ VECTOR NONTEMPORAL

The VECTOR NONTEMPORAL directive results in streaming stores on Pentium® 4
based systems. A floating-point type loop together with the generated assembly
are shown in the example below. For large n, significant performance
improvements result on a Pentium 4 systems over a non-streaming

implementation.

The following example illustrates the use of the NONTEMPORAL directive:

NONTEMPORAL

subroutine set(a,n)
integer i,n
real a(n)
I DEC$ VECTOR NONTEMPORAL
I DEC$ VECTOR ALI GNED
doi =1, n
a(i) =1
enddo
end
program setit
par anet er (n=1024*1204)
real a(n)
i nteger i
doi =1, n
a(i) =0
enddo
call set(a,n)
doi =1, n
if (a(i).ne.1) then
print *, 'failed
nontenp.f', a(i), i
stop
endi f

209

Intel(R) Fortran User's Guide Vol lI

print *, 'passed nontenp.f’

enddo
end

Optimizations and Debugging

This topic describes the command-line options that you can use to debug your
compilation and to display and check compilation errors.

The options that enable you to get debug information while optimizing are as
follows:

-0 Disables optimizations. Enables - f p option.

-0 Generates symbolic debugging information and line
numbers in the object code for use by the source-
level debuggers. Turns off - O2 and makes - Q0 the
default unless - Q2 (or - OL or - G3) is explicitly
specified in the command line together with - g.

-fp Disables the use of the ebp register in
IA-32 optimizations. Directs to use the ebp-based
only stack frame for all functions.

Support for Symbolic Debugging, -g

Use the - g option to direct the compiler to generate code to provide symbolic
debugging information and line numbers in the object code that will be used by
your source-level debugger. For example:

ifort -g progl.f

Turns off - Q2 and makes - Q0 the default unless - Q2 (or - OL or - O3) is explicitly
specified in the command line together with - g.

The Use of ebp Register

-fp (IA-32 only)

Most debuggers use the ebp register as a stack frame pointer to produce a stack
backtrace. The - f p option disables the use of the ebp register in optimizations
and directs the compiler to generate code that maintains and uses ebp as a
stack frame pointer for all functions so that a debugger can still produce a stack
backtrace without turning off - OL, - Q2, or - O3 optimizations.

210

Volume II: Optimizing Applications

Note that using this option reduces the number of available general-purpose
registers by one, and results in slightly less efficient code.

- f p Summary

Default OFF

-01, -2, or - Disable - f p
3

-0 Enables - f p

The -traceback Option

The - t raceback option also forces the compiler to use ebp as the stack frame
pointer. In addition, the - t r aceback option causes the compiler to generate
extra information into the object file, which allows a symbolic stack traceback to
be produced if a run-time failure occurs.

Combining Optimization and Debugging

The - Q0 option turns off all optimizations so you can debug your program before
any optimization is attempted. To get the debug information, use the - g option.

The compiler lets you generate code to support symbolic debugging while one of
the - O1, - O2, or - O3 optimization options is specified on the command line along
with - g, which produces symbolic debug information in the object file.

Note that if you specify an - O1, - O2, or - O3 option with the - g option, some of
the debugging information returned may be inaccurate as a side-effect of
optimization.

It is best to make your optimization and/or debugging choices explicit:

- If you need to debug your program excluding any optimization effect, use
the - Q0 option, which turns off all the optimizations.

« If you need to debug your program with optimization enabled, then you
can specify the - OL, - O2, or - O3 option on the command line along with -

g.
@Note

The - g option slows down the program when no optimization level (-
On) is specified. In this case - g turns on - 0, which is what slows
the program down. However, if, for example, both - O2 and

211

Intel(R) Fortran User's Guide Vol lI

- g are specified, the code should run very nearly at the same speed
as if - g were not specified.

Refer to the table below for the summary of the effects of using the - g option
with the optimization options.

These

) Produce these results
options

Debugging information produced, - Q0
-g enabled (optimizations disabled), - f p
enabled for IA-32-targeted compilations

Debugging information produced, - OL
optimizations enabled.
Debugging information produced, - Q2
optimizations enabled.

Debugging information produced, - O3
-g -@3 -fp |optimizations enabled, - f p enabled for IA-
32-targeted compilations.

_g -0l

-g -2

Debugging and Assembling

The assembly listing file is generated without debugging information, but if you
produce an object file, it will contain debugging information. If you link the object
file and then use the GDB debugger on it, you will get full symbolic
representation.

Optimizer Report Generation

The Intel® Fortran Compiler provides options to generate and manage
optimization reports.

« -o0opt_report generates optimizations report and places it in a file
specified in
-opt _report _filefilename.If-opt_report _fil e isnotspecified,
-opt _report directs the report to st der r. The default is OFF: no
reports are generated.

« -opt_report_filefil enanme generates optimizations report and
directs it to a file specified in fi | enane.

« -opt_report_I|evel {m n| med| max} specifies the detail level of the
optimizations report. The m n argument provides the minimal summary
and the max the full report. The defaultis - opt _report | evel m n.

« -opt_report_routine [substring]generates reports from all
routines with names containing the subst ri ng as part of their name. If

212

Volume II: Optimizing Applications

[substring] is not specified, reports from all routines are generated.
The default is to generate reports for all routines being compiled.

Specifying Optimizations to Generate Reports

The compiler can generate reports for an optimizer you specify in the phase
argument of the
-opt _report_phasephase option.

The option can be used multiple times on the same command line to generate
reports for multiple optimizers.

Currently, the reports for the following optimizers are supported:

Optimizer Logical Optimizer Full Name

Name

i po Interprocedural Optimizer

hl o High-level Language
Optimizer

ilo Intermediate Language
Scalar Optimizer

ecg Itanium Compiler Code
Generator

al | All optimizers

When one of the above logical names for optimizers are specified all reports from
that optimizer will be generated. For example, - opt _report phasei po and -
opt _report phaseecg generate reports from the interprocedural optimizer
and the code generator.

Each of the optimizers can potentially have specific optimizations within them.
Each of these optimizations are prefixed with the optimizer's logical name. For
example:

Optimizer_optimization Full Name

i po_i nl Interprocedural Optimizer, inline
expansion of functions

i po_cp Interprocedural Optimizer, copy
propagation

hl o_unrol | High-level Language Optimizer, loop
unrolling

hl o_prefetch High-level Language Optimizer,
prefetching

il o_copy_propagation Intermediate Language Scalar

213

Intel(R) Fortran User's Guide Vol lI

Optimizer, copy propagation

€cg_swp Itanium Compiler Code Generator,
software pipelining

Command Syntax Example

The following command generates a report for the Itanium Compiler Code
Generator (ecqQ):

ifort -c -opt_report -opt_report_phase ecg nyfile.f
where:

« - tells the compiler to stop at generating the object code, not linking

« -opt_report invokes the report generator

« -opt_report_phaseecg indicates the phase (ecg) for which to
generate the report; the space between the option and the phase is
optional.

The entire name for a particular optimization within an optimizer need not be
specified in full, just a few characters is sufficient. All optimization reports that
have a matching prefix with the specified optimizer are generated. For example,
if -opt _report_phase il o_co is specified, a report from both the constant
propagation and the copy propagation are generated.

The Availability of Report Generation

The - opt _report _hel p option lists the logical names of optimizers and
optimizations that are currently available for report generation.

For I1A-32 systems , the reports can be generated for:

- ilo

« hloif-GBison

« i po if interprocedural optimizer is invoked with -i p or - i po

« all the above optimizersif- O3 and -i p or - i po options are on

For Itanium-based systems , the reports can be generated for:

« ilo

- ecg

« hloif-GBison

« i po if interprocedural optimizer is invoked with -i p or -i po

- al | the above optimizersif- O3 and -i p or - i po options are on

214

Volume II: Optimizing Applications

Note

If hl o ori po report is requested, but the controlling option (- 3 or - i p--
I po, respectively) is not on, the compiler generates an empty report.

215

Index

ALfileS . 1 32-bit
[[(el =T=To [N 74
-[no]altparam compiler option 43 (10 41T £ 74
-[no]logo compiler option............... 95 single-precision........................ 132
_ 32-bit............. 5, 24,74, 91, 132, 187
_s()variantseeeeeeiiiiiiiiiinnnen, 187 B2K e 181
1 3-byte .o 5
128-Dit.ceeeeeiiiiiiiiiiiii 5,61 4
128-bit Streaming SIMD Extensions A-byte .ovviieiii 5, 18, 50
.. 132
5
16-bit
5000 interval
ACCESSING .ooeeeeeeeiiiiiiee e e eeeeeans 24
SEL. i 116
16-Dit.ceeeeeiiiiiiiiii 5, 24, 132
5000 interval........ccccoeevvvnnrnnnnnnnnns 116
16-byte....cccoeeeeeeeie, 28, 43, 135
53-bit significand
16-byte-aligned............ccccoeeeee. 127
PCOA ... 43
I)Y (- 18
53-bit significandcccee. 43
2
6
24-bit significand
64-bit....eviiiiiiie, 5, 24,91, 187
PC32 e 43
64-bit double-precision................. 132
24-bit significand.............ccccoeeeee. 43
64-bit MMX(TM) ...coovrrerveeieeenes 132

64-bit significand

217

Intel(R) Fortran User's Guide Vol lI

PCBO e 43
64-bit significand........................... 43
8
80-Dit.....ee 5
8-Dit. .. 5, 24,132
B-DYLE ..o, 5, 24, 50
A
ABIl .. 52
ABS.... i, 134
absence

loop-carried memory dependency

... 120
absenceccccviiiiiiiiiiiii, 120
accessing

16-Dit v 24
ACCESSING .evvuieeeeeeeeeeeeeiiiea e e e eeeas 24
accuracy

controllingocovvieeeiiieeiiiceenn, 65
ACCUTACY ..uneivriieerieeeeieeeeieeeeieees 65
add

TESI2 oo 106
add......oooviiiii s 2, 67,106
add/subtract

operationscccceeeeeeeieeeeeeennnn, 65

218

add/subtract 43, 65, 67
added performance........................ 87
adheres

ANSI ., 46
adherescccocciiiiiiiiiiie 46
advanced PGO options................. 93
affected aspect of the program......74
affects

INNING e, 82

SSE 61
affectS.......ccocveiii, 61, 82
after

FORTRAN 77 oo 2

vectorizationcceeeun... 132, 135
AT 2
ALIAS .. 95
aliased........cccoveviiiiii 46
-align compiler option 5
ALIGNEDccooiiiiiiii, 205
aligning

data.........cooeiiiis 135
aligning.........cccvvvvvvvivviiiiiiiiininee, 135
alignment

(0] 0] 1[0] o 1< T 50

1 E=1(=T0 |V 135
alignmentccooevviiiiiee e 5
all

INput/outputcoevvvviiiiiiieeee. 39

OPLIMIZErS ... 212
all39
alloca ... 84
ALLOCATABLE ..o, 46
allowing

(0] 0]1] 111 4=] G 35
F= 1| (0111 T o [o [35
alternate...........cccooeiiiiiiie 43
ALWAYS VeCtorcccooveevvivennnns 205
analyzercccccvvvvvvvvviiniiiiinnnne, 146
analyzing

effects of multiple IPO 81
analyzing........cccovvevvviiiiieeeeeee 5,81
AND ..o 167,176
another possible environment

variable settingcceeeee. 39
ANSI

adheres ... 46

CONfOrMS ..o 60

Index

ANSI......, 43, 46, 60, 67

R8B18 ..., 157
ANSI Fortrancccccvvvvvnnnnnnnn. 157
ansi_aliasccceeeeeiiiiiinnnnn. 43, 46
ANTI e, 139
anti-dependencies.............ccoee.... 205
APl 121, 145
applications

features contributes.................. 121
applicationsccccevvvveieeeeeeenn, 121
application's

code coveragecooeeveeeeeeieennnns 98

TEStS oo 98

visual presentation..................... 98
application's................... 98, 106, 146
applies

ATOMIC......iiiii e 167
APPNES ..o 167
ar library managercccecee. 81
argument

aliasing ..o, 135

using efficiently ..o 13

Intel(R) Fortran User's Guide Vol lI

argument..........ooeeveeeiineeennnnn. 13, 135
arranging
data items........ccceeeeeeeiiiiiiiiiieeeen 5
AMANGING. ... e eeeeeens 5
array
ACCESSING oo 13
assumed-shape..........ccccccennnes 13
compiler creates...........cceevveeee 13
derived-part........cccceeeeiiiiieeiiiiennn, 5
natural storage order................. 18
operationscccceeeeeeieeeeeeen, 134
output argument array types 13
requirementsccccceeeeeeeeeenn. 13
using efficiently...........ccccccennnnns 13
array..... 5, 13, 18, 28, 35, 43, 46, 50,

118, 127, 128, 132, 134, 135, 187,
190, 205

assembling.........cccevviiiiicinnn, 210
assembly files
SPECITYING ..cooveeeieiieii, 210

assembly files 31, 77, 79, 81, 205,
210

-assume compiler option......... 18, 35
assumed-shape arrays 13
ATOMIC directive................ 146, 167

220

ATTRIBUTES C ...oovvvveeeviiiiieee. 95
-auto compiler option..................... 46

automatic allocation

variablesoooeii 46
automatic allocation............cccoveenees 46
-automatic compiler option 46

automatic processor-specific
optimizationcccceeeeeeeeiiiieennns 72

AUTOMATIC statement 46

auto-parallelization

data flowcccovvvveviiiiiiiin 139
diagnostiCccceeeeiiieeeieeenn, 143
enabling.........ccccvviiiiiiie 141
environment variables.............. 141
OVEIVIEW ..oooiiiiiiiiiiiieieeeeeeeeee 138
ProCESSINGuvvneiiiiiiiiiiiiiiiiiinns 139
programming with 139
threshold control 143
threshold needed.................... 141

auto-parallelization 121, 138, 139,
141, 143

auto-parallelized
[oT0] o 1S 143

auto-parallelized.................... 43, 143

auto-parallelizer's
CONEIOl oo 121
enabling.........ccccccieennn. 121, 141
thresholdc. 143

auto-parallelizer's121, 138, 139, 141,
143

auto-vectorization.............. 1, 28,121
aUtO-VECHOriZerccccvveiiiiiiiinnne 128
availability
report generation..................... 212
availabilitycccoevviiiiiiin 212
avoid
EQUIVALENCE........ccccooieiiiiinn. 5
mixed data type arithmetic
EXPreSSIONS.......eeeeeeeeeeeeeeennns 24
small integer items 24
small logical items...................... 24
unaligned data...........ccccceeeeeeeennn. 5
VeCtorizationcceeeeveeeeeene. 205
AVOId v 5, 205

-ax{K|W|N|B|P} compiler option ... 28,
57,125

B
BACK option of IVDEP................ 205
BACKSPACEcccccciiiiiiii, 18

-backtrace compiler option 210

BARRIER directive

EXECULES ..vvieeieeie e eeeee 146
Y= 167
BARRIER directive...... 146, 157, 167

basic PGO options

profile-guided optimization......... 88
basic PGO optionsccceeeeeeeennnn. 91
bcolor option of code-coverage tool

... 98
before

INSErtiNg ...coooeeeeeveieeecee e 146

vectorizationccccceeeeennnnne 132
before ..., 132, 146
begin

parallel construct..................... 152

serial execution........................ 152

worksharing construct.............. 152
begin ... 152
best performance

fUNCLION ..o 73
best performancecccccoeeee. 73
big-endian

little-endiancccccoiiiiiinnnnnne 39

221

Intel(R) Fortran User's Guide Vol lI

big-endianccceevvviviinnnnn. 35, 39
binding ... 146
bitwise ANDcccciiiiiiiieeinns 134
bloCK SIiZeoovvvviviiiiiiiiii 132
BLOCKSIZE

INCreaSINguuuummmniinnniiiniinnnnns 18

(o]0 11111 0o T 18

VAlUESovviiiieeiiiiiieee e 18
BLOCKSIZE.......ccoooiiiie, 18
bound

denormalized single-precision... 61

bound...........ovvvviiiiiiiiiiiii 61
Bourne shell...............ccccocc 32
browsing

frames ... 98
Browsingccceeeeeeeeeiiiecee e, 98
BUFFERCOUNT

buffered_io option...................... 18

default ... 18

INCrEASE......uuuiiuiiiiiiiiiiiiiiiiiiiiiaes 18
BUFFERCOUNTcooeiiiiiiieeeee, 18
buffers

UBC... e, 18

222

buffers ... 18
byterecl keywordcccoeeeeee. 18
C

-c compiler option.................... 35, 77
CHOMP .o, 155, 190
cSOMP BARRIERcccccvvvninnnnns 167
c$OMP DO PRIVATE........cccuuue 167
c$OMP END PARALLEL............. 167
cSOMP PARALLELcccvvveneee 167
cache size intrinsiCccccvveeeennne 27
CACNESIZEovvveviiiiiieeee e 27

call stack dumps

master threadcccceee. 196

worker thread..............covvveeeeee. 196
call stack dumps........ccccceeeieeeeennn. 196
call WORK........... 161, 164, 167, 176
callee.......coouviiiiiiiiiie 84
calls

MalloC ... 52

calls...oooveeviiiiiii 18, 52, 73, 161
callstackoovenveiiiii 192
causing

unaligned data............ccccceeeeeeennn. 5
(o= 1 1S o To PRSP 5
cc_omp keyword..........ccceeeeeeeeennn. 43
-ccdefault compiler option.............. 43

ccolor option of code coverage tool
.. 98

CDECS prefix of directives. 141, 202,
204, 205

CEIL rounding mode...................... 28
changing

NUMDET ... 161
Cchangingcocoeeeeeiie 161
character data.............cccvvveeneen. 5, 50
characteristics................. 57,74, 146
checking

floating-point stack state............ 46

inefficient unaligned data............. 5
checking.......cooooeeiviiiiiiiiiin, 5, 46
choosing

INNNE ... 24
(o1 a0 1o 1<] o [o 24
chunk Size.......ccccccvviiiiiiiiinnnennn, 178
clause containing reduction 176
clauses

Index

comma-separated list 161, 164
cross-reference........................ 157
ST 172
SUMMAIY ..o 157

clauses146, 152, 155, 157, 161, 164,
166, 167, 172, 173, 174, 176, 178,
200

cleanup....ccoooeeeeeeiieeeice e, 132
code

assembly ... 31, 205

Preparingcccccceeeeemmmnnnennnnnns 146
COOE ..o 146
Code DO ..o 24
COUECOVuviiiiiieeeeiieiiiieeee e 98
codecov_optionccceeeeeeeeeeeiennnns 98
code-coverage tool................cceens 98
coding

Intel® architectures.................... 28
(o700 |1 o PSP 2,24, 28

coloring scheme
7] 1] o [98
coloring schemeccccoeeeeeeeviennn, 98

combined parallel/worksharing
CONSEIUCEScevviieeeniiee 146, 166

command line

223

Intel(R) Fortran User's Guide Vol lI

(0] 0]1[0] o 1< T 50
syntax.........c...... 98, 106, 155, 201
command line....... 43, 60, 77, 78, 98,

106, 125, 210
comma-separated....................... 167
comma-separated list

clauses........ccccoeeiiiiine 161, 164

variables........ccccocvvviviiiiiinnnn. 157

comma-separated list. 157, 161, 164,
167, 172

COMMON
block
FIELDS ... 173

block... 5, 28, 35, 50, 52, 146, 161,
172, 173

statementcceveeeen. 5, 28, 50
COMMON................ 28, 46,172, 173
Compag* Visual Fortran.................. 1
compilation

controllingcoevvviiiiiiieiiiieees 50

customizing process of.............. 35

efficient..........cooooeiiiiiiis 35

OPtIMIZING ...cee v, 35

options.........cccvvvveees 43, 46, 50, 52

Phasecccoeeeeeiiiiie 76

techniquescccooeeeeveiiiieiiiiinnnn, 35

compilation 34, 35, 76, 77, 78, 79,
117,121

compilation:oeevvieiiiiieeeeeeeees 76

compiler
applying heuristic..................... 143
commands.........ccceeeeeiiiiinne, 35
compilers 1Loouvviiiiiiiniiiieeeens 79
compiler-created...................... 194
compiler-generated............ 28,194
compiler-supplied library............ 86
compiling with OpenMP*.......... 155
creating array descriptor 13
creating temporary array............ 13
default optimizations................... 43

defining the size of the array

elementscccooeeeeeiiiiiiiiiiin. 5
directivesooovvvviviiiniieeeeee, 201
efficient compilation 35
Intel(R) extension routines...... 187,

194
IPO benefitS.........coevvvvvviiiiinnnnn. 74
issuing warnings..... 79, 91, 93, 94,

125, 157

merging the data from all .dyn files

optimization levels..................... 57
producing

pgopti.dpi file..........cccceeeeeeen. 94
producingccoeeeeevvinnnnnn. 79, 94

programming with OpenMP* ... 146

relocating the source files.......... 97
report generation.................... 212
selecting routines for inlining 84

treating assumed dependence 205

vectorization
101 o] 01] ¢ SRR 205
vectorizationoeeveeveiieeiiaann. 124

compiler. 1, 5, 18, 24, 28, 34, 35, 43,
73, 106, 121, 155, 201

compiling source lines................. 192
COMPLEXccccoeeeees 5, 24, 43, 46

conditional parallel region execution

(7] 1] o TR 161
conditional parallel region execution

.. 161
conforming

ANSI... 60

IEEE 754 ... 67
conformingcooovvveevivvnnnnnnn. 60, 67

Index

constructing

entry-point name...................... 194
CONStrUCting........coovvvvvviiiiiieeeeee, 194
containing

8-byte.. oo 5

IR 77,78

SUBSEING .oooeeieiiiiie, 212
containing.............. 5,77,78,81, 212
CONTINUE ... 130
controlling

ACCUTNACY ..vvvveeeiieeeiiieeeineeenineees 65

advanced PGO optimizations93
alignment with options................ 50

auto-parallelizer's diagnostic levels

..................................... 121, 143
compilation process................... 35
complex flow..............cceeee. 120
computation of stacks and

variables.........ccccvviiiin, 46
data scope attributes 164
floating-point accuracy............... 67
floating-point computations........ 65

generation of profile information

Intel(R) Fortran User's Guide Vol lI

loop vectorization 205
number of threads.................... 161
OpenMP* diagnostics.............. 155
(]8T a o [To o [P 64
speculationccceeeeiiiieiiiieeinns 57

your program with OpenMP* ... 184

controlling 64, 65, 86, 121
CONVENLIONS....oiiii s 2
converting
little-endian.........ccccoeeviniiinnnnnns 35
(030] 0 \VZ=T4 1] [o [P 35

COPYIN clause.. 152, 157, 161, 172,
173

(070] 0)Y/ o117 1 (= 157

correct usage

countable............ccooeiiiiiiinns 131
correct usagec..ceevunnneen. 130, 131
COS .. 132, 134
COUNT ..o 131
countable

correct Usage........cceeeevvvvnnennnnn 131
countableccccciiiiiiiiiiiiis 131

coverage analysis
modules subset.................oue...l. 98

226

coverage analysiS............ccceevveeennns 98
CPU
CPU_TIME ..., 32
CPU-intensive...........cccccuueee 18, 32
USE ..ot 13
CPU.., 13, 18, 32

CRAY pointer

preventing aliasing..................... 46
CRAY pointercoovvvvvvvcieieeeenn. 46
creating

D I] P 106

multifile IPO executable using xild

... 78
multifile IPO executable with
command line........ccccceceeeennne 77

multithreaded applications.......... 28
creatingoeeeeeeenee. 28, 77, 78, 106
criteria

inline function expansion 84
(0] 1] (=] 1 - TP PTTPTPPPPPPP 84

... 84
CRITICAL directive

USE..ciiiiiiiiiiiin e 167
CRITICAL directive...... 146, 157, 167

critical/orderedcccccevveeennnne 146
Cross-iterationcccceeveeernnne 146
cross-platform, -ansi_alias............ 46
CSh e 39
customizing
compilation process................... 35
CUSTOMIZING ...evvviiiiiiiiiiiiiiiiiiiiiiiiie 35
(GAVA o] o] 1 0] 4 IS J 1
D
data
alignment..........cccccceeeeeieeeeenn. 5, 50
alignment example 135
data-dependence 118
declarations
Orderingcceevvveiiineeeeeeeeeeeeiins 5
declarations.............ccooeeeeeiiiins 5

dependence ... 118, 128, 139, 143,
202

dependence analysis............... 128

dependence vectorization patterns

... 128
environment directive 152
flow

program’s loops 138

Index

fOW cooviiii 121, 138
items
arrangingcceeeeeeeeeeeeeeeennnnnnnnn 5
KEMS e S
(0] 011 [0] o < J USRI 46
SettingsS ...ooovveiiiiii, 43
sharing......cccooe, 146
type...... 2,5,24,61, 121, 124,176
data ..o 135

data scope attribute clauses
OVEIVIEW ..oooiiiiiiiiiiiieieeeeeeeeee, 172

data type arithmetic expressions...24

DATE_AND _TIME........ccooeiviiinnn. 32
DAZ

flagS ..ooooeeieie 73
DAZ .. 1, 28, 73
DCLOCK ..ot 32
dcommons keyword 5, 35, 50
DCU (data cache unit)................. 135

debugger limitations

multithread programs............... 192
debugger limitations..................... 192
debugging

COUB ..o 194

Intel(R) Fortran User's Guide Vol lI

multiple threads....................... 196

multithread programs overview 192

parallel regions...........cccceee..... 194
shared variables........c...c......... 200
statementS.....coeeeeveiiiiiin, 192

debugging 2, 192, 194, 196, 200, 210

debugging code using multiple

threads ..., 196
DEC.............. 95, 141, 202, 204, 205
DEF

USE .. 205
DEF. .. 205
DEFAULT

BUFFERCOUNTcccoeeiiie. 18

disabling options........................ 43

Itanium®-based applications..... 84

DEFAULT .. 18, 43, 52, 84, 121, 152,
157, 161, 172,173

default behavior

compiler optionscccceuneeee 43
default behavior 43, 205
DEFAULT Clause

SPECHY v 173

DEFAULT Clause........ccccccuvveeene. 173
deferred-shape..........ccccccoeeeiiiinns 13
demangle option of the code
coverage tool.......cccceeeveeeeiviennnns 98
denormal
EeXCepPtionscceveeiiieieeeeeeeeenns 28
flushingoooiiiinii, 61, 65
valuesccceveeeviiiiinnnn. 28, 61, 65
denormalcceee 28, 61, 65, 73
denormalized..........cccccoiniinninnnnns 61

denormalized single-precision

bound.........ccciiii 61
denormalized single-precision....... 61
denormalized values 61
denormalscccccciiiiiiiiiiiiininnnns 28
denormals-are-zero

enables.................c 28
denormals-are-zero................... 1,28
dependenceccccccvviiiiiieieeenn, 139
DEQUEUE ..., 167
dequeuingcccevvveiiiiiiieeeeeenn, 167
derived-type datacccceeeeveennnn. 5
describes

characteristics............cccceeeeeeennn. 57

Profile IGS........ooooee 113
describes 35,57, 113, 201
developing

multithreaded application 28
developingcooeeevvieiiiiiiiiiee, 28
device-Specificccccccuneninnnnnnnns 18
diagnostic reports................ 143, 155

diagnostics. 121, 125, 127, 141, 143,
155

difference operators................... 190
different application

OptiMIZINGcoevveiieee e, 57
different application...................... 57

differential coverage

FUNNING cevvviiee e 98

SOUICE ...iiieeiie e ee e 98
differential coverage...................... 98
DIMENSIONcccooeiieiienns 130, 131
dimension-by-dimension............. 128
directive

CONMIOIS....coiiiiiiee e 152

enhanced compilation 201, 205

format.............cos 141, 155

IVDEP

informs compiler.................. 205
IVDEP ... 120
NAME.....vviiiiiiieeeeiieeeiriines 141, 155
OVEIVIEW ..oooiiiiiiiiiiiiiieeeeeeeeee 201
preceding........ccoeeveeeeiiiiiiinnennnn. 205
relieve ..., 121
usage rules........cccceeevennnnnnnnnns 146
USE..ciiiiiiiiiiiii e 155
VECTOR.....oiiiiiiies 205

directive.... 1, 2, 34, 35, 43, 120, 121,
124, 127, 138, 139, 141, 145, 146,
152, 155, 157, 161, 164, 166, 167,
172,173, 174, 176, 178, 190, 192,
201, 202, 204, 205

directory
SPECITYING...ccooviiiiiiiiiiiiiii, 93
directorycoooeeiee s 93
disable
D e 210
function splitting..............oovvveenn.. 91
ININING e, 43
intrinsics iNliNING.........ccoeveienee... 57
PO e, 74
-On optimizations....................... 57
disable.......ccoovevviieieinnnnnn. 74,91, 210

229

Intel(R) Fortran User's Guide Vol lI

disclaimer........cccccvvviiiiiiiie e, 2
disk /O, 18
dispatch options..........cccceeeeeeeeennn. 68

DISTRIBUTE POINT directive 202

division-to-multiplication optimization

.. 64
DO directive........ 146, 164, 167, 174
DO loop..... 13, 18, 24, 164, 174, 178
DO WHILE 130, 131, 164, 167
document number.............cccceiinnns 1
DO-ENDDO ..., 130
DOUBLE ..., 28
DOUBLE PRECISION

FETUINS ..covviiiii e, 184

EYPES. i 134

variables

KIND ..o, 43
variables.........ccooocciis 43

DOUBLE PRECISION 24, 67, 184

-double_size {n} compiler option... 43

double_size 64.........vvvveeeiieeen. 43
dpi
dpi customer.dpi..........ceeveeeennnne 98
dpi file.............. 88, 91, 95, 98, 106

230

DPI list
Createcoovvvvvvviiiiiiee, 106
dpi_listfileccccceeeeieeneennn, 106
dpi_list tests_list................... 106
INe . 106
3] o I 1 106
dpi options ..., 98
dpi pgopti.dpiceeveiiiiiieeeiieeennns 98
AP e 97, 98, 106
APS oo, 43
-dps compiler option...................... 43
dummy argument 13, 18, 35
dummy_aliasesccccceeeeeennn. 35, 46
dumping
profile data.............cccoeenninnnnnnne 95
profile information............. 114, 116
dumping ...cooeeeeeeeiie e, 95
during
instrumentationcccccueeene 95
interprocedural optimizations.....86
(o (U] o [P 86, 95
dyn
files

dynamic-information files . 94, 95

files.. 88, 93, 95, 98, 106, 114, 116

(0177 ¢ IR 88, 91, 93, 94, 106
dynamic
COUNEEIS ...ovvvvieieiiei e 98
DYNAMIC.........ccovveen. 167,178
dynamic_threads.................... 184

dynamic-information

files oo, 88, 91
dynamic-information................... 91
information filescccoeeeveen.. 93

profile counters

resetting.........ccoevvvvveinneeneenn. 115
profile counters............ccccuuenes 115
dynamiccoeeeveeeeeininnnnnnnn. 167,178
E
CAX cuiitiiniieee e 194, 196

USE .o 210
ebp register........... 43,194, 196, 210
ebp-based...........cccc 43, 210
EDX .. 196
Lo o P 212

[Tolo [T o P 212
EDB

USE ..iiiiiiiiiii e e eee et 5
EDB ..o 5,31
€I 194
E0X .. 196
effective auto-parallelization usage

... 139
effects

analyzingccoooe 81

multiple IPO ..., 81
effectS....coo 81
efficiency ... 2,24
efficient

COOEB...ooiiiiiiiiii 24

compilationccceeeeeiiinn. 35

use of

AITAYS .ot 13
record buffers.........ccccccoennnee 18

USE Of .o 18
efficient........ccoo 24
efficient compilation....................... 35
elapsed time.........cccevvvvciiinnennnn. 106
EISIZE ... 187

Intel(R) Fortran User's Guide Vol lI

email ... 98
enable
auto-parallelizer............... 121, 141
DEC... e, 43
denormals-as-zero 28
-fpoption ... 60, 210
implied-DO loop collapsing........ 18
INNING v, 86
-O2 optimizationsccc.eue. 57
parallelizer..........ccccccvvveennnn.n. 121
SIMD-encodings...........c..c....... 132
test-prioritization...................... 106
enable........... 28, 106, 121, 132, 141
encounters
SINGLE ..., 164
ENCOUNTEIS ... 164
end
DO 164
parallel construct..................... 152
REDUCTION........ciiiiiiiiiiieeees 176
worksharing
(670] 1511 11 [of AP 152
worksharing..................... 146, 157

232

end..... 130, 131, 135, 146, 152, 157,
164, 176, 196

END CRITICAL directive............. 167

END DO directive................ 146, 164

END INTERFACEccccooiiiin. 95

END MASTER directive 157, 167

END ORDERED directive ...157, 167
END PARALLEL

directivecooevvvieeiine. 152, 161
END PARALLEL 146, 157
END PARALLEL DO

directivecccvvveieeieeee 166
END PARALLEL DO ...146, 157, 166

END PARALLEL SECTIONS

dIreCtive ..o 166
END PARALLEL SECTIONS 146,
157, 166
END SECTION directive 164

END SECTIONS

directivecooovvvviveiiinn. 146, 164
END SECTIONS 157, 164
END SINGLE

directivecccvvveeeeeeennnn, 146, 164
END SINGLEcceeeeeee. 157, 164

END SUBROUTINE.............. 95, 135
eNdiancoeeveiiieii e 39
Enhanced Debugger-..................... 31
ensuring natural alignment.............. 5
entry

parallel region............cccccuvennnns 196

subroutine PADD..................... 196
ENITY e 196
ENtIY/eXit ...vveeei i 139

entry-point name

CONStrUCtingcovvvvieeeeeeeennn. 194
entry-point name.........cccceeeeeeennnn. 194
environment

data environment directive 152

OpenMP environment routines 184
UNIPrOCESSONcccvveeeviiiiiieeeenn 192

variables18, 39, 94, 113, 141, 155,
161, 181, 184, 187

enNVIroNMeNto.oveeveiieeeeeieee, 152

EQUIVALENCE statement

EQUIVALENCE statement. 5, 18, 24,
46

=0)Y 167, 176

ERRATA.....o, 196

errno variable

7= 1] o [N 86
errno variable ... 86
error_Iimit 30 ... 43
-error_limit n compiler option......... 43
EBSP ciiiiee e 194, 196
examples

OpenMP ..., 190

PGO...i e 94

vectorizationcccccevveeennnnne 135

examples 2, 5, 13, 18, 24, 27, 28, 32,
35, 39, 43, 46, 50, 52, 57, 61, 64,
65, 67, 69, 70, 72, 73, 77,78, 79,
81, 82, 86, 87, 88, 94, 95, 97, 98,
106, 114, 115, 116, 117, 118, 119,
120, 121, 124, 127, 128, 130, 131,
132, 134, 135, 137, 138, 139, 141,
143, 146, 152, 155, 161, 164, 166,
167,172,173, 174, 176, 178, 187,
190, 192, 194, 196, 200, 201, 205,
210, 212

exceed

32-Diteeeeciiieieece e 74
EXCEEM.... et 74
EXCEPTION

ST e 39
EXCEPTION ... 39

233

Intel(R) Fortran User's Guide Vol lI

executable files..........cccooveeeinns 35
executing

BARRIER ..., 146

SINGLE ... 164

test-prioritization...................... 106
executingccceeuueees 106, 146, 164
execution

environment routines............... 184

FOW ..o 152
EXECULION ...vvvviiieeiiiiiiieeeee e 184
existing

[1e o] o1 i 1o o FAA 94
EXISHING...cvvviiiieiie e 94
exit

WOrksharingcccvvveeeeeeeeennn. 146
EXIT .o 146
explicit symbol visibility specification

.. 52
explicit-shape arrays..................... 13
EXTENDED PRECISION.............. 67
extended-precision........................ 24
extensions SUPPOIrt.......cccceeeeeeeenne. 68
EXTERN symbol visibility attribute

value......oovviiiiiiiiiiiiiiiieieeeee 52

F
F_UFMTENDIAN
7] 1] o [39
Value ... 39
F UFMTENDIAN......ccooviiieiiiie. 39
-fast compiler option...................... 57
fCOlON .o 98
feature
contributes
application.........cccoeeeeevvveennns 121
contributesccccceeevviiinnnnnnn. 121
displayccooovviviiiiiiieeee 98
enable........ccooiiiiiiii 39
OpenMP contains..................... 146
OVEIVIEW ..ooooiiiiiiiiiiieeeeeeeeeee 201
WOTK ..o 192

feature..2, 1, 2, 5, 28, 34, 39, 52, 70,
72,73, 97, 98, 106, 121, 125, 135,
138, 139, 145, 146, 190, 192, 201

feedback compilation..................... 94
FIELDS......c.oooii e 172,173
file
dpiccceee, 91, 98, 106
Aynfiles i, 95

assembly 78, 79, 81, 210
containing

intermediate representation (IR)

... 77

ST e, 106
containing...........coeevvvvvnnnnn. 35, 106
default output.........cccoeeeeeeiieennnns 35
dynamic-information................... 91

executable.. 32, 35, 72, 77, 78, 79,
88, 91, 94, 125, 141, 145, 146

1] 01 | P 18
multiple IPO..........coooiis 76
multiple source files................... 35
name
pgopti.dpi.......cccceeviiiiiieeeee, 95
NAME ...ovvviiiiiiee e 2,93

object 1, 35, 43, 76, 77, 78, 79, 81,
91

pathnamecccciiiiinn. 52
real object filesccccceeeeeee. 79
relocating the source files.......... 97
requiredccoeeeeinnns 77,98, 106
specifying symbol files............... 52

file 76, 77,78, 79, 81, 93, 95, 97, 98,
106

Index

FIRSTPRIVATE clause

FIRSTPRIVATE clause....... 139, 146,

152, 157, 161, 164, 172,173, 174,
200

floating-point
applications
OptiMIZINGcovvvviiieieeeeeeeeee, 28
applications.........cccooeeeevviiineennn, 28

arithmetic precision

IA-32 systemsccoevvvvnnnnnn. 64
Itanium-based systems 65
= 101 0J0] 11 o] o IS 61
-mpLl optioncceeeeveieeeeeeeenns 61
(0] 0] 1[0] o SN 61
OVEIVIEW ..coeeeeeiiiiiiiieeee e e 61

arithmetic precision..61, 64, 65, 67

exceptions

exception handling.................. 61
EeXCEePLioNScooevvveiiiiiiiiieeeee, 28
floating-point-to-integer.............. 64
multiply and add (FA)................. 67

stack state

checking........ccccoeeeiiiiiiiiiiinnnn, 46

235

Intel(R) Fortran User's Guide Vol lI

stack stateccceeeeeriiiiiiiieennn. 46
EYPE i 61
floating-point 61, 64, 65, 67
FLOW ..o 139

USE oo eeeen e e e 167
FLUSH directive.......... 146, 157, 167
flushing

denormalccccceeeveeninnnnne. 61, 65

zero denormal 61, 65
flushingccooooeeeiiiiii. 61, 65
FMA e 67
-fnsplit- compiler option................. 91

FOR_SET_FPE intrinsic

FOR_M_ABRUPT_UND 73
FOR_SET_FPE intrinsic 61, 73
fork/join ... 190
format

auto-parallelization directives .. 141

big-endiancccceiiiiiiinn 39
EXPreSSIONSccoeeiiiiees 18
floating-point applications.......... 28
OpenMP directives.................. 155

236

format.. 18, 28, 39, 91, 106, 141, 155

formatted files

unformatted filesccceeeenean.l. 18
formatted files......ccovvveeveiiieia 18
FORT_BUFFERED

run-time environment variable ...18

FORT_BUFFERED...........c.cc........ 18
Fortran
APl 146, 152, 192
FORTRAN 77
dummy aliases...........ccccceeu. 35
FORTRAN 77 2,5,13,35
Fortran standardooeee.... 2
Fortran uninitialized 52
Fortran USE statement............ 184
INCLUDE statement................ 184
Fortran...... 1, 13, 28, 34, 35, 39, 117,

121, 124, 145, 146, 155, 180, 181,
184, 201

Fourier-MotzKinccccvvvvvnnnnnn. 128
FP
MURIPIY oo 65
operations evaluation................. 65
(o] 011 [0] o - J USRI 61

-fp compiler option

-fpsummary ... 210
-fp compiler option 210
-fpstkchk compiler option 1
frames

Browsing ..., 98
frames.......oocoin 98
-ftz compiler option..........c............. 28
FTZ flag

Itanium®-based systems........... 61

=] 1] [0 [URPRTII 73
FTZflag ..ooooeveeenn.. 1, 28, 61, 65, 73
full name ... 212
function

best Performance...................... 73

function splitting

disablingcccccoeeiiiiiiin, 91
function splitting............cccceveeeee 91
function/routine........................ 187
function/subroutine..................... 46

fUNCLION ... 73

Index

G
-g compiler option...........cccccuunnnne 210
GCC
Id 77
GCC e 78
GCD e 128
GDB
USE .. e 210
GDB .., 210
general-purpose registers 210
generating
instrumented code...................... 91
NON-SSE ..., 28
processor-specific function version
... 72
profile-optimized executable....... 91
FEPOIS o 212
vectorization reports 125
generating 28, 72,91, 98, 125
gigabytes..........cccceevvvvviinnnnns 181, 187
global symbolscccceeeiieeeiiinnnnns 52
GNU ..o 194, 196
GOT (global offset table)............... 52
GP-relativecccccceiiiiiiiiiiiiinns 52

Intel(R) Fortran User's Guide Vol lI

GUIDED (schedule type) 178
guidelines
advanced PGO............cccvveeeenen. 93
auto-parallelization 139
(o0 o |19 o [T 28
VeCtorizationcceevveveeeeene. 127

guidelinesb, 24, 28, 87, 93, 124, 127,
139

H
help

Od ULIlItY ..o 39
Relp ..o 39
HIDDEN visibility attribute............. 52

high performance

programmingeeeeeeeeeeeennnn. 5
high performance.............ccccoc......... 5
high-level

OPLIMIZEr. ..o 212

parallelizationccccuueees 139
high-level ..., 2,34
HLO

hlo_prefetch...........ccccccceeeo 212

hlo_unroll...........ccceein 212

OVEIVIEW ... 117

238

prefetching.......ccccevvvieeieneeeen. 120
unrollingooooeeeeeveeeeieee e, 119
HLO oo 2,212
HTML fileS ..o 98

Hyper-Threading technology 28, 121,
145

I
1/O
ISt 18
(ST] o [o P 18
performance
IMProviNg ...cooovvvveeeeeeeeeeee, 2,18
performancecccceeeeeeenn.. 2,18
1 18, 32, 146
|A-32
floating-point arithmetic.............. 64

Hyper-Threading Technology-

enabledcccooeeeiiiiiiiiininn, 121
Intel® Debuggercccccvvveennn. 192
Intel® Enhanced Debugger 31

IA-32.1, 2, 28, 31, 35, 39, 43, 46, 50,
52, 57, 61, 64, 67, 68, 69, 70, 72,
73,74,77, 82, 84, 86, 88, 98, 106,
117, 118, 121, 124, 125, 128, 145,
146, 181, 192, 205, 210, 212

IA-32 applications.............cccceeee. 117

IA-32 0Nly....coovviiiiii, 2,61, 118
IA-32 systems............... 1, 64, 69, 73
|IA-32-based

little-endian...........ccccceininnnnns 39

ProCEeSSOIS....cccvviiiinieineennn. 39, 146
IA-32-basedcccoeeeiiiiii 1
IA-32-specific feature................... 125
IA-32-targeted compilations........ 210
IAND ..o, 157, 167,176
identifying

synchronization 167
1dentifying.......ccccoeeeveieiiiiieiiiiiin, 167
IEEE

IEEE 754

CONfOrM..ccvviiiiiiiiiiiiii e, 67

IEEE 754 ..., 67

IEEE-754 ... 28
IEEE..... s 60, 67, 73
IEOR ..o, 157, 167,176
IF

generatedcoceeiiiiiiiiiis 98

statementcccoeeeiiiiiiineees 98

IF98, 130, 135, 161, 176

IF clause.......cccconii, 161
-iface compiler option 43

ifort. 2, 35, 43, 50, 52, 61, 65, 69, 70,
72,73,76, 77,81, 82, 86, 88, 94,
106, 119, 125, 141, 143, 155, 194,
210, 212

IL
compiler readseeeeeevveennnns 79
fileS . 1,79
produced...........ccoevvviiiiiiiieeeee, 79

IL79

ilo212

ILP 121

implied DO loop

collapsing........ccccoeeeeeiiiiiiee, 18
implied DO loop......cccevvvvvnnnnnn. 18, 24
improving

I/O performance...........c.cccceenn.. 18

run-time performance 24
IMPIrOVING....cvvveieieeeeeeeeeeeiiiiiinnnn 2,18
improving/restricting FP arithmetic

(] =Tol IS o] o A 67
include

floating-point-to-integer.............. 64

Intel® Xeon(TM)ccevvvvvveveiineeennn. 1

239

Intel(R) Fortran User's Guide Vol lI

includeccoovveei. 1, 64, 184

incorrect usage

non-countable loop.................. 131
incorrect usagecccc.... 130, 131
increase

BLOCKSIZE specifier................ 18

BUFFERCOUNT specifier......... 18
INCIEASE ...ovvveiieeeiiiiiieeee e e 18
individual module source view 98
industry-standard 145
inefficient

COOE e 24

unaligned data

checkingccoovvii, 5
unaligned data.............ccccccunnnnnns 5
inefficient.........ccoooe 24
INFINItY ..., 61
NIt FOULINE ..oeeiieiiieeeee e 84
initializationcccccvvvvvvveeennnnn. 176
INitializer ... 52
initiating
interval profile dumping 116
INItIAtiNG.....ccvveiiie e, 116

240

inlinable ... 84
inline
ChOOSEoeeeiiiieeee 24
expansion
controlling.........ceeeeviieiiiiinnnnnns 86
library functions..................... 86
expansion 60, 84, 86, 212

function expansion
CIILErTA ..vvveeeee e 84
function expansion..................... 84
inline.... 24, 35, 52, 74, 79, 82, 84, 86

-inline_debug_info compiler option 86

inlined
lbrary.......ccoooooiiiiiie 86
source positionoceeevvvnnnnnn. 86

inlined............ 24, 35, 52, 84, 86, 202

inlining
affect........ccoo 82
INEINSICS.....oie 57
PreventS......cooiieeeiiieeeeeeen 35

inlining. 35, 43, 57, 81, 82, 84, 86, 87
INPUT

argumMeNntsS.......ccoevvevviieiiiineeiieees 13

fileS .. 18
input/outputooeiiiiieeeeee 39
test-prioritization...................... 106
INPUT ... 13, 106, 164, 167
instruction-level..........cccccccvvnnnnnn. 121
instrumentation
compilationccceeeeeeeennn. 88, 94
compilation/execution................ 91
repeat.....cc.eevvveiniiiiineeeineeeeann, 93
instrumentation 93, 95, 113
instrumented
code generating...........ceeevveeeenns 91
eXeCUtioN—rUNccoeevereeeeeenenns 94
Program........ccceeeeeeveennineeeeennn 87
instrumentedooevviiiiinneeenn. 91
INTEGER
variables.........cccoce, 24

INTEGER... 5, 13, 24, 128, 130, 131,
135, 196

-integer_size{n} compiler option

-integer_size 32.....ccceeeieeiiiiinnnn, 43
-integer_size{n} compiler option.... 43
Intel®

architecture-based................... 146

Index

architecture-based processors .28,
31

architecture-specific................... 31

Fortran Compiler for 32-bit
application.......cccooeeeevvveeeiiinnnnnn. 1

Fortran Compiler for ltanium®-
based applications 1

Intel® 1, 2, 1, 2, 5, 13, 18, 24, 27, 28,
31, 32, 34, 35, 39, 43, 50, 52, 61,
64, 65, 67, 69, 70, 72, 73, 78, 81,
82, 87, 91, 98, 120, 121, 124, 132,
134, 135, 138, 141, 145, 146, 155,
157, 180, 181, 187, 192, 194, 196,
201, 212

Intel® architectures

AJUSE ..o 82
coding ...ooeoeeeivieiiiiiiinn 18, 24, 28
directives ... 201
Fefer .o 61, 120
FUN Lo 155
USE..cciiiiiiiiiiniieeenirennnns 5,32,78,81
UtIHZE oo 5
VECLONZES ..ccooviiiiiiiieeeee e, 205

Intel® Compiler ..28, 73, 79, 98, 106,
155

241

Intel(R) Fortran User's Guide Vol lI

Intel® Debugger
IA-32 applications.................... 192
Itanium®-based applications ... 192
Intel® Debugger.................... 31, 192

Intel® Enhanced Debugger

Intel® Enhanced Debugger........... 31

Intel® extensions

extended intrinsicS.....c..cccccoveun... 27
OpenMP routings 187
Intel® extensions 27, 187

Intel® Fortran language

record Structurescoceveeeenennn. 5

Intel® Fortran language . 2, 5, 13, 18,
27,50, 73, 192, 201

Intel® Itanium® Compiler.............. 27
Intel® Itanium® processor .. 1, 43, 69

Intel® Pentium® 4 processor. 70, 72,
73

Intel® Pentium® Il processor 70, 72,
73

Intel® Pentium® M processor.. 1, 68,
69, 70, 72, 73, 134

Intel® Pentium® processors

242

(1<) (<] T 119, 120

Intel® Pentium® processors.....1, 43,
69, 70, 72, 73, 87, 119, 120

Intel® processors
depending........cccccceeeiiiieeeeieeeinn, 72
optimizing for 68, 70, 72, 73

Intel® processors ... 1, 28, 68, 69, 70,
72,73, 187

Intel® Threading Toolset......... 28, 31

Intel® VTune Performance Analyzer
... 31

Intel® Xeon(TM) processors
INClUdiNg ...coooeeeiiii s 1

Intel® Xeon(TM) processors1, 43,
69, 87, 119, 120, 134

Intel®-specifiC......ccccevveeeernne. 27, 145
INTERFACE ... 95

intermediate language scalar
(0] 011121 V4=] QS 212

intermediate results

USE MEMOIY c.uviiiieeeiieeeeiee e 18
intermediate resultS....................... 18
internal subprograms..................... 24
INTERNAL visibility attribute 52
interprocedural

during.......oeeee 86

interprocedural...... 28, 74, 76, 82, 86
interprocedural optimizations (IPO)
compilation with real object files 79

criteria for inline function
eXPANSIONcvvvieeieeeeeieeennns 84

inline expansion of user functions

... 86
library of IPO objects................. 81
multiple IPO executable 78
-Qoption specifies..........ccceeeeeeee 82

interprocedural optimizations (IPO) 2,
34, 35, 57, 74, 82, 86, 87

interprocedural optimizer 74,212
interthread..............cooovvvveeiiinnnnnnn. 146

interval profile dumping

iNItiatingccoeeeeeeeiieeccee e, 116
interval profile dumping....... 113, 116
intrinsics

cashesize ... 27

functions.........cccceee. 167

INNNING ..o 57

procedurescccccvvvvvciineeeennn. 201
intrinsics..... 2, 13, 27, 34, 43, 57, 86,

201

Index

invoking
GCCId..oooiiiiiiiie, 78

INVOKING ...vvveiiiecceccee e, 78

IOR ..., 157,167, 176

-ip compiler option 60, 74, 82, 84, 86,
94, 212

ip_ninl_max_total_stats................. 82
ip_ninl_min_stats 82, 84
-ip_no_inlining compiler option 43, 86

-ip_no_pinlining compiler option....86

IP_SPECIfier...ccceeeeeeeiiiieecee e 82
-IPF_flt_eval _method{0|2} compiler
(0] 1[0] o FS SRR 65
-IPF_fltacc compiler option............ 65
-IPF_fma compiler option 65

... 65
IPO
compilationcccceeeeiineenenn. 1,79
disablecccoo 74
functionality............cccceee. 1
objects ... 81
options
SIPO_C v 81
-iPO_0bj oo 79

Intel(R) Fortran User's Guide Vol lI

options. 28, 74, 76, 78, 79, 94, 212
OVEIVIEW ..o 74
FESUILS ... 87

IPO34, 43, 57, 74, 76, 77, 78, 79, 81,
82, 84, 86, 87, 94, 125, 212

-ipo compiler optioN........cccceeeeeeeene. 74
-ipo_c compiler option................... 81

-ipo_obj compiler option... 43, 79, 84,
125

-ipo_S compiler option 81
IR
containingeveeeeeeeeeenne. 77,78
objectfile......cccoviiiiiiiis 76
IR e 76, 77,78, 81
ISYNC ... 167
Itanium® acrchitectures................. 28

Itanium® compiler
-auto_ilp32 compiler option 74
code generatorccccceeeeeennn.. 212

Itanium® compiler 27, 43, 52, 61, 65,
74,82,91, 119, 181

Itanium® processors2, 28, 43, 68, 69
Itanium®-based applications
pIipeliningccoovvvvviiiieeeee, 202

244

Itanium®-based applications...... 117,
202

Itanium®-based compilation.......... 88
Itanium®-based multiprocessor...121
Itanium®-based processors 61

Itanium®-based systems

default.................c 84
Intel® Debuggerccccvvveennn. 192
optimization reports 212
PIPeliniNgcccoeiiiiiiiiiiis 202
software pipelining................... 121
using iNtriNSICSvvvvvciieeeeeenn.. 27

Itanium®-based systems....1, 24, 27,
28, 31, 43, 50, 52, 57, 64, 65, 67,
69, 74, 77, 84, 91, 98, 106, 117,
118, 120, 121, 187, 192, 201, 202,
212

IVDEP directive............ 117, 120, 205

ivdep_parallelcccevvvivvveennen. 120

-ivdep_parallel compiler option...117,
120, 205

K
KIWINIBIP ...oevvvvvvieenee 57, 68, 70, 72
KIND parameter

double-precision variables......... 43

] O[T 11 o [5

KIND parameter.................. 5,24, 43
KITID e, 181, 196
KMP_ALL_THREADS................. 181
KMP_BLOCKTIME 181
KMP_BLOCKTIME value............ 180
kmp_calloC.........coovvvvveviiiiiiiinnnnnn. 187
Kmp_free....ovveiiiiiiiiiiiiiieeeeee 187
kmp_get_stacksizecccc..... 187
kmp_get_stacksize_s.................. 187
KMP_LIBRARYcooiiiiiiiiieieennn, 181
kmp_malloC.........ccooeeiiviiiiiiinnnnnn. 187

KMP_MONITOR_STACKSIZE ... 181

kmp_pointer_kind........................ 187
kmp_realloCcovvvvvvvvviviiiinnnnen. 187
kmp_set_stacksize..........ccccuunn. 187
kmp_set_stacksize_s

(o] o = ST PPTP TR PRPRI 187
kmp_set stacksize S.................. 187
kmp_size_t kind.........cccoovvnennnnn. 187
KMP_STACKSIZE 181, 187
KMP_VERSION ..., 181
kmpc_for_static_fini.................... 196
kmpc_for_static_init 4 196

Index

kmpc_fork call 194, 196, 200
L
LASTPRIVATE
Clausescccovvviviiieii 174
USE..iiiiiiiiiiiiie e 174

LASTPRIVATE... 146, 152, 157, 164,
172,173, 174, 200

[AYEr ..o 196
Id 78, 94
legal information............ccccceeeeeeeennn. 2
level coverageccccvvveveevveeennnnn. 98
DC.SO .. 52
libc_start main.........ccoceeeeveennnnnnn. 196
DN e 43
-libdir keyword compiler option...... 43
libguide.a......ccooeeeeevviiiiiiiiieeee, 180
libirc.a libraryccccvvviviiiiinnnnn. 94
libraries
functions ..., 86
inline expansion..............c.eeee.... 86
[IDINtrNS.a ..o 27
library /O ... 18
OpenMP runtime routines........ 184
FOULINES ... 184

Intel(R) Fortran User's Guide Vol lI

libraries 1, 18, 27, 32, 34, 43, 52, 57,
73,76,79, 81, 86, 94, 121, 132,
161, 180, 181, 184, 187, 196, 201

limitations

loop unrolling........ccccccvvnnnnnnns 119
[IMItations ..., 119
line

(D I] 106

dpi_ LISt 106

lines compiled..........cccccceeeennen. 143
[INE Lo 106
LINK_commandline....................... 78
linkage phase........cccccvvvviceneeneenn, 76
list

tool generates............ooeeevvveennnne 98

tool provides.......cccceeevieeeeiieennnn, 98
[IST oo 98
listing

file containingoooo. 106

XIld oo 78
T531] g o [T 24,78, 106, 172
little-endian

big-endiancccciiiiiinnn 39

(o10] 0 \VZ=T4 1] [0 AU 35

246

little-endian............ccoovvvvvvvnnnnnn. 35, 39
little-endian-to-big-endian conversion
environment variable 39

little-endian-to-big-endian conversion

... 39
Lock routines.........ccceeeeeeeiriinnnnn. 184
LOGICAL....oeiiiiiiieeeei e 5, 46
loop

PlOCKING ... 132

body......coooi s 134

[o0]|F=To 1511 o R 18

CONSIIUCES ...ooevvviiiiieiie e 130

COUNE....oiiiiiiiiiiiiiii e 202

diagnostiCs.........cccevvunnnnen. 125, 143

directives ... 202

distributionc 202

exit conditions................oeeee. 131

interchange........cccccccccceeeeeeeenn. 137

LOOP option of IVDEP directive

... 205

parallelization................... 121, 127

parallelizerccccccvveeeennnne.n. 69

parallelizing...........ccccouun. 69, 146

peeling........ccccevvvvvvnnnnnn. 135, 205

SECtioNiNgccvvvvveeiiiie e, 132
SKEWING w.veiieeeeeiieeeeee e 118
transformations.......... 67, 118, 202
types vectorized 132
unrolling
limitations............cccoeeeeeee. 119
510 o] 0 o] o ST 204

unrolling.... 57, 117, 119, 127, 201,
212

variable assignment 174
vectorization 127, 205
vectorized typescceeveeene 132
loop...... 1, 13, 18, 28, 35, 67, 82, 87,

117, 118, 119, 120, 121, 125, 127,
128, 130, 131, 132, 134, 135, 137,
139, 146, 155, 164, 166, 167, 174,
190, 201, 202, 204, 205, 212
loop-carried memory dependency
abSenCe.......cccoeevevviiieeeeeei, 120

loop-carried memory dependency

.. 120
loops

changing......cccccccvviiiiniiieeeeeeee, 13

(o70] 0] o101 11 o [67
[oT0] o 1S R 13
lower/mixed...........coocviviieiiiennnnns 192

Index

M

machine code listing

subroutine.........ccccceeeiiiiiinnne, 194
machine code listing............ 194, 196
maddr optionceeviiiiiiieeeeen, 98
maintainabilityccccooeoe 24
Makefile ... 78
malloc

calls ... 52
MAllOC........ovveieeeiiiiie e 52
MASTER directive............... 146, 167

call stack dump...........cccevveenn. 196
USE ..uiiiiiiiiiee et 167
master thread 146, 157, 167, 172,
196
math libraries..........ccccvvvvvevveeeennnn. 86
matrix multiplication..................... 137
MAX .. 132, 134, 167, 176

maximum number..43, 119, 181, 184

memory
ACCESS ..ot 28
allocationccccceveeeiiiiiiiiinnnn. 187
dependency.......ccccceeeieiiiiiiennns 120

Intel(R) Fortran User's Guide Vol lI

[@YOUL.......vveieieeeeieeee e 28
MEMOIY ..oeviiiiie e e e 28
MIN 82,132, 134, 157, 167, 176,

190, 212
minjmed|maxcccceevvvvvvnnnnnnn. 212
minimizing

execution timeccccceeees 106

NUMDET ... 106
MINIMIZING .. 106
MINtime OptioN...........evvvvveeeeeeennen. 106
misaligned

data crossing 16-byte boundary

... 135
misaligned..............ccceevvvveviinnnnnnn. 135
mispredictedcoeviiiiieenenn, 88
mixing

vectorizableccccccvveveennnn. 127
MIXING e 127
MM_PREFETCH.........cccceeeeieen. 120
MMX(TM) technology.................. 121
MODE ..., 39
modules subset

coverage analysis...................... 98
modules subset...........cccccovrnnnen. 98

248

more replicated code................... 152
-mp compiler option....................... 61
-mpl compiler option..................... 61
multidimensional arrays......... 13, 128
MUILIfile ... 76

multifile IPO

IPO executable.................... 77,78
OVEIVIEW ..ot 76
PhaseSceevvieeecee e 76
StOMES ... 76
XIld oo 78
multifile IPO.....74, 76, 77, 78, 79, 81
multifile optimization 74

multiple threads
debugging.......cccccceeiiiiiieiiieees 196
multiple threads...........ccccceeeeeeee. 196

multithread programs

debugger limitations................. 192
OVEIVIEW ..oooiiiiiiiiiiiiiieeeeeeeeee 192
multithread programs 192
multithreaded
applications
creatingvveeeeeeeeeeeeeeeennnnns 28

developingcccceeevvieeevvinnnnns 28
applicationscccceeeeeeeeeeiieiinnn, 28
debuggingcceevviiiiieneeee 192
producesc.ccooeeeevennnnn. 145, 146
FUN oo 155

multithreaded 28, 121, 138, 141, 145,
146, 155, 192

multi-threaded.............ccccevvvvnnnnnn. 139
mutually-exclusive
PAIt ... 43
mutually-exclusive..............c.eec.... 43
N
names
OPtIMIZErS......ccvvvveeveee e 212
NAMEScoiiiiiieeiee e 212
NAN value..........ccccceeennnnnnnnnnn. 46, 65
natural storage order..................... 18

naturally aligned

dataovieeeeeeeee 5
FECONAS ..o 5
reordered data.............cccceennnnnnnns 5
naturally aligned............cccccoeeeeeee 5
new optimizationsccceeeeeee... 1
-noalign compiler option................ 50

noalignments keyword..................... 5
-noauto compiler option................. 46
-noauto_scalar compiler option46
-noautomatic compiler option 46
-nobuffered_io keyword................. 18
nocommons keyword 50
nodcommons keyword 50

-nolib_inline compiler option....60, 86
-nologo compiler option.................. 95

non-countable loop

incorrect Usageccceeeeeeennnnn. 131
non-countable 100p.........cccceeeee.. 131
NONE......cooi i, 173

... 164
non-OpenMP ..., 180
non-preemptable 52
non-SSE

generating..........cceeeeeeeeieeeeeeennnnns 28
NON-SSE ... 28
NONTEMPORAL

USE .. e e 205

Intel(R) Fortran User's Guide Vol lI

NONTEMPORALcccccoiiieeeennn 205
nonvarying values......................... 24
non-vectorizable loop.................. 127
non-vectorized loops................... 125
NOP ..o, 119
NOPARALLEL directive...... 139, 141
nopartial optioneeeeeveeveeennn. 98
NOPREFTCH directives 205
-nosave compiler option................ 46
nosequence keyword.................... 50
NOSWP directivesccuue... 202
NOLOLAlovvvvviiiiiiiiiii 106
NOUNROLL.....cccvtiiieiiiiiieeeeeeen 204
NOVECTOR directives 205
NOWAIT option........ccceeeeeeeeennnnn. 164
-nozero compiler option 46
NUM. ..o, 106, 121
num_threads.............c......... 157, 184
number
changing........ccccveeviiiiciiineeeenn. 161
MINIMIZING ... 106
NUMDEr ..., 61, 106, 161

250

@)

-O compiler option...........cccccunnenee 57
-0 filename compiler option77, 81
-O0 compiler option......... 57, 60, 210
-O1 compiler option...........ccceeeennes 57

-O2 compiler option
02 optimizations................ 57,210
02 option.......... 57, 60, 61, 65, 117

-O2 compiler option....24, 35, 43, 50,
57, 60, 61, 94, 117, 118, 125, 141,
155, 210

-O3 compiler option

optimizations.......... 57, 61, 65, 210

-O3 compiler option....28, 57, 61, 65,
91, 117, 125, 210

object files

object files35, 43, 76, 77, 78, 81, 210

od utility

help . 39
od Utilityoeeeieeiei 39
omitting

BLOCKSIZEcooiiiiiiiienn, 18

SEQUENCEooveveeeeeeeeeen 5
OMItEING.cvvvveiiee e 5,18

OMP... 121, 146, 152, 155, 173, 181,
190

OMP ATOMIC.......ccoiiieiee 167
OMP BARRIER.........c......... 164, 167
OMP CRITICALccoviiiiieieiie. 167
OMP DO ..., 152, 161
OMP DO LASTPRIVATE............. 174
OMP DO ORDERED,SCHEDULE
.. 167
OMP DO REDUCTION................ 176
OMP END CRITICAL......cccouunn.... 167
OMP END DO.....cooevviiiiieeieeiinn. 161
OMP END DO directives............. 161
OMP END MASTERcccovuen... 167
OMP END ORDERED................. 167

OMP END PARALLEL161, 164, 167,
174,178, 194

OMP END PARALLEL DO. 161, 166,
176, 196

OMP END PARALLEL SECTIONS

.. 166
OMP END SECTIONS................ 164
OMP END SINGLE.............ooe. 164
OMP FLUSH........oooii 167
OMP MASTER........ooviiiiiiee 167
OMP ORDERED.........ccccooviieeee. 167

Index

OMP PARALLEL.161, 164, 174, 194

OMP PARALLEL DEFAULT....... 161,
164, 167,173,178

OMP PARALLEL DO...161, 166, 194

OMP PARALLEL DO DEFAULT 173,
176

OMP PARALLEL DO SHARED...196
OMP PARALLEL IF......cccceeiii. 161
OMP PARALLEL PRIVATE.174, 194

OMP PARALLEL SECTIONS.....166,
194

OMP SECTION......covvvvennnnn. 164, 166
OMP SECTIONS........oovviiiiiieen, 164
OMP SINGLE.......cooviii 164

OMP THREADPRIVATE.....172, 173

omp_destroy locK......cccceeeeereennn. 184
omp_destroy _nest_lock 184
OMP_DYNAMIC ... 181
omp_get_dynamicC..............eeeee... 184
omp_get _max_threads................ 184
omp_get_nestedcccceeeeeeeeennn. 184
omp_get_num_procs........... 161, 184

omp_get_num_threads 178, 184

omp_get_thread_num 167, 178, 184,
194, 196

251

Intel(R) Fortran User's Guide Vol lI

omp_get WHCK.........oovvvveeineeennn. 184
omp_get wtime..........cccceeeeeeennnn. 184
omp_in_parallel........................... 184
omp_init_locK........ccoeuviviiiinnnnnnn. 184
omp_init_nest lock...........c......... 184
omp_lib.mod file............ccccunnnnnnne 184
omp_lock_Kind...........ccceeeeeneennnn. 184
(o111 o I 0101 QS 184
omp_nest_lock kind.................. 184
omp_nest_lock t.......ccoceeeeeiiii 184
OMP_NESTEDccovviiiiieeeeinn. 181
OMP_NUM_THREADS 141, 155,
161, 181
OMP_SCHEDULE 141, 146, 178,
181
omp_set_dynamic....................... 184
omp_set_lock.......cccoviiiiiinnnnn 184
omp_set_nest_locK...........c.uuun.... 184
omp_set_nestedccceeeeeeeennn. 184
omp_set_num_threads....... 161, 184
omp_test locK......ccoevvviiiinnnnnn, 184
omp_test nest lock.................... 184
omp_unset_locK.........ccceeeeeiin 184
omp_unset_nest_lock................. 184

252

-On compiler optioN..........ccccvveeenees 57
one thread..........cccccovviiiviinnninnnnns 196
open statement

OPEN statement BUFFERED ...18

open statementccoceeeeneeenn. 18
-openmp compiler option.....121, 155
OpenMP*
clausescccooc, 157
contains
feature.......cccoovvviiiiiiiiiiiiinnn, 146
CoNtaiNSsoooeveeeiiieee, 146
directivesooovvvviiiiiiniineeeee, 157
environment variables.............. 181
examplesoooois 190

extension environment variables

... 181
Intel® extensions..................... 187
par_loop....coeeeeevieeeiiiie e 194
par_regionccccceevvvniiinneeenn. 194
par_section.......ccccccceeeeeeeeeeeennn, 194
parallelizer's

option controls...................... 155
parallelizer's........cccccoeeeeeennnnnnn. 155
ProCESSINGuvvvvniiiiiiiiiiiiiiiiinns 146

run-time library routines........... 184
synchronization directives 146
(ST To [190
USES..ciiiiiiieeeieeeei e eee e e 146

OpenMP~* .1, 2, 43, 46, 69, 121, 127,
138, 139, 145, 146, 152, 155, 157,
180, 181, 184, 187, 190, 192, 194,
196, 200

OpenMP*-compliant compilers ... 187

-openmp_report{n} compiler option

openmp_report0..........ccceeeeeeen. 155
openmp_reportl................ 43, 155
openmp_report2..........ccccunn..n. 155

-openmp_report{n} compiler option
.. 121, 155

-openmp_stubs compiler option. 121,
187

operator/intrinsiccccevvnnn.n. 176
operator|intrinsiccccceeeeeeenn.. 157

-opt_report{n} compiler option

-opt_report_fileccceeeeeeeeeennn. 212
-opt_report_filefilename........... 212
-opt_report_help.....cccceeeeeeennnn. 212
-opt_report_level ... 212
-opt_report_levelmin.......... 43, 212

Index

-opt_report_phasephase option

... 212
-opt_report_routine 212
-opt_report{n} compiler option.....212
optima record
USE .. e et e 18
optima recordcceeeeeieeeeeieeennns 18
optimization-level
OPLIONS ..o 57
restrictingcoooeeeeee 60
=] 1] o [57
optimization-level 57
optimizations
compilation process..........cccce.e.e. 5

debugging and optimizations...210

different application types............ 2
floating-point arithmetic precision
... 61
HLO e 117
PO e, 74
optimizer report generation...... 212

optimizing for specific processors

... 68
OVEIVIEW ..o, 34
PGO.ooeeeeeeee 87

Intel(R) Fortran User's Guide Vol lI

reports............... 43, 201, 202, 212

optimizations.... 1, 28, 34, 43, 57, 60,
61, 74, 76, 87, 117, 124, 201, 210,
212

optimizer
allowingccoovvvviiiiiiii e, 35
full name.........cccooeeei 212
logical name............ccccceeeeeeenn. 212
report generation..................... 212
FEPOIS .o 212
optimizer 35, 202, 204, 212
optimizers
NAMES ..ovveiiiiiiieiiiicer 212
YOUT COUE ..ovvvviiieeeeeeeeeeeeeiiiian, 72
(0] 011 10174=T £ 212

optimizing (see also optimizations)

application types...........ccccceuneee 57
floating-point applications.......... 28
for specific processors....... 1, 2,68

optimizing (see also optimizations) 1,
2,28,57,68, 134

option
CAUSESuiieeeriiieeeeeee e e eenn e 57
controls
auto-parallelizer's................. 143

254

OpenMP parallelizer's.......... 155
CONtrolS......ccoovvvviieene. 93, 143, 155
disablesccooiiiiiiii 91
fOrCeS..ooviiiiiiiii 46
initializescccooeviiie 46
Placesccccoeiiiiiiiie 46
FEdUCES ... 210
sets

thresholdcocoiiiinenn. 143

VISibIlity ..., 52
SElS . 52,57, 143

OPLION v 57

options
COIrespond.........ccooeeeeeeeeeennnnnnnn. 52
debugging summary................ 210
direct

compiler 46, 65, 72, 125
direct............ooeee. 46, 65, 72, 125
enable

auto-parallelizer.................... 141
enable.......cooooeviiiiiiiniins 28, 141

improve run-time performance...35

INSTIUCT ..o, 127

output summary...........ccceeeeeeen. 210
OVEIVIEWSovvveeeeeerrnnne 121, 210
options 34, 43, 50, 52, 57, 91, 93,
117,121, 125, 210
OR . 98, 134, 167, 176
ORDERED
SPECHTY v 167
USE .oeiiiiiiiiie e 167
ORDERED................... 146, 157, 167
ORDERED clause...........c.cc....... 164

ORDERED directive.... 146, 164, 167

ordering

data declarations..............ccceee.... 5

kmp_set_stacksize_s.............. 187
(o]0 (=] 41 o Lo F T 5, 187
original serial code...................... 138
other

operationscccceeeeiiieeeeeeenen, 134

(0]] 1[0] o 1< 7 125

READ/WRITE statements 39

tOOIS. ... 82
Other.......ccouviiie 134
output

argumentccoeoevveenineeeeen 13

Index

output... 13, 18, 32, 35, 46, 106, 139,
143, 145, 164, 167, 205

overriding

vectorizer's efficiency heuristics

[0)V7=T g o 10 S 205

overviewb, 34, 35, 57, 68, 74, 76, 87,
113, 117,121, 124, 145, 192, 201

P
PADD

using GNU ..., 196
PADD ..., 192, 196, 200

-par_report{n} compiler option

-par_report Output................... 143
-par_reportO.......c.cccvevevevnieennnnn. 143
-par_reportl............... 43,121, 143
-par_report2........cccceeeeeeieennnnnnn. 143
-par_report3..........ccoeeeiiiieeennnn. 143

-par_report{n} compiler option....121,
141, 143

-par_threshold{n} compiler option
-par_thresholdO 143
-par_threshold100.................... 143

-par_threshold{n} compiler option
................................. 121, 141, 143

255

Intel(R) Fortran User's Guide Vol lI

PARALLEL. 139, 141, 146, 152, 157,
161, 166, 173, 174, 176, 178, 200

parallel construct

begin ..ccccceeviei 152
eNd .o, 152
parallel construct......................... 152

PARALLEL directive ... 141, 161, 167

PARALLEL DO

PARALLEL DO .. 121, 146, 157, 166,
167,173, 174, 176, 178

PARALLEL DO directive..... 139, 178

parallel invocations with makefile. 78,
91

PARALLEL PRIVATE 121
parallel processing
directive groups.......ccceeeeeeeennn. 146

thread model

pseudo code.........cccceeeeeennn. 152
thread modell. 152
parallel processing..........ccccceunnn.. 145

parallel program development 121
parallel regions
debuggingcceevviiiiiieneeee, 194

directiveso.oveeeiiiiiee, 161

256

parallel regions... 146, 155, 161, 194,
196

PARALLEL SECTIONS

PARALLEL SECTIONS...... 146, 157,
166, 167,173,174, 176, 178

PARALLEL SECTIONS/END

PARALLEL SECTIONS 166
parallel/worksharing 146, 166
parallelismcccevvvviiiiennenenn. 121
parallelization

(070 o1 ST 121

parallelized 43, 139, 152, 155

parallelizer

enablesoocciiiiiiee 121

parallelizer 121, 155

relieVesccvvveeveeeiiiiiieeeeen 138
parallelization 121, 127, 138, 139,

141, 143, 145, 146, 192
parsing

O e 18
Q=TS o To 18
part

mutually-exclusive 43

-pc{n} compiler option

pc32 compiler option

24-bit significand.................... 43
pc32 compiler option 43, 64
pc64
53-bit significand.................... 43
PCO4 .o 43,64
pc80
64-bit significand.................... 43
PC8O ... 43, 64
-pc{n} compiler option 43, 64
PCOION ... 98
Pentium® 4 processors................. 69
Pentium® Ill processors................ 69
Pentium® M processors................ 69
performance analysis.................. 145
performance analyzer 31, 192
performance-critical 98, 180
performance-related options......... 35
performing

data flow.......ccccevveernnnnnne. 121, 138

O oo 18
performing..................... 18, 121, 138
PGO

environment variables................ 94

methodologyccevvvviiiiinnnnnn. 88

PGO APl ..o, 95

phases ... 88

usage modelcccccvvvvieeeneeennn. 88

PGO .84, 87, 88, 91, 93, 94, 95, 113,
114

PGO API support

dumping and resetting profile

informationccccceeeeeiine 116
dumping profile information114
interval profile dumping............ 116
OVEIVIEW ..ot 113

resetting the dynamic profile
COUNTEIS ..oovvieeeeeiie e 115

resetting the profile information115

PGO API supportccoevveeeeieennnn. 113
pgopti.dpi file
compiler producesc........ 94
EXIStING ..ooeeeeeeeeeeee e 94
FEMOVE....eeiiiiiiiiiiiiiiiii 94
pgopti.dpi file.......... 88, 91, 94, 97, 98

257

Intel(R) Fortran User's Guide Vol lI

PYOPLLSPI wevveeeeeeieeeeeeias 88, 98, 106
PGOPTI_Prof Dump............ 95, 114
PGOPTI_Prof Dump_And_Reset
.. 116
PGOPTI_Prof_Reset 114, 115
PGOPTI_Set_Interval_Prof Dump
.. 116
(10 (01U ET=T gl o [113
phasel.......cccccooiiiiiiiiiiiiiiiiiiee, 146
phase2........ccccoeviviiiiiiiiiiiiii, 146

pipelining

Itanium®-based applications ... 202

optimizationccceeeeeeeeeeennn. 202
pipelining....... 57, 201, 202, 205, 212
placing

PREFETCH.....cccooiiiiiis 205
PIaCING ..oovvviiiiiiiie e 205
pointer aliasing...........cccuvveeiieennnn. 46

pointers.... 13, 46, 74, 120, 127, 157,
210

position-independent code............ 52
POSIX. e, 194
-prec_div compiler option.............. 64
preemption

preemptableccccoeee 52

258

preemptedcceeevvvinnnnnn. 52,84
preemptionccceeveeveiiinnnnnn. 52,84
PREFETCH

[o]F=Tox T o [P 205
PREFETCH........... 57, 117, 120, 205
prefetching

optimizations............ccceeeeeeeenn. 120

(0] 1110] o FA N 120

SUPPOIT....eiiiieiei e 205

prefetching57, 117, 120, 201, 212

preparing

COOB ..ot 146
Preparing ... eeeeeeeeeiiiicene e 146
preventing

CRAY* pointerscccoeeeennnne 46

INNING e, 35
preventingccooeeeveeeeenvinnnnnn. 35, 46
PRINT L 174
PRINT statement................ccoovennen. 98
prioritization............cccevvviiinieeenn. 106
PRIVATE

USE ..iiiiiiiiieeer e 174

PRIVATE.... 139, 152, 157, 161, 167,
172,173, 174, 176, 178, 196, 200

PRIVATE clause.................. 174,176

private scoping

variable............coocoe 146
private SCOpPiNg.........cccevvevvvvnnnnnnn. 146
procedure names..............ceeeennen. 157
process

OVEIVIEW ... 35
PrOCESS ..ot 2
process_data...........ccccceevvvvnnnnnnn. 114
processor

processor-based..............eec...... 68

processor-instruction................. 68

processor-specific

generating.........ccceeeeeeeeeeeeeenn. 72
optimization................ 70, 72,73
runtime checks....................... 73
processor-specific 1,52,72,73

targetingoooviieieieeeeenn, 68, 69
processor........ 28, 68,69, 70,72, 73
produced

IL79

multithreaded................... 145, 146

profile-optimized........................ 91

Index

produced 79, 91, 145, 146

-prof_dir dirname compiler option..93

prof_dpifile.........cccorriiiiiennn. 106
prof _dpi Testl.dpi....cccccoeevvvnnnnnnn. 106
prof _dpi Test2.dpiccceevvennnnnnn. 106
prof_dpi Test3.dpiccvvvveeereennn. 106

PROF_DUMP_INTERVAL94, 113
-prof_file filename compiler option.93

-prof_gen[x] compiler option

-prof_gen compilations 91
-prof_gen[x] compiler option.......... 91
PROF_NO_CLOBBER.................. 94
-prof_use compiler option.............. 91

profile data
dumping......cooeeeeii 95
profile dataccoovvveviicciennne, 95

profile IGS

describe........ccooiiiiiiii 113
environment variable 113
functionsccccc, 113
variable ..., 113
profile IGSoovvviiiiiiiiiiiiiieeeee 113

profile information

259

Intel(R) Fortran User's Guide Vol lI

dumpingoooeevvvieiiic e, 114
generation support 113
profile information 114

profile-guided optimizations (see
also PGO)

instrumented program 87
methodology.........cccvvviiiinnnnnn. 88
OVEIVIEW ... 87
Phases........cooooiiiiiiie 88
ULIITIES .. 95

profile-guided optimizations (see

also PGO) ... 94, 95
profile-optimized
executable.............ccoooviiiinnnnnn. 91
generatingcceeeeieieieeeeeennnnn, 91
Producecccovvvvvviiiiiiiie e, 91
profile-optimized............ccccceeeeeee. 91

profiling summary

SPECITYING ..cooeieiiiiieiii, 93
profiling summary.........ccccceevveeeeen. 93
profmerge

tOO ..o 95, 106

USE ittt 97

ULHIEY oo 95

260

profmerge..........ccccevveennns 95, 97, 106
program

affected aspectcccevveens 74
Program.......cccccevveviiiiiiinieeeeeen 74

program’s loops

dataflowccoooeeeii, 138
Program’s loopsS..........ceeeveeeeeeeeenn. 138
programming

high performance......................... 5
Programmingcccceeevvvvvniieeeeeenn. 5
project makefileccoceeeeeee 78
PROTECTED ..o 52
providing

SUPEISEL...ccoviiiiiiiiii e, 174
Providing.......cceveveeeeeieeiiieiieeeeeeeen. 174

pseudo code

parallel processing model........ 152
pseudo code...........oevvveriniiennnnnn. 152
PUShL.....cooviiiiiiieiieiis 194, 196
Q
-gipo_fa xild option 78
-qgipo_fo xild optionccceeeees 78
-Qoption compiler option 82

R
-rcd compiler optioncccceeeee 64
READ

READ DATA....coeees 128
READ......cooiiie 18, 39, 139
READ/WRITE statements............. 39
REAL

REAL DATA ... 128
REAL 5, 24, 43, 46, 67, 132, 134,

135
real object files.........ccccvvvvivvivnnnnn. 79
REAL*16 ... 24
REAL*A ... 24
REAL*8 ... 24

-real_size {n} compiler option

-real_Size 64.......ccceeeeviiieiiiiinnnn, 43
-real_size {n} compiler option........ 43
reassociation................... 65, 67, 176
rec8byte keyword..........ccccoeeeeeenn. 50
RECL

ValUe......oviiiiiiiiiiiieee e 18
RECL ..o 18
recnbyte keyword.............cccc.ooc... 50
recommendations

controlling alignment.................. 50
recommendationS................ceeeeeee.. 28
record buffers

efficientuse of ..., 18
record buffers........cccciiiiin 18

RECORD statement

USE .. iiiiiiiiiiecii et 5
RECORD statement........................ 5
-recursive compiler option 46
redeclaringccccovvvevviiieenneeenn, 200
redirected standard 18
REDUCTION

clause ... 176

completed ..., 176

EN...oooiiiiiii s 176

USE..ciiiiiiiiiiii e 176

variablesccccccoee. 176, 200
REDUCTION....... 152, 157, 161, 172,

176, 200
reduction/induction variable........... 57
ref_dpi_file

FESPECT.....niiiiieeeiieeee e 98
ref_dpi_file.......ooooooeiiiiii 98
release NOtEeS..........uvvevveveeeeeeiieeeeenn. 1

Intel(R) Fortran User's Guide Vol lI

relieving

[18
relieVingceeeveeeeeieieecce e 18
relocating

source files........coooviiiiiiiis 97

using profmergeccccceunnnee 97
relocatingeveveeeeeveeeeeeeeeieeeeeeeeeee 97
removing

(16 o] o1 1o | o S 94
(=T 0010171 0T 94
reordering

transformations........................ 127
reorderingeeeeeeeeeeeeeeeeeiiiiinnnnnn 127
repeating

instrumentation..............cccceunees 93
(=T oJ=T= 1] o [93
replicated codecccevvvvnnnnn. 152
report

availability..........ccccciiiiinnn. 212

generationceevvviiiineeeenn. 212

OPLIMIZEr. ..o 212

Stderr .. 212
FEPOI e 212

resetting

dynamic profile counters.......... 115

profile information 116
reSettinguveeeeeeieeeeeiieeiiiieeennn 115
restricting

FP arithmetic precision............... 67

optimizations...........cccceeeeeeeeeeenn. 60
(=15 (g Tox 1] o TR 60
RESULT ..o 73
results

PO e, 87
FESUIS......vviiiiiiiiiiiieeeeeeeeeeeeeeeee 87
RETURN

double-precision 184

return values...........ccccceecnnnnnnne 46
RETURN ... 130, 131, 135
REVERSE ..., 174
rm PROF_DIR.......oooiiiie, 106
rounding

control.........cc 64

significand.............ccccceeeen. 64
FOUNAING .evvvveiiiieiieeieeeeeeeeeeeeeeeeeeee 64
round-to-nearest..........ccccccvveeernnne 64

routines
selectingcooevvvviieiiiieeeeeeee, 84
tiMING.....coooieiee e, 184
FOULINESvvviveieeieeeeeee 84, 184, 187
RTL e 18
run
differential coverage.................. 98
multithreaded...............cccoeeeee. 155
test prioritization 106
FUN. oo 98, 106, 155
run-time
call....oooei s 187
library routines...............cooee.... 184
peeling.......cccoceummmmiiiiiiiiiiiiiins 135
performanceccceeeennnnnnnnns 35
processor-specific checks 1,73
schedulingcccovvviieeen. 141

run-time 24, 46, 52, 72, 73, 132, 135,
141, 157, 178, 181, 184, 187, 205

S

-S compiler option.........cccoeeveeeennn. 79
-safe_cray_ptr compiler option...... 46
SAVE statement............cccceeeveeeenn. 46
scalar

clean-up iterations 135
replacement............ccccceeeeeennn. 118
scalar_integer_expression....... 157
scalar_logical_expression........ 157
-scalar_rep......ceeceiiiiiieeieeeeins 118
scalar...... 46, 57, 117, 118, 132, 135,

146, 157, 161, 167, 176, 178, 190,
212

-scalar_rep[-] compiler option...... 118
SCHEDULE

clausecoooi 178

SPECITYING...covvviiiiiiiiiiiiiiii, 178

USE..ciiiiiiiiiiieie e 164
SCHEDULE................. 157, 164, 178
£570] o1 4 To FO 172
SCRATCH. ... 172,173
SCreenshot........ccccveviiiiiiiiiiiiiiiies 98
SECNDS ... 32
SECTIONccovviiees 146, 157, 164
SECTION directive...... 164, 166, 174
SECTIONS

directivecccvvvveeeeeennnn, 164, 166

USE..iiiiiiiiiiiie e 164

SECTIONS. 146, 157, 161, 164, 167,
174,176

263

Intel(R) Fortran User's Guide Vol lI

SECtions_L......cccoeeeeeiiiiiiieeeeiinnnnn, 190
selecting

FOULINES ... 84
SelecCting......ccoevvveeiiiiiiiiii e 84
SEQUENCE

(0] 111 | N 5

SPECIHTY v 5

statement ..., 5, 50

USE .iiiiiiiiiiii e 5
SEQUENCE...........cooiiiien, 5,50
SEIENV .ooviiiiiiiiieec 39
setting

argumentsoceeveeiiinineen 5

coloring schemecccceeeeee 98

conditional parallel region

EeXeCUtionccoeeeeeeeennnnnn. 161
emall.......oooeiiei s 98
EITNO ..eeiiiiii e 86
F_UFMTENDIAN variable.......... 39
FTZ. e 73
htmlfiles ..., 98
integer and floating-point data..... 5
optimization level....................... 57
UNIES ... 161

setting.. 39, 73, 86, 98, 106, 116, 161

She 39

SHARED
clause ..o 178
debugging.......ccccceeeiiiiiieiiieees 200
shared scopingcccceeeeennn. 146
shared variables 196
updating.....ccooeeeevveeeiiicie e 190
USE..ciiiiiiiiiiiiin e 178

SHARED121, 139, 152, 157, 161,
164, 167,172, 173, 176, 178, 190,
200

significand

FOUND oo 64
significandccccoeeeeeeen 43, 64
SIMD 28,121, 124,127, 132
SIMD SSE2

Streaming..........evveeeiininieeiiiieninns 28
SIMD SSE2......oiiiiiiiiiiiiiiie 28
SIMD-encodings

enabling.......ccccvvieiii e 132
SIMD-encodings..........cccceeeeeennnn. 132
simple difference operator........... 190
SIN 132,134

SINGLE
directive........cccceveeennnnnnne 164, 167
ENCOUNLEIScccvvvviiriiiiiiieeee, 164
EXECULING ..coee et 164
USE .oeiiiiiiii et 164
SINGLE....... 146, 157, 161, 164, 174
single-instruction................ccc...... 127
single-precision.............ccccc..... 24, 61
single-statement loops................ 127
single-threadedcccoooe.... 192
small logical data items................. 24
small_barcocooiiiiiiiiiiii, 27
SMP .. 28, 138, 145
software pipelining 121, 202
source
COUC oo 155
coding guidelines....................... 24
files relocationcccccovnnnee. 97
INPUL .o 141, 155
lStING cevvvveiiiieee s 194, 196

source position
inlinedcoooeeveiiiii e, 86

source Positionccoeeeeeeeveeennns 86

source 1, 2, 5, 24, 35, 52, 61, 65, 67,
69, 74,76, 77, 78, 79, 82, 84, 86,
87, 93, 94, 97, 98, 113, 116, 117,
127, 141, 145, 155, 192, 194, 196,
201, 205

specialized code...... 70,772,121, 125
specific
OptiMIZINg ...oooeveeeiieeieeeee, 1, 68
SPECITIC .o 1, 2,68
specifying
8-byte data.........cccceeeeeeeiiiiiiinin, 43
DEFAULT ..., 173
dIreCtorycoovvveiiiiiiieeee e 93
END DO, 164
KIND oo 5
ORDERED......cccociviiiieiieeii, 167
profiling summary 93
RECL ..o, 18
scheduleccooeeviiiiiiiiin 178
SEQUENCE ... 5
symbol visibility explicitly 52
VECLONZEN oo 135
visibility without symbol file 52

specifying ...5, 52, 93, 135, 164, 167,
173, 178

265

Intel(R) Fortran User's Guide Vol lI

spi

file. 98, 106

(0] 110] o IS 106

[o]e o] 01U ES] o] F 98, 106
SPI et 98, 106
SORT et 161
SSE...ooii, 28,61, 124,132
SSE2... 28, 124
stacks

SIZE .oiiiiiiiiii e 187
SEACKS......eeeieiiieee e 46
standard

OpenMP* clauses..........cc........ 157

OpenMP* directives................. 157

OpenMP* environment variables

... 181

standard..........ooceeeeviniiinnnnnn. 157, 181
statements

ACCESSING .ooeeeeeeeeeeiiiciee e e e e e e eeenanns 5

BLOCKSIZE ..., 18

BUFFERCOUNTccccoeieieen. 18

BUFFERED.......cccoooiiiiiii, 18

functions..........cccc 24

266

statements....2, 5, 13, 18, 24, 28, 35,
39, 43, 46, 50, 82, 84, 86, 98, 127,
130, 134, 143, 146, 152, 157, 161,
164, 167, 176, 184, 192, 204, 205

STATIC oo, 178
STATUS ... 18
stderr

(=] o] PP 212
SEAIT oo 212
Stream_LF ..o 18
streaming

SIMD SSE2 ..., 28
Streamingooevevvvviiiinieee s 28

Streaming SIMD Extensions
single-precision........................ 132

Streaming SIMD Extensions ..28, 31,
127,132

stride-1
example........cccccccieeiiieeee 137
stride-1ccovveeeeiiiiiiieee. 127, 137
StHNGS..eveeiii e 18
StHP-MINING......oooeiiieeiiie e, 132
STRUCTURE statements.......... 5, 50
SUBDOMAINooiiiiiiiiieeeeeiiin, 178
SUBL..eei 194, 196

SUDbODJECES....ccov e 174
£S10] o o] o] 1 o] o [P 35
subroutine

machine code listing................ 194

PADD

ENEIY oo 196
source listing..........ccceevveeeeee. 196

PADD ... 196

PARALLEL ... 194

PGOPTI_PROF_DUMP 95

VEC _COPY ..o, 135

WORK ... 167
SUDIOULINGeeviiiiiiiiiiiiiiiiiiiie 194
subscripts

AITAY e 13

[oTo] o R 137

Varying......oooevvvevuiiiiiieeeeeeeeeeennnnns 18
subscripts.......... 13, 18, 39, 128, 137
substring

containingccoevveevvvvnniinneeeenn. 212
SUbString ... 84, 212
SUPEISEL ..., 174
support

loop unrollingccvvvveeenneennn. 204
MMX(TM).vveeeeeeeeeeeeeeeeeene, 28
OpenMP* Libraries 138, 180
prefetching.........cccveiiinnenn. 205
symbolic debugging................. 210
VeCtorizationccceeeeeveeeeenn. 205
WOrksharingceeeveeeeeeeennnn. 146

supportl, 2, 5, 27, 28, 31, 39, 52, 65,
70, 73, 76, 78, 79, 91, 95, 113,
118, 121, 124, 125, 132, 134, 135,
138, 145, 146, 180, 192, 200, 201,
202, 204, 205, 210, 212

SWP directive...........cccoeeveeeennnns 202
symbol
file oo 52
preemption..........coooeeeieiiiiiinnne 52
visibility attribute options............ 52
SYMDOl. .. 52
symbolic debugging..................... 210
synchronization
CONSIIUCES ...oovvvvviiiiiiiieeeeeeeeeas 167
Identify ..o 167
with my neighbor...................... 167

worksharing construct directives
... 164

267

Intel(R) Fortran User's Guide Vol lI

synchronization.. 121, 138, 139, 145,
146, 167, 176

SYNIAX ..evviieiiieeeeie e, 141, 155
SYSTEM_CLOCK.........ceviiviiieees 32
SYSIEMS...euiiiiiieeiii e 61
T

table operators/intrinsics............. 176
TAN ..o 132
targeting a processor 68, 69
terabytes.......viiiiiii 181

test prioritization tool

Testl

Testl.dpi....ccceeeeeeeieeeeeeeeeenns 106

Testl.dpi 00.....cccceeeeeevveennns 106

Test2.dpi.....ceveeeeeeieeeiieeeninns 106
Testl .o, 106
Test2

adding.......cooooeiiiiii 106

Test2.dpi 00......cccevveeeeeeeeeen. 106
TeSt2 .o 106
Test3

Test3.dPi.....eeccieiiieeeeieeeeeas 106

Test3.dpi 00.......ccceeeeeveeennnns 106
Test3 . 106

tests_listfile.....cccooeevreiiinninnnnns 106

tselect command..................... 106
test prioritization tool 106
testl.o 196
thisrelease..........ccooeiiiiiiiiicice 1
THREADPRIVATE

directiveccooovvvviveeeinnnn. 146, 172

variablesccccovns 173
THREADPRIVATE146, 152, 157,

161, 173
threads ..o, 161
threshold

auto-parallelization................... 141

control..........cco 143

OPtioN SetSccevvvvviiiiiieeeeeeeees 143
thresholdccccoevveiiinninnnnn. 27, 143
TIME intrinsic procedure 32
tIMEOoUL ... 84
timing

FOULINES ... 184

your application 5,32
HMING. e 184
tips

troubleshooting 143

TIPS oo 143
TLP 121
tool

St 98
code coverage.........cooeeennnnnnnns 98
test prioritization 106

tool...... 5, 28, 31, 76, 82, 95, 98, 106

-tpp{n} compiler option

APPL 69
APP2 e 43, 69
PPS 69
APP6 69, 81
APPT7 e 43, 69
-tpp{n} compiler option.................. 69
-traceback compiler option.......... 210
transformations
reordering........cccovvvvvvvvcieneeeenn, 127
transformed parallel code........ 138
transformations 57, 118, 127, 145
troubleshooting
tPS. e 143
troubleshootingcceveees 143

TRUNC.....cco e, 28
tselect command..............ccceee.... 106
two-dimensional
AITAY .o 28
two-dimensionalcccceeeee 132
type
aliasablilitycco 46
(o= 151 1] o [o [120
INTEGER.......coii e, 46
padd_,@function 196
parallel_,@function.................. 194
part_dt ... 5
REAL ..., 67
TYPE statementc.....ocoeenee. 5

types...2, 5, 13, 18, 24, 31, 34, 35,
39, 43, 46, 50, 57, 61, 65, 67,
72,84, 120, 127, 132, 134, 139,
141, 157, 161, 164, 167, 174,
176, 178, 181, 194, 196, 205

TYPE e 46

U

UBC
buffers........ccoo 18

UBC. . e 18

ucolor code-coverage tool option ..98

269

Intel(R) Fortran User's Guide Vol lI

ULIST .o 39
unaligned dataccccceeeeeeennn. 5
UNALIGNED directives............... 205
unary

SORT oot 132
UNAIY .o 134
unbuffered..........ccccvvvvivviiiiiiiinnnnn. 18
underflow/overflow........................ 46
undispatchedcceeevvvvvnnnnnn. 164
unformatted filesccccccornnnne 18
unformatted 1/O.........ccccceeevviinnnnnn. 18
uninterruptable...........cccccn. 146
UNIprocessor 146, 155, 192
units

Setting.....coovveiieii, 161
UNIES o, 161
unpredicatblecccccoeeeeeel 46

unproven distinction

unvectorizable copy................. 135
unproven distinction.................... 135
UNROLL directive.......cccccvvvennnn.. 204

-unroll[n] compiler option

-unrollO oo, 43, 119

270

-Unrolin.....ooo 119
-unroll[n] compiler option.............. 119
unrolling

[oT0] o FT T 119
unrolling.........ceeeveeeiiiieeiinnnes 119, 204
unvectorizablecccvvvveeeeeenn. 127

unvectorizable copy due to

unproven distinction................. 135
unvectorizable copy due to.......... 135
updating

shared.......ccoocviiiiiiiiei 190
(B 010 F= Ui o [o RO TR 190
usage

model.....ccoooviveiiiiiiiiiiis 88, 106

requirements...........cccceeeeennnnnns 106

FUIES oo 78, 164
(U T=To [PR 88, 106
user fuNCtionS...........cccvvveveeeeennnne 86
USEr@systemccoeeevevvieeeeeennnnnnn. 32
USEIS SOUICEeuuniiviiriiieeeeeriinnn, 79
using

32-bit counters.........cccccoevvennnen 91

advanced PGOccccovunnee. 93

ATOMIC ... 167
auto-parallelization 139
BARRIER ..., 167
COPYIN ..o, 173
CPU.. 13
CRITICAL ..o, 167
DEF ..o 205
DEFAULT ... 173
ebp registerooviieeiennneenn. 210
EDB..oo e 5
efficient data types 24
EQUIVALENCE statements 24
FIRSTPRIVATE.......cccooeeiiies 174
FLUSH ..., 167
GDB ..o 210
(€10 1 1 O 164
GP-relativeccccccoviiiiiineenenn. 52
implied-DO 100pS.......cccceeeeeeeenn. 18

Intel® performance analysis tools
... 31

interprocedural optimizations.... 28,
74

intrinsics

Itanium®-based systems 27

INEINSICS ... 27
e o TSP 74
-IPF_fltaccoovvvvviieeeeeeeeis 65
PO o, 74, 87
IVDEP ... 205
LASTPRIVATE ..., 174
MASTER......oooiiiiie, 167
memory

intermediate results................ 18
MEMOIY...uviiiiiieeiiiiee et 18
SN e 61
noniterative worksharing

SECTIONS.......ooeiie, 164
non-SSE instructions................. 28
NONTEMPORAL...........cceee. 205
SO 35
optimal record...............ccoeeee. 18
ORDERED.........ccoiiiiieiieei 167
orphaned directives 152
-par_report3.........cceeiiiiiiienennnn. 143
-par_thresholdO 143
PARALLEL DO......cccoviieeeeen. 166
PARALLEL SECTIONS 166
-prec_div....oei 64

Intel(R) Fortran User's Guide Vol lI

PRIVATE ..ot 174
profile-guided optimization 94
profmerge.....ccccoooovviiiiiiiiiiinnn, 97

profmerge utility

source relocation 97
profmerge utility.............cccccnnee 97
e 24
REAL variables............ccccccco. 28
RECORD......ccoiieeieee, 5
REDUCTION.......oiiiiviiiieeees 176
SCHEDULE..........ccooviiieeen. 164
SECTIONS ..., 164
SEQUENCE ...eovveveeeeeeeeeeeen 5
SHAREDooiiiiiiiie, 178
SINGLE ..., 164
slow arithmetic operators 24
SSE . 28
this document...........cccccoeevinnnee 2

THREADPRIVATE directive.... 152

unbuffered disk writes 18

unformatted files

formatted filesc.ceevenann.. 18

unformatted files.........cccevennon. 18

272

VeCtorizationooovveveieeiieen, 28

VTune(TM) Performance Analyzer

..................................... 145, 146
worksharingccccevvvvvvvvnnnnnn. 161
XIAF ciiiiiiiiiiiii e, 79

using. 2, 5, 13, 18, 24, 27, 28, 31, 32,
35, 46, 50, 52, 61, 64, 65, 67, 72,
73,74,76,77,78,79, 81, 82, 84,
87, 91, 93, 97, 98, 106, 113, 120,
121, 125, 130, 134, 135, 137, 139,
141, 145, 146, 152, 157, 161, 164,
166, 167,172,173, 174, 176, 178,
180, 187, 190, 196, 205, 210

utilities for PGOccccvvvvvvieinnne 95

ULIHZE oo 5

\Y

value
1E-40.. e 61
INFINIEY e 61
mixed data typecccceeeeeeeeennn. 24
NaN .. 61
specified for -src_old and -

SIC_NEW...oviniieiieeeeieeeeiee e 97

threshold control 143
visibility attributes..............cc...... 52

value...1, 2, 5, 18, 24, 28, 35, 39, 43,
46, 50, 52, 61, 64, 65, 67, 73, 74,
82, 84, 94, 97, 98, 106, 116, 119,
128, 132, 143, 146, 157, 161, 174,

176, 178, 180, 181, 184, 187, 200, -vec_reportlcceeeennn. 43, 125
202, 205
-VEC_Ieport2cccccceevevevnnennnnnn. 125
variables
-VEC_Ieport3cooeveveveveinnnennnnn. 125
AUTOMATIC ..oovviiiiiiiieiiieeeeeeeee 43
-VEC_reportdc.coeevevennneennnnn. 125
automatic allocation................... 46
-VEC_Ieportdcoovvevviveneeennn. 125
comma-separated list.............. 157
VECTOR ALWAYS directive....... 205
COrrespoNnduuveieeieeeeiieennnnns 13
AV/CTei (o] g eo] o)V AP 135
EXIStING ... 157
VECTOR directives
ISYNC oo 167
VECTOR ALIGNED.................. 205
length ..o, 18
VECTOR ALWAYS.................. 205
[oTo] o R 174
VECTOR NONTEMPORAL205
PGO environment...................... 94
VECTOR UNALIGNED............ 205
private scopingccceeeeeeeeen... 146
VECTOR directives............c....... 205
profile IGS ... 113
vectorizable
FENAMING .evvniieeeeeeeeeeiiiee e 57
MUXING cevvvvnnieeeee e 127
SCalarS.......cccevveeiiiiiie e 46
vectorizable......... 127,128, 134, 137
1] 1] o [5, 187

vectorization (see also Loop)
variables 2, 5, 13, 18, 24, 28, 35, 39,

43, 46, 50, 52, 57, 65, 67, 74, 82, avoiding ..., 205
84, 86, 94, 98, 113, 116, 118, 119,
120, 128, 139, 141, 146, 152, 155, examplescccoeeiiiiiineeeee, 135
157, 161, 164, 166, 167, 172, 173,
174,176, 178, 181, 184, 187, 192, key programming guidelines....127
196, 200
[evels ..o 124
VAXE i 50
[00P ... 205

-vec_report{n} compiler option
-veC_reportO.....cccoeeevvvveevnnnnnnnnn 125

273

Intel(R) Fortran User's Guide Vol lI

OVEIVIEW ... 124
(<] o0 K< TP 125
10] 0[] o AU 205

vectorization (see also Loop). 28, 67,
87, 121, 124, 125, 127, 128, 132,
135, 201, 202, 205

vectorize
[oT0] o 1S F 87
VECtOrize ..ooevveeeeeeeeean 67,127, 135

vectorized 43, 125, 130, 132, 135,
205

vectorizer

efficiency heuristics

overriding........coeeeeeeeeennnnn. 205
efficiency heuristics 205
(o] 0110] o 1< FS 125

vectorizer ... 121, 124, 125, 127, 132,
135, 205

vectorizing compilers 127
vectorizing loopscccoeeeeeeveeennn, 205
version NUMbErSccceeeeennnnnnns 79
versioned .il filesccccvvviiiiinnnn. 1
view

XMM .o 31
VIEBW . etiiee e e e e e ettt e e e e e e e 31

274

violation

FORTRAN-77 oo, 35
Violationceveveeieeeiiee 35
visibility

SPECIfYING....cceviiiiiiiiiiie e 52

symbol ... 52
VISIDIIEY e 52

visual presentation

application's code coverage....... 98
visual presentation 98
-vms compiler option 5,35
VMS-relatedccceeeiiiiiiiiiiiinnnns 35
VOLATILE statement..................... 18

VTune(TM) Performance Analyzer

VTune(TM) Performance Analyzer.2,
31, 145, 192

W

-WO compiler optioncccceunneee 5

wallclocK.........cccvvveeiiiiiie, 184

What's NEW.........c.ovvvviiiiiiiieeee 1

WhItespaceccceeeeeeeeevveeeiiiiinnn, 52

work
work/pgopti.dpifile..........ccceeeenn. 97

worker thread

call stack dump........cccceeeveeenen. 196
worker thread...................oeee. 196
WORKSHAREccccoiiiiis 145
worksharing

construct

begin....ccccoe i 152
N 152

construct.................. 146, 152, 164

construct directives.................. 164

eNd ... 146, 157

(3701 - J 146

USE oo e e e e e 161

worksharing 121, 138, 139, 146, 152,
157, 161, 164, 166, 176

WRITE

WRITE DATA ... 128
WRITE 18, 39, 128, 139, 167
write whole arrays...........cccccvvvenn. 18
X
X AXIS s 164, 166, 167

-X{K|W|N|B|P} compiler option

Index

XB o 1,70, 73,125
XK 70, 73
XKIWIP. v, 67
XP o, 1,70, 125
-X{K|W|N|B|P} compiler option...... 70,
125
X86 ProCeSSOIS....cccvvveeerieeiiieeennn, 70
XFIELD...oviiiiiiiie, 172,173
XIAT oo 79
xild
11511 [78
options
-ipo_[no]verbose-asm 78
-ipo_fcode-asmccceee 78
-ipo_fsource-asm 78
-QIPO_fa..cvviiiiiiiiiiiiiiiiiiiee 78
~QIPO_fO .evvvviiiiiiiiiiiiiiiiiieeeeee 78
(0] 0110] o 1< J 78
tOO ... 76
Xild oo 76, 78, 81
XMM
VIBW it 31
XMM ., 31
XOR 134

Intel(R) Fortran User's Guide Vol lI

Y zero denormalccccveeeeeeen. 61, 65

Y_AXIS oo, 164, 166, 167 ZFIELD ..o 172,173

YFIELD ..oooiiiiiii, 172,173 -Zp{n} compiler option

Z “ZPL6 e 50

Z_AXIS 164, 166 “ZP8 e 43, 50

zero denormal -Zp{n} compiler option 50
flushing..........ccccccvvveeeennnl. 61, 65

276

	Intel(R) Fortran Compiler For Linux Systems User's Guide
	Disclaimer and Legal Information
	Table of Contents
	What's New in this Release
	Introduction to Volume II
	Programming for High Performance
	Compiler Optimizations
	Parallel Programming with Intel(R) Fortran
	Optimization Support Features
	Index

