TotalView
User Guide

%@
ﬁ{NUS

September 2003
Version 6.3

Copyright © 1999-2003 by Etnus LLC. All rights reserved.

Copyright © 1998-1999 by Etnus, Inc.

Copyright © 1996-1998 by Dolphin Interconnect Solutions, Inc.

Copyright © 1993-1996 by BBN Systems and Technologies, a division of BBN Corporation.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Etnus LLC. (Etnus).

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

Etnus has prepared this manual for the exclusive use of its customers, personnel, and licensees. The information in this
manual is subject to change without notice, and should not be construed as a commitment by Etnus. Etnus assumes no
responsibility for any errors that appear in this document.

TotalView and Etnus are registered trademarks of Etnus LLC.
All other brand names are the trademarks of their respective holders.

10
11
12
13
14
15

Book Overview

part| - Introduction

Discovering TOTAIVIEW........cccooiiiiiiiecie e

Understanding Threads, Processes, and Groupsccccceevveerveennnns

partIl - Setting Up
Setting Up a Debugging SeSSiONcccevivevie i
Setting Up Remote Debugging SeSSIONSccccceevveeviieeiieeiiee e
Setting Up Parallel Debugging SeSSIONS........cccooveiiieeiiieniienieesiee e

part Il - Using the GUI

Using TotalView’s WINAOWS..........ccoiuiiiiiiiiieiie e

Visualizing Programs and Data............ccccceeeveeiiieiiie e

part IV - Using the CLI

Seeing the CLI At WOIK.........couieiiiecee e
USING ThE CLI ..ot

partV - Debugging
Debugging ProgramsS..........cccoiieiiee i
Using Groups, Processes, and Threadsccoccevveiieeiiiesnieenin e
Examining and Changing Data...........ccccoccveiiieeiiee e
EXQMUNING AITAYSiiieiiee ettt ee e ste sttt e sae e s e e aeesnee s
Setting ACHION POINTS......ccviiiiiiiiiee s
Debugging Memory Problems..........ccccooveiieiiie e

€] (0151 ST T oSSR

Book Overview

Contents

About This Book

HOW 0 USE THIS BOOK ...eeviiieiiiiciittiii ittt ettt e e s e e e s s s s eaaabae e e s e e e s e e e esasrrees XV
USING T CLI oottt et e be e Xvi
U (o 1= g o= XVi
(000] 01Y/=1 11 110 TN Xvil
TotalView DOCUMENTALIONccocoiiiiiiiiiiiiee et e e rraee e e Xviii
CONTACTING US ..ottt b e Xviii

part| - Introduction

1 Discovering TotalView

FIFST STEPS .ttt et bbbttt 3
Starting TOTAIVIEWc.vieiiieiie et 4
What About Print StAatemMENTS?cocviiiiiiiiiiiiie s 5
EXAMINING DALAcooiiviiiiiie e 7

Debugging Multiprocess and Multithreaded Programsccccoovevireeniiieneneenn 9
Supporting Multiprocess and Multithreaded Programsccocevevveiininennens 10

USING Groups and BAITIEScoiiiiiiieieiieie et 11

INtrOAUCING The CLI ..ot 12

WRAE'S NEXT ...t 13

2 Understanding Threads, Processes, and Groups

A COUPIE OF PrOCESSESvviiieiiiiieiestie ettt 15
TRFEAUS ... 17
Complicated Programming MOdelScccviiieiiiiii e 18
Kinds Of TAFEAASocuviiiiiiiiee s 20
Organizing Cha0Sooeiiiiieie e 22
Creating GrOUPSooiiieiirieeiiee ettt n et 25
Simplifying What YOu’re DebUGUINGccvoiveeiiiieieiiesieeeese s 29

partll - Setting Up
Setting Up a Debugging Session

(0701 101 o 11T Tol ad (o] 7= 1 1< TS
1 Lol g (=T L] [LSS T
STArting TOTAIVIEW ..o e s
INILIANIZING TOTAIVIEW ...
EXIting from TOTAIVIEW ...ccveiiieeciie e
Loading EXECULADIESccocvieiiiiee et s
Loading Remote EXECULADIEScccveviieiiiice e
ATLACNING TO PrOCESSES ...eevieiiiieiee ettt ettt ettt e st e eeenaeesneeenaeen
Attaching Using the Unattached Pageccooveiiiiiiiiicicnicc e
Attaching Using File = New Program and dattachcccocevviiinnncniennnnn.
Detaching from PrOCESSESccvciviiiiiiie ettt saae s
EXamining COre FIlESooivviiiie et
Viewing Process and Thread STateccccccveiiie e
ALtached ProCeSS STALESooiieiiiiee e
Unattached ProCeSS STAteScccccveiieiiieieriie et se e
HaNAIING SIGNAIS ...t
Setting Search Pathsccoooiiii i
Setting Command ArgUMENTSccviiiiieei e s e e e nnee e
Setting Input and OULPUL FIlESoeiuiiiieei et
SELHING PrefErENCES .. .ottt es
Setting Preferences, Options, and X RESOUICEScccccvvvverieiiesieenieesiieseeeenns
Setting Environment Variablesccooviiiiii e
Monitoring TOtAIVIEW SESSIONSccveiiieiieiie ettt srae e

Setting Up Remote Debugging Sessions

Setting Up and Starting the TotalView Debugger Serverccccoevvvvviveiivennnnnnn.
Setting Single-Process Server Launch Optionsccccccevvevieiie e,
Setting Bulk Launch Window Optionscccccveviiiie i
Starting the Debugger Server Manuallyccccceviiveviie e
Using the Single-Process Server Launch Commandcccccooovvieiiiiineneene
Bulk Server Launch on an SGI MIPS Machinegcccoovvieiienniie e
Bulk Server Launch on an IBM RS/6000 AIX Machingccccceevvieevivesinnnnnn
Bulk Server Launch on an HP Alpha Machinecccccccveiiieic i,
Disabling AULOIAUNCRccoiiiiiece e
Changing the Remote Shell Commandcccoce v
Changing the ArgUMENTS ..ot
AULOIAUNCN SEOUENCE ...ttt ettt snee e e

Debugging Over @ Serial LiNe ..o
Starting the TotalView Debugger SEIVErccovevveiieiie e
Starting TotalView on a Serial LINec.cccoveiieiiiicii e
Using the New Program WINAOWcccccveiiiiiie e

Setting Up Parallel Debugging Sessions

Debugging MPICH APPlICAtiONScccceeiieiiiiie e
Starting TotalView on an MPICH JODcooooiiiiiciiee e,
Attaching to an MPICH JODcoviiiiii e
MPICH P4 procgroup FilEScoeiiiiieie e e

Debugging HP Tru64 Alpha MPI Applicationscccccveveevieiie e 79

Starting TotalView on a HP Alpha MPLIODccoooiiiiiie e 79
Attaching to a HP AlIpha MPIIOD.........cooiiiii e e 80
Debugging HP MPI APPIICALIONScoiiieiiiiie e 80
Starting TotalView on an HP MPLIOD..........ccciiiiiiiiiic e 80
Attaching to an HP MPIJODcoiiiiiieie e 81
Debugging IBM MPI Parallel Environment (PE) Applicationscccccccveviieeinenne 81
Preparing to Debug a PE AppliCationcccocoveeviii i 81
Using Switch-Based Communication..............ccceevvveevieeeviee s 81
Performing REMOLE LOGINS.ccviiieiiieiee ettt 82
SETUING TIMEOUTS ...ttt 82
Starting TotalView on @ PEJODcooiiiiiii 82
Setting BreakpPOiNTSccvciiiiiiciic et 83
Starting Parallel TASKSc.veciiieiie s 83
Ataching tO @ PE JODvvviie e 83
Attaching from a Node RUNNING POccueiiieiiieiiecie e 83
Attaching from a Node NOt RUNNING POEccveiiiiiiiiiiesiec e 84
Debugging LAM/MPI APPIICALIONScceeiviiiiiiiieiieeeseee e 84
Debugging QSW RMS APPLICALIONSccveeiiieiii e 85
Starting TotalView on an RMS JOD ... 85
Attaching to aN RMS JODooiii e 85
Debugging SGI MPI APPIICALIONSc.eiiiieiieiie et 86
Starting TotalView 0n @ SGI MPIIOD........cciiiiiiiiiicce e 86
Attaching to an SGI MPIJODcv i 86
Debugging Sun MPI APPlICALIONSccceeiiieiie e 87
Attaching to a SUN MPLIOD ..o e 87
Displaying the Message Queue Graph WiNAOWccooeeiiriirenieeiie e 88
Displaying the MesSage QUEUEccooieiiriiriiiee e eieenieesieestie e seeesneeeneeeseeeeneeas 89
Message Queue DiSplay OVEIVIEWcccecieiirieniinieniieee e 89
Using Message OPEratiONScveceeiieiiieeiie e esie e sreeie e sre e sve et e e ere e 90
DiIVING ON MPI PIOCESSESeevviciiieiieciie et stee sttt sive et et e ae e sneeaneas 90
DiviNg 0N MPIBUFTEISveeeie e rae e 91
Pending Receive OPErationscc.cccovieerieiiiee e sie e siee e seee e saee e 91
UNEXPECTEA MESSAJESveiiieieieeiiieeieesieesiieeteesteesite et e seee e et e seeeenaeesneeenaeas 91
Pending SeNd OPEratioNSccoiieiiiieieiieer e 91

MPI Debugging TroublesShootingccccocviiiiiiiiice e 92
Debugging OpenMP ApPlICAtiONScccccveiiiiiiecie e 92
Debugging OPenMP PrOgramsccceeeiueeiieeesieeestieesieeesieeesseeesreessneesessneesnsees 93
TotalView OPenMP FEALUIEScoceiiiiiieie et s 93
OpenMP Platform DIiffErenCeScccoooeeiiiiieeieie e e 94
OpenMP Private and Shared Variablesc.ccooviiniiiii e 95
OpenMP THREADPRIVATE Common BIOCKSccccccvvviiiiieiiece e 96
OpenMP Stack Parent TOKEN LINEccoccvveiiiiiicic e 97
Debugging Global Arrays ApPplICatioNSccccveviieeviee e 98
Debugging PVM (Parallel Virtual Machine) and DPVM Applications 101
SUppPOrting MUItiple SESSIONS.ot 101
Setting Up ORNL PVM DebUQGQINgccevviriieiiiieiiiieniesiieie e 101
Starting an ORNL PVM SESSIONcuceiieiiieiiicie et e e 102
Starting @ DPVM SESSIONcccviiieiieeciie e esie et sre st 103
Automatically Acquiring PVYM/DPVM PrOCESSESccccveiiveeiiineesiieeesneeenaneennens 103
Attaching to PYM/DPVM TaSKSooiiiiiiiie et 104

RESEIVEA MESSAJE TAUS ... vveivreerieesieeitreeteesteestteesteesteesrteesteessreenbe e reesraeeeee e 106

CleanuUp OF PrOCESSES.uvieiiiieiiie e ciee s se e tee e e see e eree e s re e nnes 106
Debugging Shared Memory (SHMEM) COdEccccevivieiiieiiiiee e 106
Debugging UPC Programscoueiueeiee e e sieesteestieesieestessreeenteeseeesnteeeeesseeeneeenes 106

INVOKING TOTAIVIEW ...t 107
Viewing Shared ODJECEScccvoiiiiiiie s 108
POINTEN tO SNATEA ...t e 109
Parallel Debugging TIPS ..oocveeiiiiiii e ees 110
ATACNING 1O PrOCESSESvvicciiie ettt st e e tre e e rae e 110
General Parallel Debugging TiPS ...oooveeoeereeiie et 113
MPICH DebUQUiNG TIPS ..eveeveriieierieiiesiieie sttt 115
IBM PE DEBUQGGING TIPS ..ouvivvetieiieniieie ettt 115

part Il - Using the GUI

Using TotalView’s Windows

USING the MOUSE BULEONSooiiiiiiiiiiieiesieee et 119
UsiNg the ROOT WINAOWcveeiiiiiiiiiee et 120
UsiNg the Process WINAOWcovceeiiiie i erie e sste e st e ste e stee e s e e snen e nnae e 123
(DY Ta o T gl (o @] o] =T ol £ SRR 124
Resizing and Positioning Windows and Dialog BOXEScccoveeveiieeneesieiieene 126
EQITING TEXE .ttt 127
Saving the Contents Of WINAOWSc.ccoviiiiiiiccicce e 128

Visualizing Programs and Data

Displaying Your Program’s Call Tccceviiiiieiieie e 129
ViSUAHZING AITAY DALAccveivieiiiiieii e 130
HOW the VISUAIIZEr WOTKSoiiiiiiiiciesiee e 131
Configuring TotalView to Launch the Visualizercccocevvivieiiiiciieciee 132
Visualizer Launch COmMmMaNdcccooiiiiiiiiiiiii e 133
Data Types That TotalView Can Visualizecccoocviiiviiiiinnie e 133
VIEWING DALA ...eoeieieieeieee ettt 134
Visualizing Data ManuUallycccoiiiiiiiieeee s 134
Visualizing Data Programmaticallyccceviviiiiiiei i 135
USING the VISUALIZETcvviiieiee sttt 136
(DT ¢=Tox (o] VAR LT o [0 1SS 136
D72 1= LT T [0SR 137
Using the Graph WINAOWcouiiiioiii i 138
Displaying Graphsccciieiiiieiiese e 140
Manipulating GraphiScccveiieiiece e 140
Using the Surface WiNndOWcocviiiiiiiiiicce e 140
Displaying Surface Dataccccocceeeiieeiiie e 141
Manipulating SUrface Datacccocoveiiiiireie e 143

Launching the Visualizer from the Command Linecccoooveieivniieeienennns 143

10

part IV - Using the CLI
Seeing the CLI at Work

Setting the EXECUTABLE_PATH State Variableccccocoovevieiiiie e, 149
Initializing an Array SHCEcooi e 150
Printing @n AITAY SHICEooviiiiiiiiieitieies et 151
Writing an Array Variable to @ File ... 152
Automatically Setting Breakpointscccocviiieiii i 153
Using the CLI
LI = U3 T I 1 1= O I SO SR 157
The CLI aNd TOTAIVIEW ...cveeiieiciie ettt st 158
THe CLEINTEITACE ...eoiiiieiece e 158
STArtING The CLI ..eveee e e ae e s nre e e snne e 159
SEArtuP EXAMPIE ...oveeeeee e 160
Starting YOUr PrOGIaMooiiieiieieie ettt snee s 160
CLIOUEPUL ...ttt b et srn e e nreennne s 162
“INOTE” PIOCESSING .eveuviiieiriiieeteeiee ettt ettt sttt ettt 163
ComMMEANA AFGUIMENTSoouiiiiecciie ettt re s e st e e e staesraeesbaesreeas 163
USING NAMESPACES ..eeeivveeeiieeiitiieiiteeestieeestteesteeessteeessteesteeesneeeessteeataeesneeeesnresensns 164
Command and Prompt FOIMALScccooiiiiiiieie e 164
Built-In Aliases and Group AlBSEScccovoerrueiiieiieiee e see e 165
Effects of Parallelism on TotalView and CLI BEhaviorccccccevvvvievieeiinsinene, 166
KINAS OF IDS ...ttt 166
Controlling Program EXECULIONccceevviiiieeiic e s ste e e 167
Advancing Program EXECULIONccceeiuieeriiersiieesiieesieeeseeessieeesaeeessneesnnee e e 167
ACTION POINTS .ottt e e e e 167

partV - Debugging
Debugging Programs

Searching and Looking Up Program EIeEmMentscccooovioeevieiiiniieenee e 171
SEArCHING fOr TEXE ...eiiiieiie ettt 172
Looking for Functions and Variables ... 172
Finding the Source Code for FUNCLIONSccoeeiiieiiccc e 173

Resolving AmMBIiguOUS NAMESc.eovveeiiiii e 174
Finding the Source Code fOr FIleScccovviieiiii i 174
Resetting the Stack Framecooiiiiiiie e 174

Viewing the Assembler Version of Your Codeccccooviiieiinniiiiieie e 175

EdItiNG SOUICE TEXT ..ovviiiiiiiiieie ettt 177

Manipulating Processes and Threadsccccceveeveeiiecie e 177
Stopping Processes and Threadsccccceevveeiiicveeiie e 178
Updating Process INformationcccccviviiiiiiie e see e 178
Holding and Releasing Processes and Threadscccccoocveviniieineevieiieecene 179
EXAMINING GIOUPS ..oeeieiieieieeie ettt ettt ee e ste e snee s te e seeesneeanaeeseee s 180
DiSPIAYING GIOUPSuveeiieieeiteeiee ettt 182
Placing Processes iNtO GIrOUPScccveivieiieiiiiieesieeseeseeesie e sree e sreesreesneannee 182
Starting Processes and Threadscccevvevieeiiciie e 182

11

Creating a Process Without Starting Itccccccevveeiie v 183

Creating a Process by Single-Steppingccccoveviee e 183
Stepping and Setting Breakpointscccevcveiiiii v 184
Using Stepping COMMANGScooiiiiiiiee et es 185
Stepping iNto FUNCEION CallSccvviiiiiiice e 185
Stepping Over FUNCION CallSccooiiiiiiiee e 186
Executing to a Selected LiNEcovviii i 186
Executing to the Completion of a FUNCLIONc.coeeviivevie e, 187
Displaying Your Program’s Thread and Process Locationsccccceevvveiivneenne, 187
Continuing with a Specific Signal ... 188
DEleting PrOGIamSccuiiiiiiieiieitiei ettt 189
RESTArtiING PrOGIAMSoviiiiiiieiiiiee ittt 189
101 0 1=Tod (0T 11 110 SRS SURRRPRN 189
Fine Tuning Shared LibBrary USEccccviiiie i 190
Preloading Shared LIDIari€sccccccieeiiieiiiie et e s e nneee 191
Controlling Which Symbols TotalView Readscccccoooveiiiiiiiienieieeeeee, 192
Specifying Which Libraries are Readc.ccoovriiiiiiiiiiiesicc e 192
Reading Excluded INfOrmationcooeiiiiiiiniineccee e 193
Setting the Program COUNTETcccociiiiiiie e 194
Interpreting the Status and Control RegiStersccoevveevve v 195

Using Groups, Processes, and Threads

Defining the GOI, POL, and TOIoooieiieieeee st 197
Setting a BreakpOiNtoovoiiiiii i 198
Y (=T o] o[1o TN (= U o) SRS 199
Group WILLH ... 200
ProCess WItthc.oooiiii et 200
Thread WIth ... 200
Using “Run To” and duntil COmmandsccccevvveeieeiieiie e 201
USING P/T SEL CONLIOISc.veeiieeiec et 202
Setting Process and Thread FOCUScccveiiiviiiie it siee e nneee 203
ProCeSS/TRIEAA SELSeiiiie ettt sree e 204
AATBINAS ettt ettt ekttt e Rt e e b e e et et e eabe e bb e e abe e aare e ennes 205
Specifying Processes and TRreadsccooveverieiiiieiiiniee e 205
The Thread of INterest (TOI)occi e 205
Process and Thread Widths..........ccooiiiiiiiiiiie e 206
SPECITIEr EXAMPIESveeieie ettt e s e et e tee e s e e s nra e e enee e 208
SELHING GrOUP FOCUSeiiiiieiie ittt st st stee e e seeeneee s 208
Specifying Groups IN P/T SETSccviviiiiiiiieeee e 209
Arena Specifier COmDINATIONScccvoiiiiiiiiee s 210
‘All’ Does Not Always Mean “All” ..o 213
SELLNG GrOUPS ...vveiviieieeciie sttt ettt be et e e eae e s e e naeesneeaneas 214
Using the ‘g’ Specifier: An Extended EXampleccccocoeevieeiie e 215
FOCUS MEBIGING ...veeeieeie ettt ettt ettt st e e ste e sneeenteesreesnneeneeesrneas 217
Incomplete Arena SPECITIEISiiii e 218
Lists with Inconsistent WIidthsccoviiiiiieiie e 219
Stepping (Part 11): SOME EXAMPIES ...ccvvevvviiiieiie e 219
USING P/T SEL OPEIALOISccvvievieiiieciie et ctee st te ettt st e sae et snbe e sreenes 220
USING the P/T SEE BIOWSETcocvvieiiieeciie et et s et e et ae e s e e snre e e nnae e 222

Using the Group EAItOroooiiiiiee e e 225

12 Examining and Changing Data

Changing How Data Is Displayedcccoveiiiiiiiei e e 227
Displaying STL Variablescccociiiiiie et 227
Changing Size and PreCiSIONccciiiiiiiieiieie et 229

Displaying VariabIEs ..o 230
Displaying Program VariablesScccceiiiiiiiiii s 231
Displaying Variables in the Current BIOCKccccooiviiiieiiic e 231
Browsing for Variables ... 231
Displaying Local Variables and REQISTErSccoovveriiiiieiie e 232
Displaying Long Variable Names ... 234
AUtOMALIC DEreferenCinNgcccooviriiieiieiesi e 234
Displaying Areas Of MEMOIYcc.oociiiiieiic et 235
Displaying Machine INStrUCLIONSccocvviiiiiiiiie s 236
Closing Variable WINAOWScooiieiiiiieiiec e ee e 237

Diving in Variable WINAOWScooiiiiieie e e 237
Displaying Array of Structure EIEMENTSccceviiriiiiiinie e 238

Scoping and SYMBOI NAMESociiiiiiiiiie e 239
Qualifying SYMbBOI NAMESccveiieiieecir et 240

Changing the Values of Variablescccoveiiiiiiiii e 241

Changing a Variable’s Data TYPEcoceeiieiiee et 242
Displaying C DAta TYPES ..cveeieeeiieiieaieesieeseeaieesteeseeaneeeseeesseeaneeesseesneeeseeeseeess 243
POINTEIS TO AITAYS ..ottt e 243
F N1 =\ PR PR TP PPR 243
Y] 0 1= 13 £ SRS PR 244
SETUCTUIES <.ttt ettt et e st b e st e e st e e snbe e naneas 244
6 0T LRSS 245
BUITE-IN TYPES ettt ettt sttt e sneeeneeeneee s 245

Character Arrays (<<String= Data TYPE)cccverrirrrririeienieneseenie e 247
Areas of Memory (<void= Data TYPE)cccccceeriirriieriierir e sre e 247
Instructions (<<code= Data TYPE)ccccvverieiieiiieree et 248
Type Casting EXAMPIESc.evvvieeeeiee e 248
Displaying Declared AITAYSccoueeiereeiie e sie e 248
Displaying AllOCAted AITAYScoieeieeeiee et 248
Displaying the argv AITAYc.ooveiiiiieieee e 248

Working with Opaque Dataccccveiiieiieiie e 249

Changing the Address of Variables ... 249

Changing Types to Display Machine INStructionscccccvvvvevviie e evinecsieenn, 249

DiSPIaying Ch TYPES ..cveeiieeieieiiie e stee et sttt seee et esteeesae e e sreeeneeenes 250

ClASSES ..ttt ettt ettt ettt sttt eer e e teeeteeenteenteenneeenee s 250
Changing Class TYPES IN CAF ..o 251

Displaying FOrtran TYPESccvveivieiieiiee ettt sttt sttt snae s 252
Displaying Fortran Common BIOCKScccoivviiiiiiiii e 252
Displaying Fortran Module Dataccccceeviiiiiiii i 252
Debugging Fortran 90 MOAUIESoooiiiiee e 254
Fortran 90 User-Defined TYPESoooviiiiieieeeie et 255
Fortran 90 Deferred Shape Array TYPESccooveiiiieiinienieee e 255
FOrtran 90 POINTET TYPES ..vvviveeciiiiiiecteestee st st st see s sve e ste e sae s ste e steesrae s sreenrae s 256
Displaying FOrtran Parameterscccveiieiiiiieeie e e s e eve et sae e 256

Displaying Thread OBJECESooviii i 257

13

14

Examining Arrays

Examining and ANalYZING AITAYSccccuveeiieeiiieeiieeesteeesieeesee e e seeesnrneeseeeesneeeenens 259
Displaying Array SHICESoouviiieiiieie ettt sae e 259
USING SIICES AN STIHUES ...o.veeeiiieiieee e 260
Using Slices in the Lookup Variable Commandcccccevveniiiencnieninnne 262
Array Data FIlteriNgcveivieiie et 262
FIltering Array Datalc.cccoocviiiiec e sre e e 263
Filtering by COMPANISONcooiieeiiie it e e 264
Filtering fOr IEEE VAIUESooiiiiieeiie et 265
Filtering By @ Range Of ValUEsccccoiiiiiiiiiiieeeee e 265
Creating Array Filter EXPreSSiONSc.cccviieiiiieiinieicsee e 266
Using Filter COMPANISONScciviiiiieiie ettt 267
SOrtiNG Array DAtAceciiieiiiec et 267
Obtaining Array STALISTICSceeeiiieeiiie e 268
Displaying a Variable in All Processes or Threadscccooceevevieeieeiee e 270
ViSUAHZING AITAY DALAccviiiieiiiiieiieie e 272
Visualizing a Laminated Variable WINAOWccccooiieiinieniniincecc e 272

Setting Action Points

ACLION POINTS OVEIVIEW ..ottt e e nae e e 273
Setting Breakpoints and BarTIErScooeiiiiiiiiiiiieee e 275
Setting Source-Level Breakpointscccccocieiieciiciie s 275
ChoOoSING SOUICE LINESccvviiiic et 275
Setting and Deleting Breakpoints at LOCAtioNSccccccevviveiieevieessiec e 275
Displaying and Controlling ACtion POINTScccccveiiieiirieeeere e 277
D157 o] 11 T USRS 278
DRIBTING . ..ottt 278
ENADIING ..o 278
SUPPIESSING ..veeveeitee it st e ste e ste e st e s e e s e e steeste et e stbeasbeesteessbeetaestaesraesnreesreean 278
Setting Machine-Level Breakpointscccccueeiiieiiiieeiiee e siee e 279
Setting Breakpoints for Multiple PrOCESSESccovvvvieeiieiiieeeee e 280
Setting Breakpoints When Using fOrk()/EXECVE()ccovvrvereeirenieiieeie e 281
Processes That Call TOrK()vovererririeeieeee e 281
Processes That Call XECVE()....cveevveeiieiiee e 282
Example: Multiprocess Breakpointcccocvevieiiiiii e 282
BAITIEN POINTSeiiiiieieiie ettt sttt sre e et e neee s 283
Barrier Breakpoint StAtesccoooveiiriiiiie e 283
Setting a Barrier Breakpointcooieiieiiiieree e 284
Creating a SatiSfaCtion STccccoviiiiiiee e 285
Hitting @ Barrier POINTcccooiieiie e 285
Releasing Processes from Barrier POINTSccccccvevieeiee e 285
Deleting a Barrier POINTcoiii i e e et e e e 285
Changes When Setting and Disabling a Barrier Pointcccccccooceiiennnne 286
Defining Evaluation Points and Conditional Breakpointscccoocvovivenieninnnne. 286
Setting EValuation POINTScooiiiiiiiiiiiece e 287
Creating Conditional Breakpoint EXamplescccoovvieiieeiiesie e 288
PatChing PrOgramscccviiiiiiic ettt sttt steesrae s 288
Conditionally Patching Out COdecccevieeiiiee i 288
Patching in a FUNCtion Call ..o 289

(07015 ¢=Tox 11 oo O 0o [USROS 289

Interpreted vs. Compiled EXPreSSiONSccveviiiieeiiee e 289

INterpreted EXPrESSIONSccocveeiiieeeiieeesieesiteeesieeestreenteeeestaeesreeesneeeesneeeens 290
Compiled EXPrESSIONScciiieiiieeiiieesiee e seee s e e siee e srte e s snte e s e e e st e e snnee s snees 290
Allocating Patch Space for Compiled EXPressionsccocveveevienieeneesinnnn 291
Dynamic Patch Space AIOCATIONcooveiiiiiiiiieieee e 291
Static Patch Space AlIOCALIONcceoiiiiiiiieee e 291
UsSINg WatCPOINTScveiiiiie e 292
ATCNITECTUIES ..ottt et 293
Creating WatChPOINTSc.coocieeiiee et 294
Displaying WatChpPOINTScccoiiiiieiiece e 295
WALChING MEMOTY ..o 295
Triggering WatChPOINTSoiiiiiiiieiee e 295
Using Multiple WatChpointscccociiviiiiii e 296
(D7 U7 W 0] o 1= 3SR 296
Using Conditional WatChpointsccccovv i 296
Saving Action POINES 10 @ Fileoieiiii e 298
Evaluating EXPreSSIONSooviiiiiiiiiiesiiee e 298
Writing Code FragMentScoooiiiiiieiieiesiee et 301
TOtaIVIEW VariabIesccviiiiiiieiieee e 301
BUIIE-IN STALEMENTSooeiiiieiee e e 302

C CONSLIUCES SUPPOITEAeeeeiiiieeiieeeie ettt 303
Data Types and DeClarationsccccovoeeveieenie e 303
STATEMEINTS ..ottt 304
Fortran ConStructs SUPPOILEAccccvveiiiiieie e 304
Data Types and DeClarationscccovvveviiiiieviee it 305
STALEMEINTS ...t e 305
Writing ASSEMDBIET COEoiiveiiiie et 305

15 Debugging Memory Problems

MONItOriNG MEMOIY USE ...cvviiiiciiie ettt e et 309
Tracking Heap ProbIEMSoooiie et 311
QUICK OVEIVIEW ...evveeeiiiee st e ecite e tee e st e e st e e tae e st e e s te e e snte e e nba e s stae e sntaeesnnaeennneas 312
Enabling, Stopping, and Startingccccoooeveiii e 314
BENING thE SCENES ...evieiicee ettt sae e 315
ErrOrS DETECTEM ...t et 315
LIMITALIONS ..ottt 316
Kinds Of ProbIEMScuii e 316
Freeing Unallocated SPaCEccooeeeieriiiiee e 316
Freeing Memory That Is Already Freedcccovovviiein i 317
Tracking realloC ProbIEMSccoiiiiiiiiee e 318
Freeing the Wrong AAAreSSceoieeiiee e 318
Using the dheap Commandcccoocveiiiiiiie e 319
Linking and Environment Variablesccccccooiiiiiii e 320
Linking Your Application With the Agentcccoooviiiiiie e 320
ALtaching t0 PrOgramsc.oooveiieie e 321
USINg the MemMOTY TIaCKETccoviiiiiiiiesie et 323
IMPICH e 323

IBM PE et 323
SGIMPL et 324
RIMIS IMPL <.ttt 324
Installing tvheap_mr.a 0n ALX ... 325

About This Book

This book describes how to use TotalView®, a source- and machine-level
debugger for multiprocess, multithreaded programs. It assumes that you
are familiar with programming languages, the UNIX operating systems, the
X Window System, and the processor architecture of the platform on which
you are running TotalView and your program.

You will be reading a user guide that combines information for two
TotalView debuggers. One uses Motif to present windows and dialog
boxes. The other runs in an xterm-like window and requires that you
type commands. This book emphasizes the Motif interface, as it is
easier to use. As you will see, once you “see” what you can do using
Motif, you will know what can be done using the command interface.

This book covers using TotalView on all supported platform.

How to Use This Book

The information in this book is presented in five parts.

m |: Introduction

Here you'll find an overview of some of TotalView’s features and an intro-
duction to TotalView’s process/thread model. Please read this informa-
tion. It’s easy reading and you’ll get a feel for what TotalView can do.

m |l: Setting Up
Most people don’t spend a lot of time in this section. Chapter 3 tells you
what you need to know about configuring TotalView. Chapters 4 and 5 tell
you how to get your programs running under TotalView’s control. Look at
Chapter 4 if you're having problems getting the TotalView Debugger
Server (tvdsvr) running and if you’re reconfiguring how the tvdsvr gets
launched.
You will never need to read all of Chapter 5. Instead, go to the table of
contents and find the section that has the information you need.

~

m |II: Using the GUI
The chapters in this section look at some of TotalView’s windows and how
you use them. You are also shown tools such as the Visualizer and the Call
Tree that help you analyze what your program is doing.

m |V: Using the CLI
The chapters in this section explain the conventions of using a command-
line debugger and how to create Tcl macros.

m V: Debugging
In many ways, most of what has preceded this part of the book is intro-
ductory material. This part of the book is where you’ll find out how to
examine your program and its data. Here is where you’ll find information
on setting the action points that allow you to stop and monitor your pro-
gram’s execution.
Equally important, Chapter 11 is a detailed examination of TotalView’s
group, process, and thread model. The more you understand this model,
the easier time you’ll have debugging multiprocess and multithreaded
programs.

Using the CLI

To use the CLI (Command Line Interface), you need to be familiar with and
have experience debugging programs with the TotalView GUI. As CLI com-
mands are embedded within a Tcl interpreter, you will get better results if
you are familiar with Tcl. However, if you don’t know Tcl, you will still be
able to use the CLI, but you will lose the programmability features that Tcl
gives. For example, CLI commands operate upon a set of processes and
threads. You can save this set and apply it to commands based upon what
you have saved.

You can obtain information on using Tcl at many bookstores, and you can
also order these books from online bookstores. Two excellent books are

m Ousterhout, John K. Tcl and the Tk Toolkit. Reading, Mass.: Addison Wesley,
1997.

m Welch, Brent B. Practical Programming in Tcl & Tk. Upper Saddle River, N.J.:
Prentice Hall PTR, 1997.

There is also a rich set of resources available on the Web. The best starting
point is www.tcltk.com.

The fastest way to gain an appreciation of the actions performed by CLI
commands is to review Chapter 1 of the TotalView Reference Guide, which con-
tains an overview of CLI commands.

Audience

Many of you are very sophisticated programmers, having a tremendous
knowledge of programming and its methodologies and almost all of you

have used other debuggers and have developed your own techniques for
debugging the programs that you write.

We know you are an expert in your area, whether it be threading, high-per-
formance computing, client/server interactions, and the like. So, this book
won't try to tell you about what you're doing. Instead, it tells you about
TotalView.

As you will see, TotalView is a rather easy-to-use product. Nonetheless, we
can’t tell you how to use TotalView to solve your problems because your
programs are unigue and complex, and we can’t anticipate what you want
to do. We also know you don’t want to spend a lot of time reading about
using TotalView. Consequently, you’re not going to see a lot of quasi-proce-
dural discussions that tell you what to put in dialog boxes. You already
know what to do.

This book also doesn’t spend a lot of time explaining what you do with a
dialog box or the kinds of data you can type. If you want that information,
you’ll find it in the online Help. If you prefer, an HTML version of this infor-
mation is available on our Web site. If you have purchased TotalView, you
can also post this HTML documentation on your intranet.

Conventions

The following table describes the conventions used in this book:

Convention Meaning

[1 Brackets are used when describing parts of a command that are
optional.

arguments In a command description, text in italic represent information

you type. Elsewhere, italic is used for emphasis. You won't have
any problems distinguishing between the uses.

Dark text In a command description, dark text represent keywords or
options that you must type exactly as displayed. Elsewhere, it
represents words that are used in a programmatic way rather
than their normal way.

Example text Inprogram listings, this indicates that you are seeing a program
or something you'd type in response to a shell or CLI prompt. If
this textis in bold, it’s indicating that what you’re seeing is what
you'll be typing. Bolding this kind of text is done only when it’s
important. You'll usually be able to differentiate what you type
from what the system prints.

This graphic symbol indicates that the information that fol-

i lows—it is printed in italics—is a note. This information is an

important qualifier to what was just said.

Title
TotalView User Guide

TotalView Reference Guide
TotalView QuickView

TotalView Commands

Creating Type Transforma-
tions

TotalView Installation
Guide

TotalView New Features
TotalView Release Notes

Platforms and System
Requirements

Convention

au

CLI:

Meaning

This graphic symbol indicates that a feature is only available in
the GUI. If you see it on the first line of a section, all the infor-
mation in the section is just for GUI users. When it is next to a
paragraph, it tells you that just the sentence or two being dis-
cussed applies to the GUL.

The primary emphasis of this book is on the GUI. It shows the
windows and dialog boxes that you use. This symbol tells you
how to do the same thing using the CLI.

TotalView Documentation

The following table

Contents

Describes how to use the TotalView GUI and

describes other TotalView documentation:

the CLI; this is the most used of all the TotalView

books

Contains descriptions of CLI commands, how you

run TotalView, and platform-specific information
Presents what you need to know to get started

using TotalView
Defines all TotalView GUI

Tells how to create Tcl CLI macros that change the
way structures and STL containers appear

Contains the procedures to install TotalView and the

FLEXIm license manager

Tells you about new features added to TotalView
Lists known bugs and other information related to

the current release

Lists the platforms upon which TotalView runs and

the compilers it supports

Contacting Us

Online
Help HTML PDF Print
v v v v
v v v
commands v v v
v v
v v
v v v
v v
v v

Please contact us if you have problems installing TotalView, questions that
are not answered in the product documentation or on our Web site, or sug-
gestions for new features or improvements.

Our Internet E-Mail address for support issues is:

support@etnus.com

For documentation

issues, the address is:

documentation@etnus.com

Here are our phone numbers:

1-800-856-3766 in the United States
(+1) 508-652-7700 worldwide

If you are reporting a problem, please include the following information:

m The version of TotalView and the platform on which you are running
TotalView.

m An example that illustrates the problem.

m A record of the sequence of events that led to the problem.

Contacting Us

xx |

About This Book

Part |: Introduction

This part of the TotalView Users Guide contains two chapters.

Chapter 1:

Chapter 2:

Discovering TotalView

Presents an overview of what TotalView is and the ways in

which it can help you debug programs. If you haven’t used
TotalView before, reading this chapter lets you know what

TotalView can do for you.

Understanding Threads, Processes, and Groups

Defines TotalView’s model for organizing processes and
threads. While most programmers have an intuitive under-
standing of what their programs are doing, debugging multi-
process and multithreaded programs requires an exact
knowledge of what'’s being done. This chapter begins a two-
part look at TotalView’s process/thread model. This chapter
contains introductory information. Chapter 11: “Using
Groups, Processes, and Threads” on page 197 contains informa-
tion on using these concepts with TotalView commands.

Part I: Introduction

Discovering TotalView 1

The Etnus TotalView® debugger is a powerful, sophisticated, and
programmable tool that allows you to debug, analyze, and tune the
performance of complex serial, multiprocessor, and multithreaded
programs.

If you want to jump in and get started quickly, you should go to our
Website at http://www.etnus.com and select TotalView’s “Getting
Started” area.

Topics in this chapter are:

m “First Steps” on page 3
m “Debugging Multiprocess and Multithreaded Programs” on page 9
m “Using Groups and Barriers” on page 11

m “Introducing the CLI” on page 12

m “What’s Next” on page 13

First Steps

The first steps you will perform when debugging programs with TotalView
are similar to those you would perform using other debuggers:

m You use the —g option when compiling your program.
m You start your program under the debugger’s control.
m You set breakpoints.

m You examine data.

And, the way you go about doing these things is just about the same.
Where TotalView differs from what you’re used to is in its raw power, the
breadth of commands available, and its native ability to handle multipro-
cess, multithreaded programs.

First Steps

Starting TotalView

Figure 1: The Process Window

After execution begins—you’ll probably have typed something like
totalview programname—you’ll see a five-paned window. (See Figure 1.)

Fin Eat ¥ies Gaup Procsss Thiead Acton Paim o Teoll ‘Windpes Heip

Oriyiconn | S W] N oy k| S Vo] b Seupl] | | 0| VI

1 (2754 fark_laoplinus Al Breai)
M] TN kel 4]
Tia s n Hlwi Frami
bon. "l "
[f::-u:lp;rr mm n?:-\.:: cmmb: Gn D (D)

.
-\.-l- mEin, FR=GEFEE2NN Black Tgr1®

L __Lika_ptart_wain. Fr=bEfEETER L OalIEIEI | 0745
my ST e 0B008H | 10345
amw k1 d O pBETd | 051)
btr (pkhread skir t}
s

Fallur s Na ISR (D)
Local wariablas

[=tatd pad: GatiSimSact (iR

. opT cid Befiernmoos remsy A
memmllmnﬂ ~d
fi 1033
1034 ||I:i.":"“_i": Lésla] = pehirend_seLl
1035 LT LT
1058] % fexr B
OEs LE CEmitlurss)
1058 *'.H'} Tog_raannls 021
1 wkile dTailiices)
b L1 | #FLE &

1052 L IpReass Mrl:.:l-pl
10E3 cintf {“Fid Aledpisg's, (Lot Dgetpadiyi)
elush (atdais

1S BTG |

I3k § Parksp =80

ToET 38 Hremgeis|

T0EE fieasmssadsaine P P R P PR
1030 #+ Span w ll:qr__IEH.I arad, then both thresds will cell the £
1030 st

1031 " wild Foad_sSoagp. Bk

03 i 1¢

plik thress t owy_ mlEL}:

1A srhrn-ll t s Dewha

7 i

E]'J}E- prhrssd atsr_ F*“

T T] in 2 fac ap. ceafll1Y feo
2 ¥ in _ eslscht 1 fark _lasp. cxmfld18 Fegk
£33 7 In __Glons L Pack_logp. comrlasd Fegk
L=k % i __pall

You can start program execution within TotalView in several ways. Perhaps
the easiest is to click on the Step icon in the toolbar. This gets your pro-
gram started, which means all the initialization stuff performed by the pro-
gram gets done but no statements are executed. Alternatively, you could
scroll your program to find where you want it to run to, select the line, then
click on Run To in the toolbar. Or you could click on the line number, which
tells TotalView to create a breakpoint on that line, and then click Go in the
toolbar.

If your program is large, and usually it will be, you can use the Edit > Find
command to locate the line for you. Or, if you want to stop execution when
your program reaches a subroutine, use the Action Point > At Location
command to set a breakpoint before clicking on Go.

As you can see, you've got lots of choices. Unlike other debuggers,
TotalView gives you choices that allow you to debug your program in what-
ever way you want to debug it.

Chapter 1: Discovering TotalView

What About Print
Statements?

Figure 2: Action Point Properties
Dialog Box

Most programmers learned to debug by using print statements. That is, you
inserted lots of printf() or PRINT statements in your code and then
inspected what gets written. There’s a problem with this. Every time you
want to add a new statement, you've got to recompile your program.
What’s worse is that in a multiprocess, multithreaded program, what gets
printed is probably not in the right order. While TotalView is much more
sophisticated than this about showing your data (as you’ll soon see), you
can still use printf() statements if that’s your style.

In TotalView, breakpoints are called “action points”. This is because they
can be much more powerful than the breakpoints you’ve used in other
debuggers.

So, if you don’t want to change the way you’ve been debugging, you can
add a breakpoint that prints information for you. Figure 2 shows the Action
Point Properties Dialog Box. The easiest way to display this dialog box is to
right-click on a line and then select Properties in the context menu. This
menu was shown within Figure 1 on page 4.

P R Y e —

e detum Peint Pruperties

w Bl . BEie & Evaluals D07

Expresaian
partT The vk of d o Bdn® |
[

st = - Fgriran
Locaiioe T _laop Ceartnze 1! |
W Enati schin gois] gLy |
F Fianl i W gio

ok . || Dese Canti Hilf

You can add any code you want to a breakpoint. Because there’s code
associated with this breakpoint, it is now called an “eval point.” Here’s
where TotalView does things a little differently. When your program reaches
this eval point, TotalView executes the code you've entered. In this case,
TotalView prints the value of i.

Eval points do exactly what you tell them to do. In this case, because you
didn’t tell TotalView to stop executing, it keeps on going. In other words,
you don’t have to stop program execution just to see data. You could, of
course, have told TotalView to stop. Figure 3 on page 6 shows two evalua-
tion points that stop execution. (One of them does something else as well.)

The one in the foreground uses a programming language statements and a
built-in TotalView function to stop a loop every 100 iterations. It also prints

—

=
)
w
(@]
o]
<
@D
.
5
Q
e)
~—+
Q
<
)
2

First Steps

Figure 3: More Conditions

{I'ﬂ % 0]
E‘ﬂr'l'hl walid o i B Nefa®, Q)
o,

what the value of i is. In contrast, the one in the background just stops the
program every 100 times a statement gets executed.

Eval points even allow you to patch your programs and route around code
that you want replaced. For example, suppose you need to change a bunch
of statements. Just add these statements to an action point, then add a
goto statement that jumps over the code you no longer want executed. For
example, the evaluation point shown in Figure 4 tells TotalView to execute
three statements and then skip to line 658.

Figure 4: Patching Using an
Evaluation Point

|

6 Chapter 1: Discovering TotalView

Examining Data

Figure 5: Two Variable Windows

Programmers use print statements as an easy way to examine data. They
usually do this because the debugger doesn’t have sophisticated ways of
showing data. In contrast, Chapter 12, “Examining and Changing Data,” on
page 227 and Chapter 13, “Examining Arrays,” on page 259 explain how you
can display data values with TotalView. In addition, Chapter 7, “Visualizing
Programs and Data,” on page 129 describes how to visualize your data in a
graphical way.

Because data is difficult to see, the Stack Frame Pane (the pane in the
upper right corner of the Process Window, which was shown in Figure 1 on
page 4) has a list of all variables that exist in your current routine. If the
value is simple, you can see its value in this pane.

If it isn’t, just dive on the variable to get more information.

“Diving” is something you can do almost everywhere in TotalView. What happens
depends on where you are. To dive on something, position the cursor over the item and
click your middle mouse button. If you have a two-button mouse, double-click your left
mouse button.

Diving on a variable tells TotalView to display a window containing informa-
tion about the variable. (As you read this manual, you’ll come across many
other kinds of diving.)

Notice that some of the values in the Stack Frame Pane are in bold type.
This lets you know that you can click on the value and then edit it.

Figure 5 shows two Variable Windows. One was created by diving on a
structure and the other by diving on an array.

J=l ek leop.coshforker(leeg dntpefhleater ||
Fi Edi Wiw Took Window el
]”_“”_l“ ferk_laop czaktorkasfiong infpeRbl#slir - 1,0 “"“”" 4 B
[t Mehfffdabl] Teps pehioas] sttt L]
Fupld T Fulus
b mkatats (g BT (0
__poliedgolaoy ey DB (05
ITaEdzEr -ruik ol parem (Siroct)
ackad priacity 1ak il LD LY
__ATEeraEaThed i D MR (1)

_!::.IFS'I:! 1=l
siackaddr ms —
e Wiew Taols Wndew Hep
_stacksige artayi Fl WAl _amay__ - 4.1 ”I“““I“l o -
i It BxchftEdWT Tiyoe: 1mk ril1d, 1§} [

slice: T J
FLimaC

redux Tnlus

(1 1 [DL NIOML §

-4 4 | DU §

* L LS LN

' 16 £ NaNEEHTE]

A G NaiM000LY |

E. Ly B OnP000 |

(1. B} 45§ el NIRRT |

1. bl MEIMHEE | rl

1 iz |

Because the data displayed in a Variable Window may not be simple, you
can also dive on data in the Variable Window. When you dive in a Variable

—

=
)
(%2}
(@]
o]
<
@D
.
5
Q@
e)
~—+
Q
<
)
2

Figure 6: Two More Variable

Window, TotalView replaces the window’s contents with the new informa-
tion. If this isn’t what you want, you can use the View > Dive Anew com-
mand to display this information in a separate window.

If the data being displayed is a pointer, diving on the variable dereferences
the pointer and then displays the data that is being pointed to. In this way,
you can follow linked lists. Notice the forward- and backward-facing arrows
in the upper right corner of the Variable Windows. Selecting them lets you
“undive” and “redive.” For example, if you’re following a pointer chain,
clicking the left-pointing arrow takes you back to where you just were.
Clicking the right-pointing arrow takes you “forward” to the place you previ-
ously dove on.

Because arrays almost always have copious amounts of data, TotalView has
a variety of ways to simplify how it should display this data.

Fie Eaf ‘igw Tools ‘Windps
ran Bhif a4 Toge {1, 18}

dlvee: (606 1)

FLltac

:
-

LENE

Heln
oo, -srar 1 [N

216§ Cw DO §
R [DU, |
Tl (DTN)

Fil Efil Wiw Todh Snoes Halp |
et &~ RN
(em DabEfAd4A] Teps wntegecilD, 103

o,

=2
= oy

(o e

Elice (6:A0 B IO
Falter 5 30D
Ti e Halue
14, Bl 64 {0 30
4, 6] Al | NI ke
O 5% &I (TS E
1.7l T D DELST |
14. 71 A4 ey
¥, Tl S Bl FHERRETY
LT T |
7.8l 190 {TaDMIRIAE) ¥
E =

The Variable Window in the upper left corner of Figure 6 shows a basic slice
operation. This operation tells TotalView that it should only display array
elements whose positions are named within the slice. In this case,
TotalView is displaying elements 6 through 10 in each of the array’s two
dimensions. The other Variable Window in this figure combines a filter with a
slice. A filter tells TotalView that it should only display data if it meets some
criteria that you specify. Here, the filter says “of the array elements that
could be displayed, only display elements whose value is greater than 300.

While slicing and filtering let you reduce the amount of data that TotalView
will display, there are many times when you want to see the shape of the
data. If you select the Tools > Visualize command, TotalView shows a
graphic representation of the information in the Variable Window. Figure 7
on page 9 has an example.

Figure 7: Array Visualization

=
)
[%2]
(@]
o]
<
@D
.
5
Q
e)
~—+
Q
<
)
2

There’s yet another way to look at data. TotalView’s watchpoints let you
see when a variable’s data changes. This works in a different way than
other action points. A watchpoint stops execution whenever a data value
changes no matter what instruction changed the data. That is, if you
change data from 30 different statements, the watchpoint stops execution
right after any of these 30 statements make a change. A better example is
that something is trashing a memory location. So, you put a watchpoint on
that location and then wait until TotalView stops execution because the
watchpoint was executed.

To create a watchpoint, select the Tools > Watchpoint command from any
Variable Window.

Debugging Multiprocess and
Multithreaded Programs

When your program creates processes and threads, TotalView can automat-
ically bring them under its control. If the processes are already running,
they too can be acquired. You don’t need to have multiple debuggers run-
ning. TotalView is enough.

The processes that your program creates can be local or remote. Both are
presented to you in the same way. The only difference between debugging
a single-process program and a multiprocess, multithreaded program is
that you gain the ability to display these additional threads and processes
in Process Windows. You can display them in the current Process Window or
display them in another window. As always, there are several ways to do it.

TotalView’s Root Window (see Figure 8 on page 10), which is automatically
displayed after you start TotalView, contains an overview of all processes
and threads being debugged. Diving on a process or a thread listed in the

—

Figure 8: The Root Window

Figure 9: Process and Thread
Switching Icons

Supporting
Multiprocess and
Multithreaded
Programs

Root Window takes you quickly to the information you want to see. If you
need to debug processes that are already running, the Unattached Page
lets you dive on other processes you own. After diving on them, you can
debug them in the same way as any other process or thread.

Gowp | Loy |

Fork_LesgpLTNIDE (6 thcwsds) dl |
el T Por¥_LoogL.INE 1 (4 chresds]

1A Sigedispesiel

in __lic wriks

in_ Lgueparad

in o lare

fork_ToogLimfi 1.1 {5 threadsi
[T Fork_Looglrmor 1.1.1 65 thewsda)
SEWl T fork_leoplIBE 1.5 G2 bhremdsi
T i _ il

=1 1 in _ Lilii_read

iy T fork LoogLTRUR. 2 |5 chreads

| B fork looslDEUE 2 1 (L khresds)
G T Pork_loopllEild 3 & chreaifs]

q==

MR O ol B0 D S RS 0

T
i B i

-

Fhonm bt oy ErmaplaFregs Sar ool I

T =

In the Process Window, you can switch between processes and threads by
clicking the process and thread switching buttons in the toolbar. These are
the four buttons on the right side of the toolbar shown in Figure 9.

Fig Ese Wes O Process Thesd Adlios Pas| Took Snooy Bistp |

Grogp (Caniml] | Gol Hat| Med | Step] 0| FunTo) bestt| Seapl| | P | Pe| 7] TR

Every time you click on one of these buttons, TotalView switches contexts.
The switching order is the order in which you see things in the Root Win-
dow.

In many cases, you’ll be using one of the popular parallel execution mod-
els. TotalView supports MPI and MPICH, OpenMP, ORNL PVM (and HP
Alpha DPVM), SGI shared memory (shmem), Global Arrays, and UPC. You
could be using threading in your programs. Or your programs can be com-
piled using products provided by your hardware vendor or third-party com-
pilers such as those from Intel and the Free Software Foundation (the GNU
compilers).

When debugging multiprocess, multithreaded programs, you’ll often want
to see the value of a variable in each process or thread simultaneously.
TotalView’s laminated data view does this for you. Figure 10 on page 11
shows an example of what you’ll see after you laminate a multithreaded
program.

If you’re debugging an MPI program, TotalView’s Tools > Message Queue
Graph graphically displays the program’s message queues. (See Figure 11
on page 11.)

Figure 10: A Laminated
Variable Window

=
=
ialtaple] Type: ink (q’)
FLltes @)
<
Pracssn Anlus ()
—
ErtachfulsstAlyha 0 (st QRILETFELEDN SwOODMOEL (15 5
httachSibsathlehe 1 ok ALEFFEIL0T S ODM0M [0} Q
diEtsrhSubsskbhkl=hs. 2 Exn na matchazg cmll

AErachiubesthlphs 3 Bsn na metchiag onll F —
o
~—+
Q
v <

iz
@
i - E

Figure 11: A Message Queue

Graph F mdep Legiul) Serd) Receivs I lesspectas
L -Ij 20 s
3 w
[| ¥ s |
¥
Ly .
‘ .
) [y
L} | |
O a3 |‘
Li|
. —— I-‘J -
BdPY_C Ok HOFED Ranis .- Coemucaiey ;
. B3 pimy_C0a_ZELF
O EE R NN NN N R EREEEE IENEET T
||
¥
id 7

Clicking on the boxed numbers tells TotalView to place the associated pro-
cess into a Process Window. Clicking on a number next to the arrow tells
TotalView to display more information about that message queue.

As you go through this book, you’ll find many more examples.

Using Groups and Barriers

When running a multiprocess and multithreaded program, TotalView tries to
automatically place your executing processes into different groups. While
you can always individually stop, start, step, and examine any thread or
process, TotalView lets you perform these actions on groups of threads and
processes. In most cases, you'll be doing the same kinds of operations on
the same kinds of things. The two pulldown menus on the toolbar let you
indicate what the target of your action will be. See Figure 12 on page 12.

Y

Figure 12: Toolbar with
Pulldown

Figure 13: The Root Window’s
Group Page

Thipad

Pioteaa
FIDoEss [Wokors)
Precess flockinp)| @90 Frocess Thesd fcton Fam Teoly wndes by |
g e+ SR N R O]| e B || | 0 e
@mup ey

Crviigy Cwmiki|

nup Lockdeg)

For example, if you are debugging an MPI program, you’d probably set the
pulldown to Process (Workers). The reasons for setting them like this are in
Chapter 11. Chapter 2 contains definitions for the groups manipulated by
TotalView. The Groups Page of the Root Window (Figure 13) shows you the
processes and threads that are in a group.

Fin Edf Sims Tapls Windew Hip |

sfuched | Uraiisced| Gueps | e |

T T T
1 1 Lotkatep Dipig o2, 1)

i

e Lacpl TN Dankbrel Broup (F13
Poric_LaopLINIR: Parkers braop [#50
ek LavpL NS Shica iy (03]

pcrEyil THOC : Warkary Emoop |# J
arzayel INTE Comkral Scaop M) d
o Werbee 2
T[T = e e e i g et e
E4 Ehnrwady an grovg 1 1 lockstep Growg GF1.Z5 j
1 1HEE T in __saleot -lJ
1 16105} I in __selent
1 +1ELE} T in __amlact
1.4 15L&} T an __ amlect
4 1 || T
i 1E177

in sl et]
aw] g]

Introducing the CLI

The CLI, the TotalView Command Line Interface, contains an extensive set
of commands that you can type into a command window. These commands
are embedded in a version of the Tcl command interpreter. When you open
a CLI window, you can enter any Tcl statements that you could enter in any
version of Tcl. You can also enter commands that Etnus has added to Tcl
that allow you to debug your program. Because these debugging com-
mands are native to TotalView’s Tcl, you can also use Tcl to manipulate the
program being debugged. This means that you can use the CLI to create
your own commands or perform any kind of repetitive operation. For exam-
ple, here’s how you’d set a breakpoint at line 1038 using the CLI:

dbreak 1038

When you combine Tcl and TotalView, you can simplify what you are doing.
For example, here’s how to set a group of breakpoints.

foreach 1 {1038 1043 1045} {
dbreak $i
by
While this examination doesn’t really save you anything, Chapter 8 pre-
sents some examples that are more realistic.

You'll find information about the CLI scattered throughout this book. CLI
Commands are described in Chapter 2 of the TotalView Reference Guide.

What’s Next

This chapter has presented just a few of TotalView’s highlights. The rest of
this book tells you more about all of TotalView features, both the ones
mentioned here and those not yet discussed.

All TotalView documentation is available on our Web site at http://
www.etnus.com/Support/docs in PDF and HTML formats. In addition, this
information is also contained within TotalView’s online Help.

=
)
w
(@]
o]
<
@D
.
5
Q
e)
~—+
Q
<
)
2

What’s Next

T’

Chapter 1: Discovering TotalView

Understanding
Threads, Processes,
and Groups

2

While the specifics of how multiprocess, multithreaded programs
execute differ greatly from one hardware platform to another, from
one operating system to another, and from one compiler to another,
all share some general characteristics. This chapter defines a general
model for processes and threads.

This chapter is presents the concepts of thread, process, and group.
Chapter 11, “Using Groups, Processes, and Threads,” on page 197 is a
more exacting and comprehensive look at these topics.

Topics in this chapter are:

‘A Couple of Processes” on page 15

“Threads” on page 17

“Complicated Programming Models” on page 18
“Kinds of Threads” on page 20

“Organizing Chaos” on page 22

“Creating Groups” on page 25

“Simplifying What You’re Debugging” on page 29

A Couple of Processes

When programmers write single-threaded, single-process programs, they
can almost always answer the question “Do you know where your program
is?” These kind of programs are rather simple, looking something like
what’s shown in Figure 14 on page 16.

If you use any debugger on these kinds of programs, you can almost always
figure out what’s going on. Before the program begins executing, you set a
breakpoint, let the program run until it hits the breakpoint, and then
inspect variables to see their values. If you suspect there’s a logic problem,
you can step the program through its statements, seeing what happens
and where things are going wrong.

=

A Couple of Processes

Figure 14: A Uniprocessor

Figure 15: A Program and
Daemons

Figure 16: Mail Using Daemons

16 |

A Computer

A Process

What is actually occurring, however, is a lot more complicated since a num-
ber of programs are always executing on your computer. For example, your
computing environment could have daemons and other support programs

executing, and your program can interact with them. (See Figure 15.)

A Daemon or
Support Program
A User Program

These additional processes can simplify your life because your program no
longer has to do everything itself. It can hand off some tasks and not have
to focus on how the work will get done.

Figure 15 assumes that the application program just sends requests to a
daemon. This architecture is very simple. More typical is the kind of archi-
tecture shown in Figure 16. Here, an E-mail program is communicating with
a daemon on one computer. After receiving a request, this daemon sends
data to an E-mail daemon on another computer, which then delivers the
data to another mail program.

This architecture assumes that the jobs are disconnected and that they do
not need to cooperate. This model has one program handing off work to
another. After the handoff, the programs do not interact. While this is a
useful model for many kinds of computation, a more general model allows
a program to divide its work into smaller jobs, and parcel them out to other
computers. This model relies on programs on other machines to do some
of the first program’s work. To gain any advantage, however, the work a
program parcels out must be work that it doesn’t need right away. In this

Chapter 2: Understanding Threads, Process-

model, the two computers act more or less independently. And, because
the first computer doesn’t have to do all the work, the program can com-
plete its work faster. (See Figure 17.)

Figure 17: Two Computers Sends Work
Working on One Problem

Receives Result

Uses Results

Using more than one computer doesn’t mean that less computer time is
being used. Overhead due to sending data across the network and over-
head for coordinating multiprocessing always means more work is being
done. It does mean, however, that your program finishes sooner than if
only one computer were working on the problem.

Here is one of the problems with this model: how does a programmer
debug what'’s happening on the second computer? One solution is to have
a debugger running on each computer. The TotalView solution to this
debugging problem is better. It places a server on all remote processor as
they are launched. These servers then communicate with the “main”
TotalView. This debugging architecture gives you one central location from
which you can manage and examine all aspects of your program.

N
c
S

Q
)

-~

wn

-+
o

S

o
5
Q

puters. In other words, programs don’t have to be started from within TotalView to be

i You can also have TotalView attach to programs that are already running on other com-
debugged by TotalView.

In all cases, it is far easier to write your program so that it only uses one
computer at first. After you’ve got it working, you can split it up so it uses
other computers. It is likely that any problems you find will occur in the
code that splits up the program or in the way the programs manipulate
shared data, or in some other area related to the use of more than one
thread or process. This assumes, of course, that it is practical to write your
program as a single-process program. For some algorithms, executing a
program on one machine means that it will take weeks to execute.

Threads

The daemon programs discussed in the previous section are owned by the
operating system. They perform a variety of activities from managing com-
puter resources to providing standard services such as printing.

If operating systems can have many independently executing components,
why can’t a program? Obviously, it can and there are various ways to do
this. One programming model splits the work off into somewhat indepen-

=

Complicated Programming Models

Figure 18: Threads

18]

dent tasks within the same process. This is the threads model. (See
Figure 18.) This figure also shows, for the last time, the daemon processes
that are executing. From now on, just assume that they are there.

A daemon

/-

A thread

In this computing model, a program (the main thread) creates threads. If
they need to, these newly created threads can also create threads. Each
thread executes relatively independently from other threads. You can, of
course, program them to share data and to synchronize how they execute.

The debugging problem here is similar to the problem of processes running
on different machines. In both, a debugger must intervene with more than
one executing entity.

There’s not a lot of difference between a multithreaded or a multiprocess programs when
you are using TotalView. Except for operating system support, the way in which
TotalView displays process information is very similar to how it displays thread informa-
tion.

Complicated Programming Models

While most computers being sold today have one processor, high-perfor-
mance computing uses computers that have more than one processor. And
as hardware prices decrease, this model is starting to become more wide-
spread. Having more than one processor means that the threads model
shown in Figure 18 changes to look something like what’s shown in

Figure 19 on page 19.

This figure shows four linked processors in one computer, each of which
has three threads. This architecture is an extension to the model that links
more than one computer together. Its advantage is that the processor
doesn’t need to communicate with other processors over a network as it is
completely self-contained.

Chapter 2: Understanding Threads, Process-

Figure 19: Four Processor
Computer

Figure 20: Four-Processor
Computer Networks

The next step, of course, is to join many multiprocessor computers
together. Figure 20 shows five computers, each having four processors with
each processsor running three threads. If this figure is showing the execu-
tion of one program, then the program is using 60 threads.

N
c
>
(oF
D
-
[%2]
-t
<8}
>
o
>
«

S8eY REGEE g

S8ed REGEEY g

: :
SLEEE | ERERES
LSS | ELERES

This figure depicts only processors and threads. It doesn’t have any infor-
mation about the nature of the programs and threads or even if the pro-
grams are copies of one another or represent different executables.

At any time, it is next to impossible to guess which threads are executing
and what a thread is actually doing. To make matters worse, many multi-
processor programs begin by invoking a process such as mpirun or IBM’s
poe whose function is to distribute and control the work being performed.
In this kind of environment, a program (or the program in a library) is using
another program to control the workflow across processors.

=

Figure 21: Threads

When there are problems in this scenario—and there are always prob-
lems—traditional debuggers and solutions are helpless. As you will see,
TotalView, on the other hand, organizes this mass of executing procedures
for you and lets you distinguish between threads and processes that the
operating system uses from those that your program uses.

Kinds of Threads

All threads aren’t the same. Figure 21 shows a program with three threads.

A thread

For the moment, assume that all of these threads are user threads; that is,
they are threads that perform some activity that you've programmed.

Many computer architectures have something called “user mode”, “user space,” or
something similar. “User threads” means something else. Without trying to be rigorous,
the TotalView definition of a “user thread” is simply a unit of execution created by a
program.

Because they are created by your program to do the work of your program,
they are called worker threads.

Other threads can also be executing within the process. For example, the
threads that are part of the operating environment are manager threads. A
manager thread is a thread that your environment or operating system adds
to your program to help it get work done. In Figure 22 on page 21, the hori-
zontal threads at the bottom are user-created manager threads.

Things would be nice and easy if this was all there was to it. Unfortunately,
all threads are not created equal and all threads do not execute equally. In
most cases, a program also creates manager-like threads. As these user-
created manager threads are designed to perform services for other
threads, they can also be called service threads. (See Figure 23 on page 21.)

Figure 22: User Threads and
Service Threads

Figure 23: User, Service, and
Manager Threads

Kinds of Threads

User Thread

Manager Thread

User Threads

User Service Thread

Manager Thread

These service threads are, of course, also worker threads. They are called
different things just to keep the different kinds of things that they do sepa-
rate. As an example, this could be a thread whose sole function is to send
data to a printer in response to a request from the other two threads.

One reason you need to know which of your threads are service threads is
that a service thread performs different kinds of activities from your other
threads. Because their activities are different, they are usually developed
separately and, in many cases, are not involved with the fundamental prob-
lems being solved by the program. The code that sends messages between
processes is far different than the code that performs fast Fourier trans-
forms. For example, a service thread that queues and dispatches messages
sent from other threads may have bugs, but the bugs are different than the
rest of your code and you can deal with them separately from the bugs that
occur in non-service user threads.

TotalView Users Guide: version 6.3 21

N
c
>
(oF
D
-
[%2]
-t
<)
>
(o}
>
«

In contrast, your user threads are the agents performing the program’s
work, and their interactions are where the action is. Being able to distin-
guish between the two kinds of threads means that you can focus on the
threads and processes that are actively participating in an activity, rather
than on threads in the background performing subordinate activities.

So, while this figure shows five threads, most of your debugging effort will
focus on just two threads.

Organizing Chaos

While it is possible to debug programs that are running thousands of pro-
cesses and threads across hundreds of computers by individually looking
at each, this is clearly impractical. The only workable approach is to orga-
nize your processes and threads into groups and then debug your program
by using these groups. In other words, in a multiprocess, multithreaded
program, you are most often not programming each process or thread indi-
vidually. Instead, most high-performance computing programs perform the
same or similar activities on different sets of data.

While TotalView cannot know your program’s architecture, it can make
some intelligent guesses based on what your program is executing and
where the program counter is. Using this information, TotalView automati-
cally organizes your processes and threads into the following predefined
“groups”:

m Control Group: All the processes that a program creates. These pro-
cesses can be local or remote. If your program uses processes that it did
not create, TotalView places them in separate control groups. For exam-
ple, a client/server program has two distinct executables that run inde-
pendently of one another. Each would be in a separate control group. In
contrast, processes created by fork() are in the same control group.

m Share Group: All the processes within a control group that share the
same code. In most cases, your program will have more than one share
group. Share groups, like control groups, can be local or remote.

m Workers Group: All the worker threads within a control group. These
threads can reside in more than one share group.

m Lockstep Group: All threads that are at the same PC (program counter).
This group is a subset of a workers group. A lockstep group only exists
for stopped threads. By definition, all members of a lockstep group are
within the same workers group. That is, a lockstep group cannot have
members in more than one workers group or more than one control
group.

The first two groups in the above list only contain processes, and the last

two only contain threads. Notice that “same code” means that the pro-

cesses have the same executable file name and path.

TotalView lets you manipulate processes and threads individually and by
groups. In addition, you can create your own groups and manipulate a
group’s contents (to some extent).

Organizing Chaos

manipulate your program’s threads, it will dim the commands within its menu and

5 Not all operating systems let you individually manipulate threads. If TotalView cannot
toolbar.

Figure 24 shows a processor running five processes (ignoring daemons and
other programs not related to your program) and the threads within the
processes. This figure shows a control group and two share groups within
this control group.

Figure 24: Five Processes and
Their Groups (Part 1)

Control Group

Share Group 1

N
c
>
(oF
D
-
[%2]
-t
<)
>
(o}
>
«

Share Group 2

One Process

The CPU
The elements in this figure are as follows:
CPU The one outer square. All elements in the drawing oper-
ate within one CPU.
Processes The five white inner squares represent processes being

executed by the CPU.

Control Group The large rounded rectangle that surrounds the five
processes. This drawing shows one control group. This
diagram doesn’t indicate which process is the main
procedure.

Share Groups The two smaller rounded rectangles having white
dashed lines surround processes in a share group. This
drawing shows two share groups within one control
group. The three processes in the first share group
have the same executable. The two processes in the
second share group share a second executable.

TotalView Users Guide: version 6.3 23

Organizing Chaos

The control group and the share group only contain processes. In contrast,
the workers group and the lockstep group only contain threads. Figure 25
show how TotalView organizes the threads in Figure 24. As you can see, this
figure adds the workers group and two lockstep groups.

Figure 25: Five Processes and
Their Groups (Part 2)

Share Group 1

Workers Group

Lockstep Group 1

Lockstep Group 2

A Service Thread

Share Group 2

Manager Threads

The control group is not shown as it encompasses everything in Figure 25. That is, this
i example’s control group contains all of the program’s lockstep, share, and worker
group’s processes and threads.

The elements in this figure are as follows:

Workers Group All nonmanager threads within the control group make
up the workers group. Notice that this group includes
service threads.

Lockstep Group Each share group has its own lockstep groups.
Figure 25 shows two lockstep groups, one in each
share group.

If other threads are stopped, this picture indicates that
they are not participating in either of these two lock-
step groups. Recall that a stopped thread is always in a
lockstep group. (It’s OK if a lockstep group has only
one member.)

Service Threads Each process has one service thread. While a process
can have any number of service threads, this figure
only shows one.

24 Chapter 2: Understanding Threads, Process-

Creating Groups

Manager Threads
The only threads that are not participating in the work-
ers group are the ten manager threads.

Figure 26 extends Figure 25 to show the same kinds of information execut-
ing on two processors.

Figure 26: Five Processes and
Their Groups on Two Computers

N
c
>
(oF
D
-
[%2]
-t
<)
>
(o}
>
«

Figure 26 differs from Figure 25 in that it has ten processes executing
within two processors rather than five processes within one processor.
Although the number of processors has changed, the number of control
and share groups is unchanged. This is not to say that the number of
groups could not be different. It’s just that they do not differ in this exam-
ple.

Creating Groups

TotalView places processes and threads in groups as your program creates
them. The exception is the lockstep groups that are created or changed
whenever a process or thread hits an action point or is stopped for any rea-
son. While there are many ways in which this kind of organization can be
built, the following steps indicate the beginning of how this might occur.

Step 1l TotalView and your program are launched and your program begins exe-
cuting. (See Figure 27 on page 26.)
m Control group: A group is created as the program is loaded.
m Share group: A group is created as the program begins executing.
m Workers group: The thread in the main() routine is the workers group.
m Lockstep group: There is no lockstep group because the thread is run-
ning.
Step 2 The program forks a process. (See Figure 28 on page 26.)
m Control group: A second process is added to the existing group.
m Share group: A second process is added to the existing group.

TotalView Users Guide: version 6.3 25

Creating Groups

Figure 27: Step 1: A Program
Starts

Figure 28: Step 2: Forking a
Process

Step 3

Figure 29: Step 3: Exec’ing a
Process

26 |

m Workers group: TotalView adds the thread in the second process to the
existing group.

m Lockstep group: There are no lockstep groups because the threads are
running.

The second process is exec’d. (See Figure 29.)

m Control group: The group is unchanged.

m Share group: TotalView creates a second share group having this exec’d
process as a member. TotalView removes this process from the first
share group.

m Workers group: Both threads are in the workers group.

Chapter 2: Understanding Threads, Process-

Creating Groups

m Lockstep group: There are no lockstep groups because the threads are
running.

Step 4 The first process hits a break point.

m Control group: The group is unchanged.

m Share group: The groups are unchanged.

m Workers group: The group is unchanged.

m Lockstep group: TotalView creates a lockstep group whose member is
the thread of the current process. (In this example, each thread is its
own lockstep group.)

Step5 The program is continued and TotalView starts a second version of your
program from the shell. You attach to it within TotalView and put it in the
same control group as your first process. (See Figure 30.)

Figure 30: Step 5: Creating a
Second Version

N
c
>
(oF
D
-
[%2]
-t
<)
>
(o}
>
«

m Control group: TotalView adds a third process.
m Share group: TotalView adds this third process to the first share group.
m Workers group: TotalView adds the thread in this third process to the
group.
m Lockstep group: There are no lockstep groups because the threads are
running.
Step 6 Your program creates a process on another computer. (See Figure 31 on
page 28.)
m Control group: TotalView extends the control group so that it contains
the fourth process running on the second computer.
m Share group: The first share group now contains this newly created pro-
cess even though it is running on the second computer.
m Workers group: TotalView adds the thread within this fourth process to
the workers group.
m Lockstep group: There are no lockstep groups because the threads are
running.
Step 7 A process within control group 1 creates a thread. This adds a second
thread to one of the processes. (See Figure 32 on page 28.)

TotalView Users Guide: version 6.3 27

Creating Groups

Figure 31: Step 6: Creating a
Remote Process

Figure 32: Step 7: A Thread Is
Created

Step 8

Step 9

m Control group: The group is unchanged.

m Share group: The group is unchanged.

m Workers group: TotalView adds a fifth thread to this group.

m Lockstep group: There are no lockstep groups because the threads are
running.

A breakpoint is set on a line in a process executing in the first share group,

and the breakpoint is shared. The process executes until all three pro-

cesses are at the breakpoint. (See Figure 33 on page 29.)

m Control group: The group is unchanged.

m Share group: The groups are unchanged.

m Workers group: The group is unchanged.

m Lockstep groups: TotalView creates a lockstep group whose members
are the four threads in the first share group.

You tell TotalView to step the lockstep group. (See Figure 34 on page 29.)

m Control group: The group is unchanged.
m Share group: The groups are unchanged.
m Workers group: The group is unchanged.

Chapter 2: Understanding Threads, Process-

Simplifying What You’re Debugging

Figure 33: Step 8: Hitting a
Breakpoint

Figure 34: Step 9: Stepping the
Lockstep Group

N
cC
>
Q
@D
-
wn
ﬂ
Q
)
o
>
(@]

m Lockstep group: The lockstep groups are unchanged. (Note that there
are other lockstep groups. This will be explained in Chapter 11.)

What Comes Next Clearly, this example could keep on going until a much more complicated
system of processes and threads was created. However, adding more pro-
cesses and threads won’t do anything much different than what'’s been dis-
cussed.

Simplifying What You’re Debugging

The reason you’re using a debugger is because your program isn’t operat-
ing correctly and the way you think you’re going to solve the problem
(unless it is a &%$# operating system problem, which, of course, it usually
is) is by stopping your program’s threads, examining the values assigned to
variables, and stepping your program so you can see what’s happening as
it executes.

Unfortunately, your multiprocess, multithreaded program and the comput-
ers upon which it is executing have lots of things executing that you want
TotalView to ignore. For example, you don’t want to be examining manager

TotalView Users Guide: version 6.3 29

and service threads that the operating system, your programming environ-
ment, and your program create.

Also, most of us are incapable of understanding exactly how a program is
acting when perhaps thousands of processes are executing asynchro-
nously. Fortunately, there are only a few problems that require full asyn-
chronous behavior at all times.

One of the first simplifications you can make is to change the number of
processes. For example, suppose you have a buggy MPI program running
on 128 processors. Your first step might be to have it execute in an 8-pro-
cessor environment.

After you get the program running under TotalView’s control, you will want
to run the process being debugged to an action point so you can inspect
the program’s state at that place. In many cases, because your program
has places where processes are forced to wait for an interaction with other
processes, you can ignore what they are doing.

TotalView lets you control as many groups, processes, or threads as you need to control.
While each can be controlled individually, you will probably have problems remembering
what you’re doing if you’re controlling large numbers of these things independently. The
reason that TotalView creates and manages groups is so you can focus on portions of
your program.

In most cases, you don’t need to interact with everything that is executing.
Instead, you want to focus on one process and the data that this process is
manipulating. Things get complicated when the process being investigated
is using data created by other processes, and these processes might be
dependent on other processes.

This means that there is a rather typical pattern to the way you use
TotalView to locate problems:

1 At some point, you should make sure that the groups you are manipulat-
ing do not contain service or manager threads. (You can remove pro-
cesses and threads from a group with the dgroups -remove command or
the Groups > Edit Group command.)

2 Place a breakpoint in a process or thread and begin investigating the
problem. In many cases, you are setting a breakpoint at a place where you
hope the program is still executing correctly. Because you are debugging
a multiprocess, multithreaded program, you will want to set a barrier
point—this is a special kind of breakpoint—so that all threads and pro-
cess will stop at the same place.

Don’t step your program except where you need to individually look at what occurs.
Using barrier points is much more efficient. Barrier points are discussed in Chapter
14. Online, you'll find information additional information within the Action Point
area of TotalView’s Tip of the Week archive. This is located at http://www.etnus.com/
Support/Tips/.

3 After execution stops at a barrier point, look at the contents of your vari-
ables. Verify that your program state is actually correct.

4 Begin stepping your program through its code. In most cases, step your
program synchronously or set barriers so that everything isn’t running
freely.

Here’s where things begin to get complicated. You’ve been focusing on
one process or thread. If another process or thread is modifying the data
and you become convinced that this is the problem, you’ll want to go off
to it and see what’s going on.

At this point, you need to keep your focus narrow so that you’re only inves-
tigating a limited number of behaviors. This is where debugging becomes
an art. A multiprocess, multithreaded program can be doing a great num-
ber of things. Understanding where to look when problems occur is the
“art.

For example, you’ll most often execute commands at the default focus.
Only when you think that the problem is occurring in another process will
you change to that process. You'll still be executing in a default focus, but
this time the default focus is concentrated on other process.

While it will often seem like you need to do a lot of shifting to another
focus, what you will probably do is:

m Modify the focus so that it affects just the next command. If you are us-
ing the GUI, you might select this process and thread from the list dis-
played in the Root Window. If you are using the CLI, you would use the
dfocus command to limit the scope of a future command. For example,
here’s the CLI command that steps thread 7 in process 3:

dfocus t3.7 dstep

m Use the dfocus command to change focus temporarily, execute a few

commands, and then return to the original focus.

What you've been reading is just an overview of the threads, processes,
and groups. You'll find a lot more information in Chapter 11, “Using Groups,
Processes, and Threads,” on page 197.

N
c
>
(oF
(9]
=
(%2]
~—+
QD
>
o
>
«Q

Simplifying What You’re Debugging

32|

Chapter 2: Understanding Threads, Process-

Part Il: Setting Up

This section of the TotalView Users Guide contains information
about running TotalView in the different kinds of environments in
which you execute your program.

Chapter 3:

Chapter 4:

Chapter 5:

Setting Up a Debugging Session

The way you configure your TotalView environment is the
same on all operating systems and in all environments. This
chapter tells you what you need to know to start TotalView
and tailor how it works.

You should, at a minimum, glance at this chapter to see
what’s here so you can come back at a later time, if you
need to.

Setting Up Remote Debugging Sessions

When you are debugging a program that has processes exe-
cuting on a remote computer, TotalView launches server pro-
cesses for these remote processes. Usually, you don’t need
to know much about this. Consequently, the primary focus
of this chapter is what to do when there are problems.

If you aren’t having problems, you probably won’t need the
information in this chapter.

Setting Up Parallel Debugging Sessions

TotalView lets you debug programs created using many dif-
ferent parallel environments such as OpenMP, MPI, MPICH,
UPC, and the like. This chapter discusses these environ-
ments.

Because each environment’s discussion is self-contained,
you don’t need to read the entire chapter. Instead, just lo-
cate what you need and skip the rest.

Part II: Setting Up

Y‘

Setting Up a 3
Debugging Session

This chapter explains how to set up a TotalView session. It also describes
some of the most used commands and procedures. Depending upon your
needs, you may need information on setting up remote debugging ses-
sions, which is found in Chapter 4, “Setting Up Remote Debugging Sessions,” on
page 61. For information on setting up parallel debugging sessions, see
Chapter 5, “Setting Up Parallel Debugging Sessions,” on page 75.

In this chapter, you will learn about:

“Compiling Programs” on page 35

“Exiting from TotalView” on page 40
“Exiting from TotalView” on page 40
“Loading Executables” on page 40
‘Attaching to Processes” on page 42
“Detaching from Processes” on page 45
“Examining Core Files” on page 45

“Viewing Process and Thread State” on page 46
“Handling Signals” on page 48

“Setting Search Paths” on page 50

“Setting Command Arguments” on page 52
“Setting Input and Output Files” on page 53
“Setting Preferences” on page 54

“Setting Environment Variables” on page 59
“Monitoring TotalView Sessions” on page 60

Compiling Programs

Before you start debugging a program, you must compile it. All you need
do to make your program ready for debugging with TotalView is to add the
—g option to your compile command. This option tells your compiler to
generate symbol table debugging information. For example:

cc —g —0 executable source program

=

Table 1: Compiler
Considerations

File Extensions

You can also debug programs that you did not compile using the —g option
or programs for which you do not have source code. For more information,
refer to “Viewing the Assembler Version of Your Code” on page 175.

Table 1 presents some general considerations, but you should check “Com-
pilers and Platforms in the TotalView Reference Guide to see if there are any spe-
cial considerations.

Compiler Option or Library What It Does When to Use It

Debugging symbols option Generates debugging Before debugging any

(usually —g) information in the symbol program with TotalView.
table.

Optimization option (usually Rearranges code to After you finish

-0) optimize your program’s debugging your program
execution. with TotalView.

Some compilers won't let
you use the —O and the
—g option at the same time.
Even if your compiler lets
you use the —O option,
don’t do it when debugging
your program as strange
results often occur.
Multiprocess programming Uses special versions of the Before debugging a
library (usually dbfork) fork() and execve() system multiprocess program
calls. that explicitly calls fork()
In some cases, you will need or execve().
to use —Ipthread. Refer to “Processes That
Using dbfork is discussed Call fork()” on page 281
in “Linking with the dbfork and “Processes That Call
Library” contained in the execve()” on page 282.
“Compilers and Platforms”
Chapter of the TotalView
Reference Guide.

When TotalView reads in a file, it uses the file's extension to determine
which programming language you used. If TotalView does the wrong thing,
you can have it do the right thing by setting the TV::suffixes variable in a
startup file. For more information, see the “TotalView Variables” chapter in the
TotalView Reference Guide.

Starting TotalView

TotalView can debug programs that run in many different computing envi-
ronments and which use a variety of parallel processing modes. This sec-
tion looks at few of the ways you can start TotalView. The “TotalView Com-
mand Syntax” chapter in the TotalView Reference Guide contains more detailed
information.

In most cases, the command for starting TotalView looks like:
totalview [executable [corefile 1] [options]

Starting
TotalView

Debugging a
program

Debugging a core
file

Passing
arguments to the
program being
debugged

Debugging a
program that
runs on another
computer

where executable is the name of the executable file you will be debugging and
corefile is the name of the core file being examined.

CLl: totalviewcli [executable [corefile]] [options]

In some cases, you may need to do something different. For example, if
you are debugging an MPI program, you must invoke TotalView on mpirun.
You'll find details in Chapter 5, “Setting Up Parallel Debugging Sessions,” on
page 75.

If you are using the GUI, you can also use the CLI at the same time by
selecting the Tools > Command Line command.

Here are some examples that show how to start TotalView:

Starts TotalView without loading a program or core file.
After TotalView starts, you can load a program by using
the File > New Program command.

totalview

CLl: totalviewcli then dload executable

totalview executable
Starts TotalView and loads the executable program.

CLl: totalviewcli executable

totalview executable corefile
Starts TotalView and loads the executable program and

the corefile core file.
CLl: dattach —c corefile —e executable

totalview executable —a args
Starts TotalView and passes all the arguments following

-a to the executable program. When you use the —-a op-
tion, you must enter it as the last TotalView option on
the command line.

CLl: totalviewcli executable —a args

If you don’t use —a and want to add arguments after
TotalView loads your program, use the Process >
Startup command.

CLl: dset ARGS_DEFAULT {value}

totalview executable —remote hostname_or_address[:port]
Starts TotalView on your local host and the TotalView

Debugger Server (tvdsvr) on a remote host. After
TotalView begins executing, it loads the program speci-
fied by executable for remote debugging. You can specify

=

w
w
@
—~+
=
5
Q
(=
°

Initializing
TotalView

-

a host name or a TCP/IP address. If you need to, you
can also enter the TCP/IP port number.

CLl: totalviewcli executable
—-r hostname_or_address[:port]

For more information on:

m Debugging parallel programs such as MPI, PVM, or UPC, refer to Chapter
5, “Setting Up Parallel Debugging Sessions,” on page 75.

m The totalview command, refer to “TotalView Command Syntax” in the
TotalView Reference Guide.

m Remote debugging, refer to “Setting Up and Starting the TotalView Debugger
Server” on page 61 and “TotalView Debugger Server (tvdsvr) Command Syntax”
in the TotalView Reference Guide.

When TotalView begins executing, it can grab initialization and startup
information from different kinds of files. The two most commonly used are
initialization files that you create and preference files that TotalView cre-
ates.

An initialization file is a place where you can store CLI functions, set vari-
ables, and execute actions. TotalView will execute this file whenever it
starts executing. This file, which you must name tvdrc, resides in a
.totalview subdirectory contained in your home directory. TotalView will
create this directory for you the first time it executes.

TotalView can actually read more than one initialization file. You can place
these files in your installation directory, the .totalview subdirectory, or the
directory in which you invoke TotalView. If the file is present in one or all of
these places, TotalView reads and executes its contents. Only the initializa-
tion file within your .totalview directory has the name tvdrc. The other ini-
tialization files have the name .tvdrc. Notice the dot preceding the file
name.

Before Version 6.0, you would place your personal .tvdrc file in your home directory. If
you do not move this file into the .totalview directory, TotalView will still find it. How-
ever, if you also have a tvdrec file in the .totalview directory, TotalView will ignore the
.tvdrc in your home directory.

TotalView automatically writes your preferences file into your .totalview
subdirectory. It's name is preferences6.tvd. Do not modify this file as
TotalView will overwrite it whenever it saves your preferences.

If you add the —s filename option to either the totalview or totalviewcli shell
command, TotalView executes the CLI commands contained in filename.
This startup file will execute after a tvdrc file executes. The —s option lets
you, for example, initialize the debugging state of your program, run the
program you’re debugging until it reaches some point where you’re ready
to begin debugging, and even lets you create a shell command that starts
the CLI.

Figure 35: Startup and
Initialization Sequence

(-

(-

Figure 35 shows the order in which TotalView executes initialization and
startup files.

Xdefaults

preferences6.tvd

The .Xdefaults file, which is actually read by the server when you start X
Windows, is only used by the GUI. The CLI ignores it. Prior to TotalView
release 6.0, the .Xdefaults file was extensively used. Beginning at TotalView
6.0, its use is negligible.

If you have an X resources file, TotalView will read it the first time Release 6.0 starts
executing. It will then write any TotalView resources it finds to your preferences6.tvd
file. If you change a value after this file is written, TotalView will ignore your change.
The only exceptions are Visualizer X resources. For information on these resources, go to
www.etnus.com/Support/docs/xresources/XResources.html. You can force TotalView to
reread your X resources by deleting your preferences file.

As part of the initialization process, TotalView exports three environment
variables into your environment: LM_LICENSE_FILE, TVROOT, and either
SHLIB_PATH or LD_LIBRARY_PATH.

If you have saved a action point file into the same subdirectory as your
program, TotalView automatically reads the information in this file when it
loads your program.

The format of a Release 6.0 action point file differs from that used in earlier releases.
While TotalView 6.0 can read action point files created by earlier versions, earlier ver-
sions cannot read a Release 6.0 action point file.

You can also invoke scripts by naming them in the TV::process_load_callbacks
list. Information on using this variable is contained within the “Variables”
chapter of the TotalView Reference Guide.

If you are debugging multiprocess programs that run on more than one
computer, TotalView caches library information in the .totalview subdirec-
tory. If you wish to move this cache to another location, set the
TV:library_cache_directory to this location. The files within this cache
directory can be shared among users.

w
w
@
—~+
=
5
Q
(=
°

Figure 36: File > Exit Dialog
Box

Exiting from TotalView

You can exit from TotalView by selecting the File > Exit command. You can
select this command in the Root, Process, and Variable Windows. (See
Figure 36.)

' Faaity el Talan) besT

Select Yes to exit. Otherwise, select No. As TotalView exits, it kills all pro-
grams and processes that it started. However, programs and processes that
TotalView did not start continue to execute.

CLl: exit

If you have a CLI window open, TotalView also closes this window. Similarly, if you type
exit in the CLI, the CLI will close GUI windows. If you type exit within the CLI and
you have a GUI window open, TotalView will still display this dialog box. If you have
iconified your TotalView GUI windows, it is possible that will not see this dialog box
under some window managers and TotalView will appear to be hung.

Loading Executables

TotalView can debug programs on local and remote hosts and programs
that you access over networks and serial lines. The File > New Program
command, which is located in the Root and Process Windows, loads local
and remote programs, core files, and processes that are already running.
(See Figure 37 on page 41.)

The controls within this dialog box lets you:

Figure 37: File > New Program
Dialog Box

I II I i s s T

Esibal i
I:] E'Iﬂﬂ-l
&dach Te

+ P PO i

w o Flia < E Bipaesy
w P K

Targer Locaiios

* Lival

w FRrmDlg FHiril

w Sacal Liag]

L) [LT] Heip

m Load a new executable
Type the path name into the Executable field.

CLl: dload —e executable

m Load a core file
Type the name into the Core File field. You must also type the path name

of the executable associated with this core file in the Executable field.

CLl: dattach —c corefile —e executable

m Load a program using process ID
Type a process ID into the Process ID field and type the associated execut-
able’s path name into the Executable field.

CLl: dattach executable pid
If you need to debug a program on a remote machine, type the machine’s
host name or IP address in the Remote Host field. If the program is local,

make sure that you have selected the Local button.

CLl: dload executable —-r hostname

You can use a full or relative path name in the Executable and Core File
fields. If you enter a file name, TotalView searches for it in the list of direc-

w
w
@
—~+
=
5
Q
(=
°

Loading Remote
Executables

tories named using the File > Search Path command or listed in your PATH
environment variable.

CLl: dset EXECUTABLE_PATH

If you select New Process, TotalView always loads a hew copy of the pro-
gram named in the Executable field. Even if the program is already loaded,
TotalView still loads another copy.

Debugging over a serial line is discussed in “Debugging Over a Serial Line” on
page 71.

If TotalView fails to automatically load a remote executable, you may need
to disable autolaunching for this connection and manually start the
TotalView Debugger Server (tvdsvr). (Autolaunching is the process of auto-
matically launching tvdsvr processes.) You can disable autolaunching by
adding the hostname:portnumber suffix to the name you type in the Remote
Host field. As always, the portnumber is the TCP/IP port number on which the
debugger server is communicating with TotalView. Refer to “Setting Up and
Starting the TotalView Debugger Server” on page 61 for more information.

You cannot examine core files on remote systems. However, if you rlogin or rsh to that
system, you’ll be executing TotalView locally. While there’s another step involved, the
result will be the same as if the core file were local.

You can connect to a remote machine in three ways:

m Using the -remote command-line option when you start TotalView. For
details on the syntax for the —-remote command-line option, see “Starting
TotalView” on page 36.

m Using the File > New Program command after you start TotalView.

CLl: dload executable -r hostname

m Connecting to a remote host using the File > New Program command
and then displaying the Unattached Page of the Root Window. You can
now attach to these programs by diving into them.

CLl: If you’re using the CLI, you will need to know the file’s name so
that you can attach to the program using the dattach command.

If TotalView supports your program’s parallel process runtime library (for example,
MPI, PVM, or UPC), it automatically connects to remote hosts. For more information,
see Chapter 5, “Setting Up Parallel Debugging Sessions,” on page 75.

Attaching to Processes

If a program you're testing is hung or looping (or misbehaving in some
other way), you can attach to it while it is running. You can attach to single

processes, multiprocess programs, and these programs can be running
remotely.

To attach to a process, either use the Unattached Page in the Root Window
or use the File > New Program command located on the Root and Process
Windows. (Using the Unattached Page is easier if the process is listed. How-
ever, if it’s not there, you must use the File > New Program command.)

CLl: dattach executable pid

If the process or any of its children calls the execve() routine, you may need
to attach to it by creating a new Process Window. This is because TotalView
relies on the ps command to obtain the process name, and it can make
mistakes.

However, programs and processes that were executing before you brought them under

i When you exit from TotalView, TotalView kills all programs and processes that it started.
TotalView’s control continue to execute.

Attaching Using Here’s the procedure for using the Unattached Page to attach a process:
the Unattached 1 Go to the Root Window and select the Unattached tab.
Page This page lists the process ID, status, and name of each process associ-

ated with your username. The processes that appear dimmed are those
that are being debugged or those that TotalView won’t allow you to
debug. For example, you can’t debug the TotalView process itself. (See
Figure 38.) The processes at the top of this figure are local. The remaining
processes are remote.

Figure 38: Unattached Page e fem neatmm s Hizal
Fis EaF Mies Taoh Windes Hip |
Atnched |||=|1|||h-1ME Gowps | Lo
Wl id S TS G PR gt s BT

olishi e

w
w
@
—~+
=
5
Q
(=
°

B M cab
JAEE Teh

inkrwpid mkrus com- 1E processes. 15 attachskls

8 AT AT A e Td
H (0 S b2 o Lumn o [

If you're debugging a remote process, the Unattached Page also shows
processes running under your username on each remote host name. You
can attach to any of these remote processes. For more information on
remote debugging, refer to “Setting Up and Starting the TotalView Debugger
Server” on page 61 and “TotalView Debugger Server (tvdsvr) Command Syntax” in
the TotalView Reference Guide.

ey

Attaching Using
File > New
Program and
dattach

Figure 39: File > New Program
Dialog Box

2 Dive into the process you wish to debug by double-clicking on it.

A Process Window appears. The right arrow points to the current program
counter (PC), indicating where the program was executing when TotalView
attached to it.

Here’s the procedure for using the Root Window’s File = New Program
command to attach to a process:

1 Use the ps shell command to obtain the process ID (PID) of the process.
2 Select the File > New Program command. TotalView displays the dialog
box shown in Figure 39.

#dach Te

* plie PrOCE

w Core Fia -::'lr _Brma_ |
w Procea 0

Targe Localios

- Lical

w Flmola Hinl

o Soral Lias . | vaens

Enter a file name in the Executable field. This name can be a full or relative
path name. If you supply a simple file name, TotalView searches for it in
the directories named using the File > Search Path command or listed in
your PATH environment variable.

Enter the process ID (PID) of the unattached process into the Process ID
field.

CLl: dattach pid
dset EXECUTABLE_PATH

3 Select OK.
If the executable is a multiprocess program, TotalView asks if you want to
attach to all relatives of the process. To examine all processes, select Yes.

If the process has children that call execve(), TotalView tries to determine
each child’s executable. If TotalView can’t figure it out, you must delete (kill)
the parent process and start it again using TotalView.

Figure 40: Thread >
Continuation Signal Dialog Box

A Process Window will appear. In this window, the right arrow points to the
current program counter (PC), which is where the program was executing
when TotalView attached to it.

Detaching from Processes

You can use the following procedure to detach from processes that
TotalView did not create:

1 (Optional) After opening a Process Window on the process, select the
Thread > Continuation Signal command. Choose the signal that
TotalView should send to the process when it detaches from the process.
For example, to detach from a process and leave it stopped, set the con-
tinuation signal to SIGSTOP. (See Figure 40.)

CLl: No equivalent to Thread > Continuation exists.

ChEEE i 10 Carlnus this el 'with

1 SIGSEG
=iiGliER

13 SIGFFE j
4 1AL R

IGTENM

B SGITRFLT

4

Ok Cancal | beip |

2 Select the Process = Detach command.
CLl: ddetach
When you detach from a process, TotalView removes all breakpoints that

you have set within it.

Examining Core Files

If a process encounters a serious error and dumps a core file, you can look
at this file using one of the following methods:

m Start TotalView as follows:
totalview filename corefile [options]

CLl: totalviewcli filename corefile [options]

w
w
@
—~+
=
5
Q
(=
°

-

m Select the File > New Program command from the Root Window. In the
middle section of the dialog box, type the name of the core file in the
Core File field, and then select OK. In the top portion, enter the execut-
able’s name.

CLl: dattach —c corefile —e executable

You can only debug local core files. However, if you do an rsh or rlogin to that system
and then start TotalView, you’ll be debugging these files locally. That is, while you can’t
debug remote core file, they will always be local to some system.

The Process Window displays the core file, with the Stack Trace, Stack
Frame, and Source Panes showing the state of the process when it dumped
core. The title bar of the Process Window names the signal that caused the
core dump. The right arrow in the line number area of the Source Pane indi-
cates the value of the program counter (PC) when the process encountered
the error.

You can examine the state of all variables at the time the error occurred.
Chapter 12, “Examining and Changing Data,” on page 227 contains more
information.

If you start a process while you’re examining a core file, TotalView stops
using the core file and switches to this new process.

Viewing Process and Thread State

Process and thread state is displayed in:

m The Attached Page of the Root Window, for processes and threads.
m The Unattached Page of the Root Window, for processes.

m The process and thread status bars of the Process Window.

m The Threads Pane of the Process Window.

m The P/T Set Browser.

Figure 41 on page 47 shows TotalView displaying process state information
in the Attached Page.

CLl: dstatus and dptsets

When you use either of these commands, TotalView also displays
state information.

The status of a process includes the process location, the process ID, and
the state of the process. (These characters are explained in “Attached Process
States” on page 47.)

The Unatttached Page lists all processes associated with your username.
The information in this page is similar to the information in the Attached
Page, differing only in that TotalView dims out the processes being

Figure 41: Attached Page

Showing Process and Thread

Status

Figure 42: Process and Thread

Labels in the Process Window

Attached Process
States

Table 2: Attached Process
and Thread States

¢

e |EaF Mies Tagpy Wirsow Halp
ttaclrei |Ur-m'-:.|:h|| Gogp | e |
s 1 jEHmG) 01 ActsihbuasatAlpha 0 [1 thresds il
11 Il 1 in ERiD
1.=1 =1y ¥ in _ jom tkedmd black
1. -2 -2 T in __kntTramaterfegaskers
L L | 1 irtarhfussathlphis 1 |1 shresds
5.1 [l: in e8I
5. =1 {=1) T in e thEasd bLlack
5.2 |-dh v in __hetTremafurfegisters
I WL T ErtarhCospsthlphs 2 |1 Shreads
E T {11ET2} Ertachifigasthlphn 1 (7 shicssis
= — =
@ Collapse/expand toggle O Program name
@ TotalView thread ID (TID) @ Process status
© System thread ID (SYSTID) @ Action point ID number

debugged. The status bars in the Process Window display similar informa-
tion. (See Figure 42.)

Thee

If the TotalView-assigned thread ID and the system-assigned thread ID are the same,
TotalView displays only one ID value.

TotalView uses the following letters to indicate process and thread state.
(The position of these letters in the Attached Page is indicated by @ in
Figure 41.)

dn Bumesas ‘g

State Code State Name

blank Exited or never created
At breakpoint

Error reason

In kernel

Mixed

Running

Stopped reason

At watchpoint

s 4 m=z=xmw

The Error state usually indicates that your program received a fatal signal
such as SIGSEGV, SIGBUS, or SIGFPE from the operating system. See “Han-

=

Unattached
Process States

Table 3: Summary of
Unattached Process States

Table 4: Default Signal
Handling Behavior

-

dling Signals” on page 48 for information on controlling how TotalView han-
dles signals that your program receives.

CLl: The CLI prints out a word indicating the state; for example, “break-
point.”

TotalView derives the state information for a process displayed in the
Unattached Page from the operating system. The state characters TotalView
uses to summarize the state of an unattached process do not necessarily
match those used by the operating system. Here are the state indicators
that TotalView displays:

State Code State Description
I Idle

R Running

S Sleeping

T Stopped

z Zombie

Handling Signals

If your program contains a signal handler routine, you may need to adjust
the way TotalView handles signals. You can do this using:

m A dialog box (described in this section)

m The -signal_handling_mode command-line option to the totalview and
totalviewcli commands (refer to “TotalView Command Syntax” in the
TotalView Reference Guide)

Unless you tell TotalView otherwise, here is how it handles UNIX signals:

Signals that TotalView Passes Back

to Your Program Signals that TotalView Treats as Errors
SIGHUP SIGIO SIGILL SIGPIPE

SIGINT SIGIO SIGTRAP SIGTERM

SIGQUIT SIGPROF SIGIOT SIGTSTP

SIGKILL SIGWINCH SIGEMT SIGTTIN

SIGALRM SIGLOST SIGFPE SIGTTOU

SIGURG SIGUSR1 SIGBUS SIGXCPU

SIGCONT SIGUSR2 SIGSEGV SIGXFSZ

SIGCHLD SIGSYS

TotalView uses the SIGTRAP and SIGSTOP signals internally. If a process receives either
of these signals, TotalView neither stops the process with an error nor passes the signal
back to your program. You cannot alter the way TotalView uses these signals.

On some systems, hardware registers affect how TotalView and your pro-
gram handle signals such as SIGFPE. For more information, refer to “Inter-
preting the Status and Control Registers” on page 195 and “Architectures” in the
TotalView Reference Guide.

Figure 43: File > Signals

Dialog Box

If you are using an SGI computer, setting the TRAP_FPE environment variable to any
value indicates that your program will trap underflow errors. If you set this variable,
however, you will also need to use the controls in the File >Signals Dialog Box to indi-
cate what TotalView should do with SIGFPE errors. (In most cases, you will set SIGFPE
to Resend.) As an alternative, you can use the —signal_handling_mode “action_list”
option.

You can change the signal handling mode using the File > Signals com-
mand. (See Figure 43.)

-+ Eifi® - Sl “# Rdiind KRl SoHU- 1 Hafejup I
Emxr & Slop Reqpnd ko R NT £ Iedemugl frabeyel
Eiris =l * HanEnd Liiei] ST d Eul paoLe FEj
¥ Ermor Sion BEqeni Igrore i (K d fiegal ingimchen nal eaet «
T b SLTREF 3 15 Erap [redl] s aEl =dn Ci
¥ Erme =lon BEqEnd krarg SiR&EET B ARl praces
* B Hlop Hagund yrars Saus ¢ Dk @i
§ Enme =it RBeqpmd irora BHEFFE A Flashag paivl sscaplior
Er =lj = REasnd grire =SLFILL 1 KH icsmnel s calght ol igni
Enm Siom @ Reaend ey i B3R il iser delrosd sgpal
* B Ifm Nanwnd Igrire LSRG 1) e |l ia i vvinilind g
Eine Slop ® Reiend Ll RGIEERE 12 Usor dolrad vign I
* Limr Slom A=nenid Ejror= SR 13 ‘Weflemn s pp= wihnome
r
I= [=
s Dietuidts Canesl J [—
. o s ad”
.

The signal names and numbers that TotalView displays are platform specific. That is,
what you will see in this box depends upon the computer and operating system in which
your program is executing.

When your program receives a signal, TotalView stops all related processes.
If you don’t want this behavior, clear the Stop control group on error signal
button (which is found in the Options Page of the File > Preferences Dialog
Box. (See Figure 48 on page 54.)

CLl: dset TV::warn_step_throw

When your program encounters an error signal, TotalView opens or raises
the Process Window. Clearing the Open process window on error signall
check box, also found on the Options Page in the File > Preferences Dialog
Box, tells TotalView that it should not open or raise windows.

CLl: dset TV::GUI::pop_on_error

If processes in a multiprocess program encounter an error, TotalView only
opens a Process Window for the first process that encounters an error. (If it

e

w
w
@
—~+
=
5
Q
(=
°

Table 5: Signal Handling
Buttons

-

did it for all of them, TotalView would quickly fill up your screen with Pro-
cess Windows.)

If you select the Open process window at breakpoint check box, which is
found in the File > Preferences’ Action Points Page, TotalView opens or
raises the Process Window when your program reaches a breakpoint.

CLl: TV::GUl::pop_at_breakpoint

Make your changes by selecting one of the radio buttons shown in the fol-
lowing table.

Button Meaning

Error Stops the process, places it in the error state, and displays an
error in the title bar of the Process Window. If you have also
selected the Stop control group on error signal check box,
TotalView will also stop all related processes. Select this
button for severe error conditions such as SIGSEGV and

SIGBUS.

Stop Stops the process and places it in the stopped state. Select this
button if you want TotalView to handle this signal as it would
a SIGSTOP signal.

Resend Sends the signal back to the process. This setting lets you

test your program’s signal handling routines. TotalView sets
the SIGKILL and SIGHUP signals to Resend as most programs
have handlers to handle program termination.

Ignore Discards the signal and continues the process. The process will not
know that something raised a signal.

Do not use Ignore mode for fatal signals such as SIGSEGV and SIGBUS. If you do,

TotalView can get caught in a signal/resignal loop with your program; the signal will
immediately recur because the failing instruction repeatedly reexecutes.

Setting Search Paths

If your source code, executable, and object files reside in different directo-
ries, set search paths for these directories with the File > Search Path com-
mand. You do not need to use this command if these directories are
already named in your environment’s PATH variable.

CLl: dset EXECUTABLE_PATH

These search paths apply to all processes that you’re debugging. (See
Figure 44 on page 51.)

TotalView searches the following directories (in order):

1 The current working directory (.).

2 The directories you specify by using the File > Search Path command in
the exact order you enter them.

Figure 44: File > Search Path
Dialog Box

P e ——

= | Sasech Bath

Cimers | Dbl n 1 & w1 T30 el L il i o] il O

i"l e TS TS e S oy i P g’ p e W i g
T T e ol il o P Dl i
s W e s e phe P o e npan

- L

I riist

L3 Carcai Hil

3 If you entered a full path name for the executable when you started
TotalView, TotalView searches this directory.

4 If your executable is a symbolic link, TotalView will look in the directory in
which your executable actually resides for the new file.
As you can have multiple levels of symbolic links, TotalView keeps on fol-
lowing links until it finds the actual file. After it has found the current exe-
cutable, it will look in its directory for your file. If it isn’t there, it’ll back up
the chain of links until either it finds the file or determines that the file
can’t be found.

5 The directories specified in your PATH environment variable.

When entering directories into this dialog box, you must enter them in the
order you want them searched, and you must enter each on its own line.

m You can type path names directly.

m You can cut and paste directory information.

m You can use the Insert button to tell TotalView to display the Select
Directory dialog box that lets you browse through the file system, inter-
actively selecting directories. (See Figure 45 on page 52.)

The current working directory (.) in the File > Search Path Dialog Box is the
first directory listed in the window. TotalView interprets relative path names
as being relative to the current working directory.

If you remove the current working directory, TotalView reinserts it at the top
of the list.

After you change this list of directories, TotalView again searches for the
source file of the routine being displayed in the Process Window.

You can also specify search directories using the TV::search_path variable.

=

w
w
@
—~+
=
5
Q
(=
°

Setting Command Arguments

Figure 45: Select Directory
Dialog Box

LEFLGY

G H E e

=5 1, rg

SELDATIR A _DE e =
B ey i

ALD_TO PRCAEE

Pided_asi
Etain_Sow_fr_ oL Hi i 4

P ralisl

Fall sppen_ s Rlsm it
wpbegall

Ppaink =

Ll

] Bl s T

1
SON_OLD
WALDATION_03_02

Setting Command Arguments

When TotalView creates a process, it uses the name of the file containing
the executable code for the process’s program name. If your program
requires command-line arguments and you hadn’t entered them using
TotalView’s —a command-line option, here’s how you can set these argu-
ments before you start the process:

1 Select the Arguments Tab within the Process > Startup Parameters Dialog
Box. (See Figure 46.)

Figure 46: Process = Startup
Parameters Dialog Box:
Arguments Page

52 Chapter 3: Setting Up a Debugging Session

Figure 47: Process > Startup
Parameters Dialog Box:
Standard 1/0 Page

2 Type the arguments you want TotalView to pass to your program. Either
separate each argument with a space or place each one on a separate
line. If an argument contains spaces, enclose the entire argument in
double quotes. When you’re done, select OK.

Setting Input and Output Files

Before your program begins executing, TotalView defines how it will manage
standard input (stdin) and standard output (stdout). Unless you tell it oth-
erwise, stdin and stdout use the shell window from which you invoked
TotalView.

The Process > Startup command lets you redirect stdin or stdout. You can
only do this before your program begins executing. Here’s how:

1 Select the Standard I/O Tab from the dialog box displayed when you
invoke the Process > Startup Parameters command. (See Figure 47.)

=

Argumeriy | Exvimnnent | Shysdurg B

1 Slanaond i

P Sleiard Cunpul

'l'|'|1|I|IJ|'IIE BorsEhanyhon_data =y Ditsns F agpeird

1 Blahiond S

ChRanges Tkl @l al piocesd Marup

Ok | Cadral Haki

2 Type the name of the file, relative to your current working directory. Enter-
ing names in these text boxes is equivalent to using <, >, or >& symbols
in most shells.

3 Select OK.

If you select the Append check box, TotalView appends new information to
the end of the file if the file already exists. If it isn’t checked, TotalView
overwrites the file’s contents.

If you select the Same as output check box, TotalView writes stderr informa-
tion to the same place indicated in the Standard Output field.

CLI: drun and drerun have arguments that let you reset stdin, stdout,
and stderr.

=

w
w
@
—~+
=
5
Q
(=
°

Setting Preferences

The File > Preferences command lets you tailor many of TotalView’s behav-
iors. This section contains an overview of these preferences. Detailed
explanations are in the online Help.

Some settings such as the prefixes and suffixes examined before loading
dynamic libraries can be different from operating system to operating sys-
tem. If these settings can differ, TotalView will let you set values for each
operating system. This is done transparently, which means that you only
see an operating system’s values when you are running TotalView on that
operating system. In general, this applies to the server launch strings and
dynamic library paths.

Every preference has a a variable that can be set using the CLI. These vari-
ables are described in the Variables chapter of the TotalView Reference Guide.

m Options. This page contains check boxes that are either general in nature
or that influence different parts of the system. (See Figure 48.)

e 4 e = Prreces s

Dialog Box: Options Page !
I Ereiib ©Diwiedan i B s 8 0814) Ciptiar
1 Foita waniow patikins | 00T WiNO0W mishagii (acane] modi] Bctin Poirts |
e SGINT dhghal (S0 =) dalveea 10 THE v SR —— I
F
O POsCEsn wAS 00 N @I 1ageal S B
F Bavd predEroa s (e slbnacaly """‘“‘““""'""‘“I
Libears
I Elep contral group ab i ignal =
= i implNiged STL CORLANATE (A0 HEET- 000 il [Para K mmadiBng) et
T Wam wldul Cea dacaplions Quin g AN Siep pevalons ks I
—— Forpam
Tabi weith A - .|
Primier Cive I
[o | Caial | Hik |

m Action Points. The commands on this page indicate if TotalView should
stop anything else when it encounters an action point, the scope of the
action point, automatic saving and loading of action points, and if
TotalView should open a Process Window for the process encountering a
breakpoint. (See Figure 49 on page 55.)

m Launch Strings. The three areas of this page let you set the launch string
that TotalView uses when it launches the tvdsvr remote debugging server,
the Visualizer, and a source code editor. Notice that default values exist
for these launch strings. (See Figure 50 on page 55.)

m Bulk Launch. The fields and commands on this page configure
TotalView’s bulk launch system. See Chapter 4 for more information.
(See Figure 51 on page 56.)

Figure 49: File > Preferences
Dialog Box: Action Points Page

Figure 50: File > Preferences
Dialog Box: Launch Strings
Page

= Db Rzl P sl - 1 E“" |
Hhes ragkpoint M, wsp TR o ekt
w s Do fil, Bap woup | Lamch Sinege |
Whas lams darm, lng Grmp = | Il.'L“m
F Flanl in whang s E!“ Libranes |
' S sition poiels 0 al @il - |
I Loas acine panes g Saarascaly |
o Crpsn proe sun ‘wdacknd' &l s sk peind E
EAFLTII]
Paiier Dive |
0K | Caial j Huld

— T Enabig dsgl ALy SErT Tl || Cetam |
CaFmand ;'I.'_ %R = 0 S T e aT ST _ B LD S e =B i Acfinn Fanés |
Tmaidk i 4 imeons Pataats || [Lasneh Siings I
| s
— F Fashie Vauipar s |
| EH‘I’ Libearess |
Corrnid Tamunlips |
e |
Mmebwain wray k| 0 Certauiin |
— Hpuste Caoe Edior R w
Carminl | e - RE LN RS Coataaill i Pariar v %
|3 iy e S —~
=
>
«Q
C
©
=} | Casial j Hila

m Dynamic Libraries. This page lets you control which symbols are added to
TotalView when it loads a dynamic library and how much of a libraries
symbols are read in. (See Figure 52 on page 56.)

m Parallel. This page lets you define what will occur when your program
goes parallel. (See Figure 53 on page 57.)

m Fonts. Use this page to specify the fonts used in the user interface and
when TotalView displays your code. (See Figure 54 on page 57.)

m Formatting. Use this page to control how your program’s variables are
displayed. (See Figure 55 on page 58.)

m Pointer Dive. Use this page to control how pointers are dereferenced and
how pointers to arrays are cast. (See Figure 56 on page 58.)

=

Setting Preferences

Figure 51: File > Preferences
Dialog Box: Bulk Launch Page

Figure 52: File > Preferences
Dialog Box: Dynamic Libraries
Page

Setting
Preferences,
Options, and X
Resources

56 |

While preferences are the best way to set many of TotalView’s features and
characteristics, TotalView also lets you use variables and command-line
options to set features and characteristics.

Older versions of TotalView did not have a preference system. Instead, you
needed to set values in your .Xdefaults file or in a command-line option.
For example, setting totalview*autoLoadBreakpoints to true tells TotalView
that is should automatically load an executable’s breakpoint file when it
loads an executable. Because you can also set this option as a preference

and set it using the CLI’s dset command, this X resource has been depre-
cated.

Chapter 3: Setting Up a Debugging Session

Figure 53: File > Preferences
Dialog Box: Parallel Page

Figure 54: File > Preferences
Dialog Box: Fonts Page

F Crane gas of chfork, |3
Whin a job grsan garalal i Sali scoic] Actinn Pty |
xS Liaarcs: Giengs

w Fan ik groim sk Laimeh

- Aum._i:l:--:l_l:- H:Ili;m

—WhEna] 1 -

bjees]
« Afach b rme Este |
= Ay wial In dn]

Lo, w P e

Ll ﬂ* Hiki

—LEET WEMace Fosl _Eh\:lrl I
|= - seiecr ny furiyy and siza || Rt |
Famiye | Hosnica | mm [-|| Linch Biingi |
w SEBCT By Rl mawg !m Ll::i
Hyje Changes will {nhie alfect Hes necd Hme TiololView |s shades Faial s |
—Cole ard Dala Fosl | Foesy
Famie | Couna il [d | Fosatiing | w
| Pomerpiee | P
—
=
5
(@]
C
I' ©
| o] il g

“Deprecated” means that the feature is still available. While the feature may exist for a
while, there’s no guarantee that it will continue to work. All “totalview” options have
been deprecated. Those used for setting the Visualizer are still supported. Documenta-
tion for these resources can be found at www.etnus.com/Support/docs/xresources/
XResources.html.

Similarly, documentation for earlier releases told you how to use a com-
mand-line option to tell TotalView to automatically load breakpoints, and
there were two different command-line options to perform this action.
While these methods still work, they are also deprecated.

In some cases, you may want to set a state for one session or you may
want to override one of your preferences. (A preference indicates a behav-

~

Setting Preferences

Figure 55: File > Preferences
Dialog Box: Formatting Page

Figure 56: File > Preferences
Dialog Box: Pointer Dive Page

58 |

S -owomoomomnosnans (65

ior that you want to occur in all of your TotalView sessions.) This is the
function of the command-line options described in “TotalView Command Syn-
tax” in the TotalView Reference Guide.

For example, you can use —bg to set the background color for TotalView
windows in the TotalView session just being invoked. TotalView does not
remember changes to its default behavior that you make using command-
line options. You have to set them again when you start a new session.

Chapter 3: Setting Up a Debugging Session

Figure 57: Process > Startup
Parameters Dialog Box:
Environment Page

Setting Environment Variables

You can set and edit the environment variables that TotalView passes to
processes. When TotalView creates a new process, it passes a list of envi-
ronment variables to the process. You can add to this list by using the
Environment Page in the Process > Startup Parameters Dialog Box.

TotalView does not display the variables that were passed to it when you started your
debugging session. Instead, this dialog box just displays the variables you have added
using this command.

The format for specifying an environment variable is name=value. For exam-
ple, the following definition creates an environment variable named
DISPLAY whose value is enterprise:0.0:

DISPLAY=enterprise:0.0

To add, delete, or modify environment variables that you enter, select the
Environment Tab from the dialog box displayed when you invoke the
Process > Startup Parameters command. See Figure 57.

P m—

= Startup Vasmetess - sraps eI 3
:lgnrllrru. 5|_“|-|.|||r|_hj|

w
w
@
—~+
=
5
Q
(=
°

Changac s afect @l procesd iarup

O | Caacal Hik

When entering environment variables, place each on a separate line. The
actions you can now perform are:

m Changing the name or value of an environment variable by editing a line.

m Adding a new environment variable by inserting a new line and specifying
a name and value.

m Deleting an environment variable that you added by deleting a line.

Monitoring TotalView Sessions

su1

Figure 58: Root Window Log
Page

o0 |

Monitoring TotalView Sessions

TotalView logs all significant events occurring for all processes being
debugged. To view the event log, select the Root Window’s Log Tab. This
page displays a list of these events. See Figure 58 for an example.

Ein ESt Wi Tau arsdow

Amached | Unattecsed] G |[™im)

Thewaill 1 =0 hss epfeaio]
Theead 5 -1 haa sppeaced
Theesd 2 -0 hsa spgescsd

Thoesd 4 -1 hes sppesped

Thieail 5.2 has appaadod

Theesd 5.3 han appemrsd
Thewnd 5 -0 4 tap fagual
Theesd 4 F mﬁr;\r-pnd J x
Thiead 4 3 has dppaacad
Thread 4 =i atopped: Stap Sagmal
Thrend 1 I han sppasred

Thcesd 7 7 has sppaared
Thoead -1 atopped. §zop Sigeal

Threead 2 2 has appasred
1 ban mppexrad

-1 wEogpsd . Enap fagmal

Thread 12
Thewsd 2

You can set the amount of information TotalView writes to this window by
using the CLI’s dset command to set the VERBOSE variable. If you always
want it set to a value, you can set it in your .tvdrc file. For example:

dset VERBOSE WARNING

Chapter 3: Setting Up a Debugging Session

Setting Up Remote 4
Debugging Sessions

This chapter explains how to set up TotalView remote debugging
sessions. This chapter discusses:

m “Setting Up and Starting the TotalView Debugger Server” on page 61
m “Debugging Over a Serial Line” on page 71

Setting Up and Starting the TotalView
Debugger Server

Debugging a remote process with TotalView is only slightly different than
debugging a native process. The primary differences are that:

m TotalView needs to work with a TotalView processes that will be running
on remote machines. This remote TotalView process, which TotalView
usually automatically launches, is called the TotalView Debugger Server
(tvdsvr).

m TotalView’s performance depends on your network’s performance. If the
network is overloaded, debugging can be slow.

Unless you tell it otherwise, TotalView automatically launches tvdsvr in one
of the following ways:

m It can independently launch a tvdsvr on each remote host. This is called
single-process server launch.

m It can launch all remote processes at the same time. This is called bulk
server launch.

Because TotalView can automatically launch tvdsvr, there’s nothing you
need to do when you're debugging remote processes. It shouldn’t matter
to you if a process is local or remote.

If the default single-process server launch procedure meets your needs and you're not
experiencing an problems accessing remote processes from within TotalView, you can
safely ignore the information in this chapter. If you do experience a problem launching
the server, you should check that the tvdsvr process is in your path.

a

Topics in this section are:

“Setting Single-Process Server Launch Options” on page 62
“Setting Bulk Launch Window Options” on page 63

“Starting the Debugger Server Manually” on page 65

“Using the Single-Process Server Launch Command” on page 66
“Bulk Server Launch on an SGI MIPs Machine” on page 67
“Bulk Server Launch on an HP Alpha Machine” on page 69
“Bulk Server Launch on an IBM RS/6000 AIX Machine” on page 68
“Disabling Autolaunch” on page 69

“Changing the Remote Shell Command” on page 69

“Changing the Arguments” on page 70

“Autolaunch Sequence” on page 70

Setting Single- The Enable single debug server launch preferences in the Launch Strings

Process Server Page of the File > Preferences Dialog Box lets you disable autolaunch,

Launch Options change the command that TotalView uses when it launches remote servers,
and alters the amount of time TotalView waits when establishing connec-
tions to a tvdsvr process. (See Figure 59.)

(il

Server Launch Strings Page
— IF Eapboo usgle dabug §eraT SRInCh i Euu |
At FLC K - h TR AT ATV OHET_BUILD SN i kB | pcnon Parey |
Tamad | 4 imeones Dataats || [Lasneh Sirings I
| e
i~ I Erphie Veusipar e |
| EH‘.’ Litrarass |
Currse Samusirs |
Mmaiwan wray ok 0 Cortitn |
~— Hpuize Came Siloe Frivaming
Carmind | Men -d RE %N RS Ctaail i. e |
[a] | Casial j Hal

Enable single debug server launch
If you select this check box, TotalView will indepen-
dently launch the TotalView Debugger Server (tvdsvr) on
each remote system.

CLl: dset TV::server_launch_enabled

Even if you have enabled bulk server launch, you probably also
i want this option to be enabled. TotalView uses this launch string
when you start TotalView upon a file when you have named a host

Command

Timeout

Defaults

within the File = New Program Dialog Box or have used the —
remote command line option. You only want to disable single
server launch when it can’t work.

Enter the command that TotalView will use when it in-
dependently launches tvdsvr. For information on this

command and its options, see “Using the Single-Process
Server Launch Command” on page 66.

CLl: dset TV::server_launch_string

After TotalView automatically launches tvdsvr, it waits
30 seconds for tvdsvr to respond. If the connection
isn’'t made in this time, TotalView times out. You can
change the amount of time by entering a value from 1
to 3600 seconds (1 hour).

CLl: dset TV::server_launch_timeout

If you notice that TotalView fails to launch tvdsvr (as
shown in the xterm window from which you started the
debugger) before the timeout expires, select Yes in the
Question Dialog Box that will appear.

If you make a mistake or decide you want to go back to
TotalView’s default settings, select the Defaults button.

Selecting Defaults also throws away any changes you
made using a CLI variable. TotalView doesn’t immedi-
ately change settings after you click the Defaults but-
ton; instead, it waits until you select the OK button.

Setting Bulk The fields in the File > Preferences’ Bulk Launch Page lets you change the
Launch Window bulk launch command, disable bulk launch, and alter connection timeouts
Options that TotalView uses when it launches tvdsvr programs. Figure 60 on page 64

shows this page.

CLl: dset TV::bulk launch_enabled

Enable debug server bulk launch

Command

If you select this check box, TotalView uses its bulk
launch procedure when launching the TotalView De-
bugger Server (tvdsvr). By default, bulk launch is dis-
abled; that is, TotalView uses its single-server launch
procedure.

If you have enabled bulk launch, TotalView will use this
command to launch tvdsvr. For information on this
command and its options, see “Bulk Server Launch on an

IN
w
@
(=
=)

!
[

S
o)
@
3
o
(=g
®

Setting Up and Starting the TotalView Debugger Server

Figure 60: File > Preferences:
Bulk Launch Page

SGI MIPs Machine” on page 67 and “Bulk Server Launch on
an IBM RS/6000 AIX Machine” on page 68.

Temp File 1 Prototype
Temp File 2 Prototype
Both tab pages have three fields. These fields let you

specify the contents of temporary files that the bulk
launch operation will use. For information on these
fields, see “TotalView Debugger Server (tvdsvr) Command
Syntax” in the TotalView Reference Guide.

Connection Timeout (in seconds)
After TotalView launches tvdsvr processes, it waits 20
seconds (the Base time) plus 10 seconds for each
server that it will launch for responses from success-
fully connected processes. If connections are not made
in this time, TotalView times out.

The Base timeout value can be from 1 to 3600 seconds
(1 hour). The incremental Plus value is from 1 to 360

64 Chapter 4: Setting Up Remote Debugging

Starting the
Debugger Server
Manually

[-

seconds (6 minutes). See the online Help for informa-
tion on presetting these values.

CLl: dset TV::bulk launch_base timeout
dset TV::bulk_incr_timeout

If you notice that TotalView fails to launch tvdsvr (as
shown in the xterm window from which you started the
debugger) before the timeout expires, select Yes in the
Question Dialog Box that will appear.

Defaults If you make a mistake or decide you want to go back to
TotalView’s default settings, select the Defaults button.

Selecting Defaults also throws away any changes you
made using a CLI variable. TotalView doesn’t immedi-
ately change settings after you click the Defaults but-
ton; instead, it waits until you select the OK button.

If TotalView can’t automatically launch tvdsvr, you can start it manually.
Unfortunately, this method isn’t completely secure: other users can con-
nect to your instance of tvdsvr and begin using your UNIX UID.

If you specify hostname:portnumber when opening a remote process, TotalView will not
launch a debugger server.

Here is how you manually start tvdsvr:

1 Begin by insuring that both the bulk launch and single server launch or
disabled. To disable the bulk launch, select the Bulk Launch Tab within the
File > Preferences Dialog Box. (You can select this command from the
Root Window or the Process Window.) The dialog box shown in Figure 60
on page 64 appears. Next, clear the Enable debug server bulk launch
check box within the Bulk Launch Tab to disable the autolaunch feature
and then select OK.

CLl: dset TV::bulk launch_enabled

Similarly, select the Server Launch Tab and clear the Enable single debug
server launch button.

CLl: dset TV::server_launch_enabled

2 Log in to the remote machine and start tvdsvr:
tvdsvr —server

If you don’t (or can’t) use the default port number (4142), you will need to
use the —port or —search_port options. For details, refer to “TotalView
Debugger Server (tvdsvr) Command Syntax” in the TotalView Reference Guide.
After printing out the port number and the assigned password, the server
begins listening for connections. Be sure to remember the password;
you’ll need to enter it in step 3.

=

IN
w
@
(=
=)

!
[

S
o)
@
3
o
(=g
®

done by your system administrator.) For details, see —server in the “TotalView Com-

i Because the —server option is not secure, it must be explicitly enabled. (This is usually
mand Syntax” chapter of the TotalView Reference Guide.

3 From the Root Window, select the File = New Program command. Type the
program’s name in the Executable field and the hostname:portnumber in the
Remote Host field and then select OK.

CLl: dload executable -r hostname

4 TotalView now tries to connect to tvdsvr.

When TotalView prompts you for the password, enter the password that
tvdsvr displayed in step 2.

Figure 61 summarizes the steps used when you start tvdsvr manually.

Figure 61: Manual Launching »| tvdsvr
of Debugger Server g E
_ (1)
TotalView (2] ¢
s <

Remote
Executable

Moy
i

Network |

@ Makes connection

@ Listens
Using the Single- Here is the default command string that TotalView uses when it automati-
Process Server cally launches the debugger server for a single process:
Launch Command %C %R —n "tvdsvr ~working_directory %D —callback %L \
—set_pw %P —verbosity %V"
where:

%C Expands to the name of the server launch command
being used. On most platforms, this is rsh. On HP ma-
chines, this command is remsh. If the
TVDSVRLAUNCHCMD environment variable exists,
TotalView uses its value instead of its platform-specific
default value.

%R Expands to the host name of the remote machine that
you specified in the File > New Program or dload com-
mands.

-n Tells the remote shell to read standard input from

/devinull; that is, the process will immediately receive
an EOF (End-Of-File) signal.

Bulk Server Launch
on an SGI MIPs
Machine

—working_directory %D

—callback %L

—set_pw %P

—verbosity %V

Makes %D the directory to which TotalView will be con-
nected. %D expands to the absolute path name of the
directory.

Using this option assumes that the host machine and
the target machine are mounting identical file systems.
That is, the path name of the directory to which
TotalView is connected must be identical on host and
target machines.

After changing to this directory, the shell will invoke the
tvdsvr command.

You must make sure the tvdsvr directory is in your path
on the remote machine.

Establishes a connection from tvdsvr to TotalView. %L
expands to the host name and TCP/IP port number
(hostname:port) upon which TotalView is listening for
connections from tvdsvr.

Sets a 64-bit password. TotalView must supply this
password when tvdsvr establishes a connection with it.
%P expands to the password that TotalView automati-
cally generates. For more information on this pass-
word, see “TotalView Debugger Server (tvdsvr) Command
Syntax” in the TotalView Reference Guide.

Sets the verbosity level of the TotalView Debugger
Server. %V expands to the current TotalView verbosity
setting.

You can also use the %H option with this command. This option is dis-
cussed in “Bulk Server Launch on an SGI MIPs Machine” on page 67.

For information on the complete syntax of the tvdsvr command, refer to
“TotalView Debugger Server (tvdsvr) Command Syntax” in the TotalView Reference

Guide.

On an SGI machine, the bulk server launch string is similar to the single-
process server launch and is:

array tvdsvr —working_directory %D —callback_host %H \
—callback_ports %L —set_pws %P —verbosity %V

where:

—working_directory %D

Makes %D the directory to which TotalView will be con-
nected. %D expands to this directory’s absolute path
name.

TotalView assumes that the host machine and the tar-
get machine mount identical file systems. That is, the
path name of the directory to which TotalView is con-
nected must be identical on both host and target ma-
chines.

After performing this operation, tvdsvr starts executing.

~

IN
w
@
(=
=)

!
[

S
o)
@
3
o
(=g
®

Bulk Server Launch
on an IBM RS/6000
AlIX Machine

—callback_host %H

Names the host upon which TotalView makes this call-
back. %H expands to the host hame of the machine
TotalView is running on.

—callback_ports %L

—set_pws %P

—-verbosity %V

Names the ports on the host machines that TotalView
uses for callbacks. %L expands to a comma-separated
list of host names and TCP/IP port numbers (host-
name:port,hostname:port...) on which TotalView is listen-
ing for connections.

Sets 64-bit passwords. TotalView must supply these
passwords when tvdsvr establishes the connection with
it. %P expands to a comma-separated list of 64-bit
passwords that TotalView automatically generates. For
more information, see “TotalView Debugger Server (tvdsvr)
Command Syntax” in the TotalView Reference Guide.

Sets tvdsvr’s verbosity level. %V expands to the current
TotalView verbosity setting.

You must enable tvdsvr’s use of the array command by adding the following
information to the /usr/lib/array/arrayd.conf file:

#

Command that allow invocation of the TotalView
Debugger server when performing a Bulk Server Launch.

#

command tvdsvr
invoke Zopt/totalview/bin/tvdsvr %ALLARGS

user %USER

group %GROUP

project %PROJECT
This assumes that the location of tvdsvr is /opt/totalview/bin. For informa-
tion on the syntax of the tvdsvr command, refer to “TotalView Debugger Server
(tvdsvr) Command Syntax” in the TotalView Reference Guide.

On an IBM RS/6000 AIX machine, the bulk server launch string is:

%C %H —-n “poe -pgmmodel mpmd —resd no —tasks_per_node 1\
-procs %N —hostfile %t1 —cmdfile %t2”

where the options unigue to this command are:

%N
%t1

%t2

The number of servers that TotalView will launch.

A temporary file created by TotalView that contains a
list of the hosts upon which tvdsvr will run. This is the
information you enter in the Temp File 1 Prototype field
in the Bulk Launch Page.

TotalView generates this information by expanding the
%R symbol. This is the information you enter in the
Temp File 2 Prototype field in the Bulk Launch Page.

A file that contains the commands to start the tvdsvr
processes on each machine. TotalView creates these
lines by expanding the following template:

Bulk Server Launch

on an HP Alpha
Machine

Disabling
Autolaunch

Changing the
Remote Shell
Command

-

tvdsvr —working_directory %D \
—callback %L —set _pw %P \
—-verbosity %V

Information on the options and expansion symbols is in the “TotalView
Debugger Server (tvdsvr) Syntax” chapter of the TotalView Reference Guide.

On an HP Alpha machine, the bulk server launch string is:

prun T -1 tvdsvr —callback_host %H
—callback_ports %L -set_pws %P
-verbosity %V —-working_directory %D

Information on the options and expansion symbols is in the “TotalView
Debugger Server (tvdsvr) Syntax” chapter of the TotalView Reference Guide.

If after changing the autolaunch options, TotalView still can’t automatically
start tvdsvr, you must disable autolaunching and start tvdsvr manually. Here
are two ways to do this:

m Clear the Enable single debug server launch check box in the Launch
Strings Page of the File > Preferences Dialog Box.

CLl: dset TV::server_launch_enabled

m When you debug the remote process, as described in “Setting Up and
Starting the TotalView Debugger Server” on page 61, enter a host name and
port number in the bottom section of the File > New Program Dialog
Box. This disables autolaunching for the current connection.

If you disable autolaunching, you must start tvdsvr before you load a remote execut-
able or attach to a remote process.

Some environments require that you create your own autolaunch com-
mand. You might do this, for example, if your remote shell command
doesn’t provide the security that your site requires.

If you create your own autolaunch command, you must use the tvdsvr com-
mand’s —callback and —-set_pw arguments.

If you’re not sure whether rsh (or remsh on HP machines) works at your
site, try typing “rsh hostname” (or “remsh hostname”) from an xterm window,
where hostname is the name of the host upon which you want to invoke the
remote process. If this command prompts you for a password, you must
add the host name of the host machine to your .rhosts file on the target
machine.

For example, you could use the following combination of the echo and
telnet commands:
echo %D %L %P %V; telnet %R

Once telnet establishes a connection to the remote host, you could use
the cd and tvdsvr commands directly, using the values of %D, %L, %P, and
%V that were displayed by the echo command. For example:

IN
w
@
(=
=)

!
[

S
o)
@
3
o
(=g
®

=

Changing the
Arguments

Autolaunch
Sequence

cd directory
tvdsvr —callback hostname:portnumber —set_pw password

If your machine doesn’t have a command for invoking a remote process,
TotalView can’t autolaunch the tvdsvr and you must disable both single
server and bulk server launches.

For information on the rsh and remsh commands, refer to the manual page
supplied with your operating system.

You can also change the command-line arguments passed to rsh (or what-
ever command you use to invoke the remote process).

For example, if the host machine doesn’t mount the same file systems as
your target machine, the debugger server may need to use a different path
to access the executable being debugged. If this is the case, you could
change %D to the directory used on the target machine.

If the remote executable reads from standard input, you cannot use the -n
option with your remote shell command because the remote executable
will receive an EOF immediately on standard input. If you omit -n, the
remote executable reads standard input from the xterm in which you
started TotalView. This means that you should invoke tvdsvr from another
xterm window if your remote program reads from standard input. Here’s an
example:

%C %R "*xterm —display hostname:0 —e tvdsvr \

—callback %L -working directory %D —set pw %P \
—verbosity %V

Now, each time TotalView launches tvdsvr, a new xterm appears on your
screen to handle standard input and output for the remote program.

If you want to know more about autolaunch, here is the sequence of

actions carried out by you, TotalView, and tvdsvr:

1 With the File = New Program or dload commands, you specify the host
name of the machine on which you want to debug a remote process, as
described in “Setting Up and Starting the TotalView Debugger Server” on
page 61.

2 TotalView begins listening for incoming connections.

3 TotalView launches the tvdsvr process with the server launch command.
(“Using the Single-Process Server Launch Command” on page 66 describes this
command.)

4 The tvdsvr process starts on the remote machine.
5 The tvdsvr process establishes a connection with TotalView.

Figure 62 on page 71 summarizes these actions.

Figure 62: Root Window
Showing Process and Thread
Status

Figure 63: TotalView Debugging
Session Over a Serial Line

E@

Yy

TotalView
o

-

= =L)0

=

Network |

@A Listens

Invokes commands
tvdsvr starts

Makes connection

o000

Debugging Over a Serial Line

TotalView allows you to debug programs over a serial line as well as TCP/IP
sockets. However, if a network connection exists, you will probably want to
use it because performance will be much better.

You will need to have two connections to the target machine: one for the
console and the other for TotalView. Do not try to use one serial line as
TotalView cannot share a serial line with the console.

Figure 63 illustrates a TotalView debugging session using a serial line. In this
example, TotalView is communicating over a dedicated serial line with a
TotalView Debugger Server running on the target host. A VT100 terminal is
connected to the target host’s console line, allowing you to type com-
mands on the target host.

tvdsvr

VT100

TotalView

Remote
Console Executable
Line

Network |

Topics in this section are:

m “Starting the TotalView Debugger Server” on page 72
m “Starting TotalView on a Serial Line” on page 72
m “Using the New Program Window” on page 72

IN
w
@
(=
=)

!
[

S
o)
@
3
o
(=g
®

Starting the
TotalView
Debugger Server

Starting TotalView
on a Serial Line

Using the New
Program Window

To start a TotalView debugging session over a serial line from the command
line, you must first start the TotalView Debugger Server (tvdsvr).

Using the console connected to the target machine, start tvdsvr and enter
the name of the serial port device on the target machine. Here is the syntax
of the command you would use:

tvdsvr —serial device[:baud=num]

where:
device The name of the serial line device.
num The serial line’s baud rate; if you omit the baud rate,
TotalView uses a default value of 38400.
For example:

tvdsvr —serial /dev/coml:baud=38400
After it starts, tvdsvr waits for TotalView to establish a connection.

Start TotalView on the host machine and include the name of the serial line
device. The syntax of this command is:

totalview —serial device[:baud=num] filename
or

totalviewcli —serial device[:baud=num] filename

where:
device The name of the serial line device on the host machine.
num The serial line’s baud rate. If you omit the baud rate,
TotalView uses a default value of 38400.
filename The name of the executable file.
For example:

totalview —serial /dev/term/a test pthreads

Here is the procedure for starting a TotalView debugging session over a

serial line when you’re already in TotalView:

1 Start the TotalView Debugger Server. (This is discussed in “Starting the
TotalView Debugger Server” on page 72).

2 Select the File = New Program command. TotalView responds by display-
ing the dialog box shown in Figure 64 on page 73.

Type the name of the executable file in the Executable field.
Type the name of the serial line device in the Serial Line field.
3 Select OK.

Figure 64: File > New Program [M brogrm |
Dialog Box
Expcaiabvie
I: i E.In.ﬂl
&fach Tp
+ M FrOziss
o im Fie 1K Bipesta
w Focen
Taige Lol s
* Lecal
w FRrmDlg FHiril
= Soral Lisp v
O Cancal Help

B
w
@
(=
=)
!
[
S
o)
@
3
o
(=g
®

Debugging Over a Serial Line

T’

Chapter 4: Setting Up Remote Debugging

Setting Up Parallel 5
Debugging Sessions

This chapter explains how to set up TotalView parallel debugging
sessions for applications that use the following parallel execution
models.

The information in this chapter describes running many different
environments on many different architectures. While there is a lot of
information in this chapter you do need, you probably don’t need
the information on many of the environments and architectures.
This means that you shouldn’t just read this chapter. Instead, go to
this book’s table of contents and decide what’s important to you.

This chapter discusses:

m “Debugging MPICH Applications” on page 76

“Debugging HP Tru64 Alpha MPI Applications” on page 79
“Debugging HP MPI Applications” on page 80

“Debugging IBM MPI Parallel Environment (PE) Applications” on
page 81

“Debugging LAM/MPI Applications” on page 84

“Debugging QSW RMS Applications” on page 85

“Debugging SGI MPI Applications” on page 86

“Debugging Sun MPI Applications” on page 87

“Debugging OpenMP Applications” on page 92

“Debugging Global Arrays Applications” on page 98
“Debugging PVM (Parallel Virtual Machine) and DPVM Applications” on
page 101

“Debugging Shared Memory (SHMEM) Code” on page 106
“Debugging UPC Programs” on page 106

m “Parallel Debugging Tips” on page 110

Starting TotalView
on an MPICH Job

There are a few things that are of general interest:

m TotalView lets you decide which process you want it to attach. You
will find information in “Attaching to Processes” on page 110.

m If you're using a messaging system, TotalView displays this infor-
mation visually as a message queue graph and textually in a mes-
sage queue window,

m The end of this chapter has some hints on how you can approach
debugging parallel programs.

Debugging MPICH Applications

To debug Message Passing Interface/Chameleon Standard (MPICH) applica-
tions, you must use MPICH version 1.2.3 or later on a homogenous collec-
tion of machines. If you need a copy of MPICH, you can obtain it at no cost
from Argonne National Laboratory at www.mcs.anl.gov/mpi. (You are
strongly urged to use a later version of MPICH. Information on versions
that work with TotalView can be found in the TotalView Platforms document.)

The MPICH library should use the ch_p4, ch_p4mpd, ch_shmem,
ch_Ifshmem, or ch_mpl devices. For networks of workstations, ch_p4 is the
default. For shared-memory SMP machines, use ch_shmem. On an IBM SP
machine, use the ch_mpl device. The MPICH source distribution includes
all of these devices and you can choose one when you configure and build
MPICH.

When configuring MPICH, you must ensure that the MPICH library maintains all of
the information that TotalView requires. This means that you must use the —enable-
debug option with the MPICH configure command. (Versions earlier than 1.2 used
the —debug option.) In addition, the TotalView Release Notes contains information on
patching your MPICH 1.2.3 distribution.

Topics in this section are:

m “Starting TotalView on an MPICH Job” on page 76
m ‘Attaching to an MPICH Job” on page 78
m “MPICH P4 procgroup Files” on page 79

Before you can bring an MPICH job under TotalView’s control, both
TotalView and the TotalView server must be in your path. You can set this
up in either a login or shell startup script.

At Version 1.1.2, here’s the command line that starts a job under
TotalView’s control:

mpirun [MPICH-arguments] —tv program [program-arguments]
For example:

mpirun —np 4 —tv sendrecv

The MPICH mpirun command obtains information from the TOTALVIEW
environment variable and then uses this information when it starts the first
process in the parallel job.

At Version 1.2.4, this changes to:

mpirun —dbg=totalview [other_mpich-arguments] program \
[program-arguments]

For example:

mpirun —dbg=totalview —np 4 sendrecv

o1
w
]
—+
)
>
«Q
c
©
0
Q
=
=
o

In this case, mpirun obtains the information it needs from the —dbg com-
mand-line option.

In other contexts, setting this environment variable means that you can
use different versions of TotalView or pass command-line options to
TotalView.

For example, here is the C shell command that sets the TOTALVIEW envi-
ronment variable so that mpirun passes the —no_stop_all option to
TotalView:

setenv TOTALVIEW "totalview —no_stop_all™

TotalView begins by starting the first process of your job, the master pro-
cess, under its control. You can then set breakpoints and begin debugging
your code.

On the IBM SP machine with the ch_mpl device, the mpirun command uses
the poe command to start an MPI job. While you still must use the MPICH
mpirun (and its —tv option) command to start an MPICH job, the way you
start MPICH differs. For details on using TotalView with poe, see “Starting
TotalView on a PE Job” on page 82.

Starting TotalView using ch_p4mpd is similar to starting TotalView using poe
on IBM or other methods you might use on Sun and HP platforms. In gen-
eral, you start TotalView using the totalview command. Here’s the syntax;

totalview mpirun [totalview_arguments] \
—a [mpich-arguments] program [program-arguments]

CLl: totalviewcli mpirun [totalview_arguments]\
—a [mpich-arguments] program \
[program-arguments]

As your program executes, TotalView automatically acquires the processes
that are part of your parallel job as your program creates them. Before
TotalView begins to acquire them, it asks if you want to stop the spawned
processes. If your answer is Yes, you can stop processes as they are initial-
ized. This lets you check their states or set breakpoints that are unique to
the process. TotalView automatically copies breakpoints from the master
process to the slave processes as it acquires them. Consequently, you
don’t have to stop them just to set these breakpoints.

—

Attaching to an
MPICH Job

Figure 65: Root Window:
Unattached Page

If you’re using the GUI, TotalView updates the Root Window’s Attached
Page to show these newly acquired processes. For more information, see
“Attaching to Processes” on page 110.

TotalView allows you to attach to an MPICH application even if it was not
started under TotalView’s control. Here is the procedure:

1 Start TotalView.

2 The Root Window’s Unattached Page displays the processes that are not
yet owned.

CLl: dattach executable pid

3 Attach to the first MPICH process in your workstation cluster by diving
into it.
On an IBM SP with the ch_mpi device, attach to the poe process that
started your job. For details, see “Starting TotalView on a PE Job” on page 82.
Figure 65 shows the Unattached window after some attaching has
occurred.

Fin Eaf ¥ies Taphs ‘Mindps Halp
attecred || Ummarhen| Grsip | Leg |
al |

alfie Sopees com: § prodessps, d achacheble

2R S et d TR TE bR P g LR LA R TR S T)

10E1d 5 nfedFaiedbonn fsurevk st rts fmasmntchlphe

17138 & il e FotedlTame Bar rpk Rt S smnta b Ephe

M = UnfeFrieboeefrarcyk tasts fnzsmetc hilpha

Hd.ﬂl ;

Normally, the first MPICH process is the highest process with the correct
image name in the process list. Other instances of the same executable
can be:

> The p4 listener processes if MPICH was configured with ch_p4.

> Additional slave processes if MPICH was configured with ch_shmem or
ch_Ifshmem.

> Additional slave processes if MPICH was configured with ch_p4 and
have a machine file that places multiple processes on the same
machine.

4 After you attach to your program’s processes, TotalView asks if you also
wish to attach to slave MPICH processes. If you do, press Return or
choose Yes. If you do not, select No.

If you choose Yes, TotalView starts the server processes and acquires all
MPICH processes.

MPICH P4
procgroup Files

Starting TotalView
on a HP Alpha MPI
Job

As an alternative, you can use the Group > Attach Subsets command to
predefine what TotalView should do. For more information, see “Attaching
to Processes” on page 110.

In some situations, the processes you expect to see may not exist (for
example, they may have crashed or exited). TotalView acquires all the pro-
cesses it can and then warns you if it could not attach to some of them. If
you attempt to dive into a process that no longer exists (for example, using
a message queue display), TotalView tells you that the process no longer
exists.

If you’re using MPICH with a P4 procgroup file (by using the —p4pg option),
you must use the same absolute path name in your procgroup file and on
the mpirun command line. For example, if your procgroup file contains a
different path name than that used in the mpirun command, even though
this name resolves to the same executable, TotalView treats it as different
executable, which causes debugging problems.
The following example uses the same absolute path name on TotalView’s
command line and in the procgroup file:

% cat p4group

local 1 /users/smith/mympichexe

bigiron 2 /users/smith/mympichexe
% mpirun —p4pg p4group —tv Zusers/smith/mympichexe

In this example, TotalView:

1 Reads the symbols from mympichexe only once.

2 Places MPICH processes in the same TotalView share group.

3 Names the processes mypichexe.0, mympichexe.1, mympichexe.2, and
mympichexe.3.

If TotalView assigns names such as mympichexe<mympichexe>.0, a prob-

lem occurred and you should compare the contents of your procgroup file

and mpirun command line.

Debugging HP Tru64 Alpha MPI
Applications

You can debug HP Alpha MPI applications on the HP Alpha platform. To
use TotalView with HP Alpha MPI, you must use HP Alpha MPI version 1.7
or later.

HP Alpha MPI programs are most often started with the dmpirun com-
mand. You would use very similar command when starting an MPI program
under TotalView’s control:

{ totalview | totalviewcli } dmpirun —a dmpirun-command-line

o1
w
]
—+
)
>
«Q
c
©
0
Q
=
=
o

¢

Attaching to a HP
Alpha MPI Job

Starting TotalView
on an HP MPI Job

This invokes TotalView and tells it to show you the code for the main pro-
gram in dmpirun. Since you’re not usually interested in debugging this
code, you can use the Process > Go command to let the program run.

CLl: dfocus p dgo

The dmpirun command runs and starts all MPI processes. TotalView will
also acquire them and ask if you want to stop them.

Problems can occur if you rerun HP Alpha MPI programs that are under TotalView con-
trol due to resource allocation issues within HP Alpha MPI. Consult the HP Alpha MPI

manuals and release notes for information on using mpiclean to clean up the MPI sys-

tem state.

To attach to a running HP Alpha MPI job, attach to the dmpirun process
that started the job. The procedure for attaching to a dmpirun process is
the same as the procedure for attaching to other processes. For details,
see “Attaching to Processes” on page 42. You can also use the Group > Attach
Subset command with is discussed in “Attaching to Processes” on page 110.

After you attach to the dmpirun process, TotalView asks if you also wish to
attach to slave MPICH processes. If you do, press Return or choose Yes. If
you do not, select No.

If you choose Yes, TotalView starts the server processes and acquires all
MPICH processes.

Debugging HP MPI Applications

You can debug HP MPI applications on a PA-RISC 1.1 or 2.0 processor. To
use TotalView with HP MPI, you must use HP MPI versions 1.6 or 1.7.

TotalView lets you start an MPI program in three ways:

{ totalview | totalviewcli } program —a mpi-arguments
This command tells TotalView to start the MPI process.
TotalView will then show you the machine code for the
HP MPI mpirun executable.

CLl: dfocus p dgo

mpirun mpi-arguments —tv —f startup_file
This command tells MPI that it should start TotalView
and then start the MPI processes as they are defined
within the startup_file script. This file names the pro-
cesses that MPICH will start. Typically, this file has con-
tents that are similar to:

-h localhost —np 1 sendrecv
-h localhost —np 1 sendrecva

In this example, sendrecv and sendrecva are two differ-
ent executable programs.

Your HP MPI documentation describes the contents of
this startup file.
mpirun mpi-arguments —tv program

This command tells MPI that it should start TotalView.
Just before mpirun starts the MPI processes, TotalView acquires them and
asks if you want to stop the processes before they start executing. If your
answer is yes, TotalView halts them before they enter the main() routine.
You can then create breakpoints.

o1
w
]
—+
)
>
«Q
c
©
0
Q
=
=
o

Attaching toan HP To attach to a running HP MPI job, attach to the HP MPI mpirun process

MPI Job that started the job. The procedure for attaching to an mpirun process is
the same as the procedure for attaching to any other process. For details,
see "Attaching to Processes” on page 42.

After TotalView attaches to the HP MPI mpirun process, it displays the
same dialog as it does with MPICH. (See step 4 on page 78 of “Attaching to
an MPICH Job” on page 78.)

Debugging IBM MPI Parallel Environment
(PE) Applications

You can debug IBM MPI Parallel Environment (PE) applications on the IBM
RS/6000 and SP platforms.

To take advantage of TotalView’s ability to automatically acquire processes,
you must be running release 3,1 or later of the Parallel Environment for AlX.

See “Displaying the Message Queue Graph Window” on page 88 for message
gueue display information.

Topics in this section are:

m “Preparing to Debug a PE Application” on page 81
m “Starting TotalView on a PE Job” on page 82

m “Setting Breakpoints” on page 83

m “Starting Parallel Tasks” on page 83

m ‘Attaching to a PE Job” on page 83

Preparing to The following sections describe what you must do before TotalView can
Debug a PE display a PE application.
Application

Using Switch-Based Communication

If you’re using switch-based communications (either “IP over the switch” or
“user space”) on an SP machine, you must configure your PE debugging
session so that TotalView can use “IP over the switch” for communicating
with the TotalView Debugger Server (tvdsvr). Do this by setting adapter_use
to shared and cpu_use to multiple, as follows:

—y

Starting TotalView
on a PE Job

m If you’re using a PE host file, add shared multiple after all host names or
pool IDs in the host file.
m Always use the following arguments on the poe command line:

—adapter_use shared —cpu_use multiple

If you don’t want to set these arguments in the poe command line, set the
following environment variables before starting poe:

setenv MP_ADAPTER_USE shared
setenv MP_CPU_USE multiple

When using “IP over the switch,” the default is usually shared adapter use
and multiple cpu use; to be safe, set them explicitly by using one of these
techniques.

When you’re using switch-based communications, you must run TotalView
on one of the SP or SP2 nodes. Since TotalView will be using “IP over the
switch” in this case, you cannot run TotalView on an RS/6000 workstation.

Performing Remote Logins

You must be able to perform a remote login using the rsh command. You
will also need to enable remote logins by adding the host name of the
remote node to the /etc/hosts.equiv file or to your .rhosts file.

When the program is using switch-based communications, TotalView tries
to start the TotalView Debugger Server by using the rsh command with the
switch host name of the node.

Setting Timeouts
If you receive communications timeouts, you can set the value of the
MP_TIMEOUT environment variable. For example:

setenv MP_TIMEOUT 1200
If this variable isn’t set, TotalView uses a timeout value of 600 seconds.

Here is the syntax for running Parallel Environment (PE) programs from the
command line:

program [arguments] [pe_arguments]
You can use the poe command to run programs:
poe program [arguments] [pe_arguments]

If, however, you start TotalView on a PE application, you must start poe as
TotalView’s target. The syntax for this is:

{ totalview | totalviewcli } poe —a program[arguments] [PE_arguments]
For example:

totalview poe —a sendrecv 500 —rmpool 1

Setting After TotalView is running, you can start the poe process; this process will
Breakpoints then start the program’s parallel processes with the Process > Go com-
mand.

CLl: dfocus p dgo

TotalView responds by displaying a dialog box—in the CLI, it prints a ques-
tion—that asks if you want to stop the parallel tasks.

If you want to set breakpoints in your code before they begin executing,
answer Yes. TotalView initially stops the parallel tasks, which also allows
you to set breakpoints. You can set breakpoints and control parallel tasks
in the same way as any process controlled by TotalView.

o1
w
]
—+
)
>
«Q
c
©
0
Q
=
=
o

If you have already set and saved breakpoints with the Action Points > Save
All command and want to reload the file, answer No. After TotalView loads
these saved breakpoints, the parallel tasks begin executing.

CLl: dactions —save filename
dactions —load filename

Starting Parallel After you set breakpoints, you can start all of the parallel tasks with the
Tasks Process Window’s Group > Go command.

CLl: dfocus G dgo
Abbreviation: G

No parallel tasks will reach the first line of code in your main routine until all parallel
tasks start.

-

You should be very cautious in placing breakpoints at or before a line that
calls MPI_Init() or MPL_lInit() because timeouts can occur while your pro-
gram is being initialized. Once you allow the parallel processes to proceed
into the MPI_Init() or MPL_Init() call, you should allow all of the parallel pro
cesses to proceed through it within a short time. For more information on
this, see “Avoid unwanted timeouts” on page 115.

Attaching to a PE To take full advantage of TotalView’s poe-specific automation, you need to

Job attach to poe itself, and let TotalView automatically acquire the poe pro-
cesses on its various nodes. This set of acquired processes will include the
processes you want to debug.

Attaching from a Node Running poe

Here’s the procedure for attaching TotalView to poe from the node running
poe.

1 Start TotalView in the directory of the debug target.

If you can’t start TotalView in the debug target directory, you can start
TotalView by editing the TotalView Debugger Server (tvdsvr) command line

e

before attaching to poe. See “Using the Single-Process Server Launch Com-
mand” on page 66.

2 In the Root Window’s Unattached Page, find the poe process list, and
attach to it by diving into it. When necessary, TotalView launches
TotalView Debugger Servers. TotalView will also update the Root Window’s
Attached Page and open a Process Window for the poe process.

CLl: dattach poe pid

3 Locate the process you want to debug and dive on it. TotalView responds
by opening a Process Window for it.

If your source code files are not displayed in the Source Pane, you may not
have told TotalView where these files reside. You can fix this by invoking the
File > Search Path command to add directories to your search path.

Attaching from a Node Not Running poe

The procedure for attaching TotalView to poe from a hode not running poe
is essentially the same as the procedure for attaching from a node running
poe. Since you did not run TotalView from the node running poe (the star-
tup node), you won’t be able to see poe on the process list in your Root
Window’s Attached Page and you won’t be able to start it by diving into it.

The procedure for placing poe within this list is:

1 Connect TotalView to the startup node. For details, see “Setting Up and
Starting the TotalView Debugger Server” on page 61 and “Attaching to Processes”
on page 42.

2 Select the Root Window’s Unattached Page, and then invoke the
Window > Update command.

3 Look for the process named poe and continue as if attaching from a node
running poe.

CLl: dattach -r hostname poe poe-pid

Debugging LAM/MPI Applications

The following is a description of the LAM/MPI implementation of the MPI
standard. This is the first two paragraphs of Chapter 2 of he “LAM/MPI
User’s Guide, version 7.0. The URL for this document is: http://www.lam-
mpi.org/download/files/7.0-user.pdf.

LAM/MPI us a high-performance, freely available, open source implemen-
tation of the MPI standard that is researched, developed, and maintained
at the Open Systems Lab at Indiana University. LAM/MPI supports all of
the MPI-1 Standard and much of the MPI-2 standard. More information
about LAM/MPI, including all the source code and documentation, is
available from the main LAM/MPI web site. (http://www.lam-mpi.org).

-

Starting TotalView
on an RMS Job

Attaching to an
RMS Job

LAM/MPI is not only a library that implements the mandated MPI API, but
also the LAM run-time environment: a user-level, daemon-based run-time
environment that provides many of the services required by MPI pro-
grams. Both major components of the LAM/MPI package are designed as
component frameworks—extensible with small modules that are select-
able (and configurable) at run-time. ...

The way in which you debug a LAM/MPI program is similar to the way you
debug most MPI programs. Here’s the syntax if TotalView is in your path:

mpirun -tv mpirun args prog prog_args
As an alternative, you could invoke TotalView upon mpirun:
totalview mpirun -a prog prog_args

Pages 79-83 of the LAN/MPI User’s Guide discusses how you would use
TotalView to debug LAN/MPI programs.

Debugging QSW RMS Applications

TotalView supports automatic process acquisition on AlphaServer SC sys-
tems and 32-bit Red Hat Linux systems that use Quadrics’s RMS resource
management system with the QSW switch technology.

Message queue display is only supported if you are running version 1, patch 2 or later,
of AlphaServer SC.

To start a parallel job under TotalView’s control, use TotalView as though
you were debugging prun:

{ totalview | totalviewcli } prun —a prun-command-line

TotalView starts up and shows you the machine code for RMS prun. Since
you’re not usually interested in debugging this code, use the Process > Go
command to let the program run.

CLl: dfocus p dgo

The RMS prun command executes and starts all MPI processes. After
TotalView acquires them, it asks if you want to stop them at startup. If you
answer yes, TotalView halts them before they enter the main program. You
can then create breakpoints.

To attach to a running RMS job, attach to the RMS prun process that
started the job.

You attach to the prun processes the same way you attach to other pro-
cesses. For details on attaching to processes, see “Attaching to Processes” on
page 42.

o1
w
]
—+
)
>
«Q
c
©
0
Q
=
=
o

Starting TotalView
on a SGI MPI Job

Attaching to an
SGI MPI Job

After you attach to the RMS prun process, TotalView asks if you also wish
to attach to slave MPICH processes. If you do, press Return or choose Yes.
If you do not, select No.

If you choose Yes, TotalView starts the server processes and acquires all
MPICH processes.

As an alternative, you can use the Group > Attach Subsets command to
predefine what TotalView should do. For more information, see ‘Attaching to
Processes” on page 110.

Debugging SGI MPI Applications

TotalView can acquire processes started by SGI MPI, which is part of the
Message Passing Toolkit (MPT) 1.3 and 1.4 packages.

Message queue display is supported by release 1.3 and 1.4 of the Message
Passing Toolkit. See “Displaying the Message Queue Graph Window” on page 88
for message queue display.

SGI MPI programs are normally started by using the mpirun command. You
would use a similar command to start an MPI program under TotalView’s
control:

{ totalview | totalviewcli } mpirun —a mpirun-command-line

This invokes TotalView and tells it to show you the machine code for
mpirun. Since you’re not usually interested in debugging this code, use the
Process > Go command to let the program run.

CLl: dfocus p dgo

The SGI MPI mpirun command runs and starts all MPI processes. After
TotalView acquires them, it asks if you want to stop them at startup. If you
answer Yes, TotalView halts them before they enter the main program. You
can then create breakpoints.

If you set a verbosity level that allows informational messages, TotalView
also prints a message showing the name of the array and the value of the
array services handle (ash) to which it is attaching.

To attach to a running SGI MPI job, attach to the SGI MPI mpirun process
that started the job. The procedure for attaching to an mpirun process is
the same as the procedure for attaching to any other process. For details,
see “Attaching to Processes” on page 42.

After you attach to the mpirun process, TotalView asks if you also wish to
attach to slave MPICH processes. If you do, press Return or choose Yes. If
you do not, select No.

If you choose Yes, TotalView starts the server processes and acquires all
MPICH processes.

Attaching to a Sun
MPI Job

As an alternative, you can use the Group > Attach Subsets command to
predefine what TotalView should do. For more information, see ‘Attaching to
Processes” on page 110.

Debugging Sun MPI Applications

TotalView can debug a Sun MPI program and can display Sun MPI message
gueues. This section describes how to perform job startup and job attach.

1 Type the following command
totalview mprun [totalview_args] —a [mpi_args]
For example:
totalview mprun-g blue-a-np 4 /usr/bin/mpi/conn.x

CLl: totalviewcli mprun [totalview_args] —-a [mpi_args]
When the TotalView Process Window appears, select the Go button.
CLl: dfocus p dgo
TotalView may display a dialog box that says:
Process mprun is a parallel job. Do you want to stop

the job now?
2 If you had compiled using the —g option, clicking Yes tells TotalView to

open a Process Window showing your source. All processes will be halted.

This section describes how to attach to an already running mprun job.

1 Find the host name and process identifier (PID) of the mprun job by typing
mpps -b. For more information, refer to the mpps(1M) manuel page.

Here is sample output from this command:

JOBNAME MPRUN_PID MPRUN_HOST
cre.99 12345 hpc-u2-9
cre.100 12601 hpc-u2-8

2 After selecting File = New Program, type mprun in the Executable field
and type the PID in the Process ID field.

CLl: dattach mprun mprun-pid
For example:
dattach mprun 12601

3 If TotalView is running on a different node than the mprun job, enter the
host name in the Remote Host field.

CLl: dattach —r host-name mprun mprun-pid

o1
w
]
—+
)
>
«Q
c
©
0
Q
=
=
o

su Displaying the Message Queue Graph

Figure 66: Tools > Message
Queue Graph Window

Window

TotalView can graphically display your MPI program’s message queue state.
If you select the Process Window’s Tools > Message Queue Graph com-
mand, TotalView displays a window with a large empty area. After you select
the ranks to be monitored, the kind of messages, and message states,
TotalView updates this window to show the current queue state. Figure 66
shows a sample window.

F mdep Legiul) Serd) Receivs I lesspectas
L -Ij 20 s
: w
[| ¥ s |
L
Ly .
‘ .
I ']
;| | |
O [|-‘
£l
— LT 5
P COMM RORLD Rty L] i
. B3 pimy_C0a_ZELF
N EEN NSRS EEE A EEEERE R IR
||
L#
id 7

The numbers in the boxes indicate the MPI message tag number. Diving on
a box tells TotalView to open a Process Window for that process.

The numbers next to the arrows indicate the number of messages that
existed when TotalView created the graph. Diving on an arrow tells
TotalView that it should display its Tools > Message Queue Window, which
will have detailed information about the messages. A grey box indicates a
process to which TotalView is not attached.

The colors used to draw the lines and arrows have the following meaning:

m Green: sent messages
m Blue: receive messages
m Red: unexpected messages

This graph shows you the state of your program at a particular instant.
Selecting the Update button tells TotalView that it should update the dis-

play.

Message Queue
Display Overview

Sl

While you can use this window in many ways, here are some to consider:

m Pending messages often indicate that a process can’t keep up with the
amount of work it is expected to perform. These messages indicate
places where you may be able to improve your program’s efficiency.

m Unexpected messages can indicate that something is wrong with your
program because the receiving process doesn’t know how to process the
message. The red lines indicated unexpected messages.

m After a while, the shape of the graph tends to tell you something about
how your program is executing. If something doesn’t look right, you
might want to determine why it looks wrong.

m You can change the shape of the graph by dragging either nodes or the
arrows. This is often useful when you’re comparing sets of nodes and
their messages with one another. TotalView doesn’t remember the places
to which you have dragged the nodes and arrows. This means that if you
select the Display button after you arrange the graph, your changes are
lost.

Topics related to this one are:

m “Message Queue Display Overview” on page 89
m “Using Message Operations” on page 90
m “OpenMP Stack Parent Token Line” on page 97

Displaying the Message Queue

The Tools > Message Queue Dialog Box displays your MPI program’s mes-
sage queue state textually. This can be useful when you need to find out
why a deadlock occurred.

To use the message queue display feature, you must be using one of the
following versions of MPI:

m MPICH version 12.3 or later.

m HP Alpha MPI (DMPI) version 1.8, 1.9, and 1.96.

m HP HP-UX version 1.6 and 1.7.

m IBM MPI Parallel Environment (PE) version 3.1 or 3.2, but only programs
using the threaded IBM MPI libraries. MQD is not available with earlier re-
leases, or with the non-thread-safe version of the IBM MPI library. There-
fore, to use TotalView MQD with IBM MPI applications, you must use the
mpcc_r, mpxIf_r, or mpxIf90_r compilers to compile and link your code.

m For the SGI MPI TotalView message queue display, you must obtain the
Message Passing Toolkit (MPT) release 1.3 and 1.4. Check with SGI for
availability.

After an MPI process returns from the call to MPI_Init(), you can display the
internal state of the MPI library by selecting the Tools > Message Queue
command. The information is shown in Figure 67 on page 90.

This window displays the state of the process’s MPI communicators. If
user-visible communicators are implemented as two internal communica-

=

o1
w
]
—+
)
>
«Q
c
©
0
Q
=
=
o

Figure 67: Message Queue

Window

Using Message
Operations

| |

1%

Fin Esf i Window Hep |
Wiercape Sats - 11 -meratceaiprn i (I ..-.!
. Fspalved Length &80 |QrO0g00yog) E
i TEwian Conpluts
EIECE T (musmmtchbiphs 25
Tag 0 [ame)

Sintan Buflfer N1 00h Dl 0 Do B3 00RO S 00I0 {43 10058
Butfar Langth A0 | e DA (N 5N
Faceived Length &80 (OxDIFIEILE]]
Fendling aenils T

SFT_COMH_WIELD callactivs i
1

Comm_aine

LT T

Fenfing CECI1VED aonE

Trerspeacted massmges nons

Fending aends B

EFT_OIEH FLF

Crarm_mize

Ol T I

- LT TR R L L EivE

Tracpaciad s awjos AT

Fanzing menda fro T -
AFL_{0mH SELF dollsatiwe -
Lol _fazd i i

tor structures, TotalView displays both of them. One will be used for point-
to-point operations and the other for collective operations.

You cannot edit any of the fields in the Message Queue Window.

The contents of the Message Queue Window are only valid when a process
is stopped.

For each communicator, TotalView displays a list of pending receive opera-
tions, pending unexpected messages, and pending send operations. Each
operation has an index value displayed in brackets ([n]). The online Help for
this window contains a description of the fields that can be displayed.

Topics in this section are:

m “Diving on MPI Processes” on page 90
m “Diving on MPI Buffers” on page 91

m “Pending Receive Operations” on page 91

m “Unexpected Messages” on page 91

m “Pending Send Operations” on page 91

Diving on MPI Processes

To display more detail, you can dive into fields in the Message Queue Win-
dow. When you dive into a process field, TotalView does one of the follow-
ing:

m Raises its Process Window if it exists.

m Sets the focus to an existing Process Window on the requested process.

m If a Process Window doesn’t exist, TotalView creates a new one for the
process.

Figure 68: Message Queue
Window Showing Pending
Receive Operation

Diving on MPI Buffers

When you dive into the buffer fields, TotalView opens a Variable Window. It
also guesses what the correct format for the data should be based on the
buffer’s length and the data’s alignment. If TotalView guesses incorrectly,
you can edit the type field in the Variable Window.

TotalView doesn’t use the MPI data type to set the buffer type.

Pending Receive Operations
TotalView displays each pending receive operation in the Pending receives
list. Figure 68 shows an example of an MPICH pending receive operation.

s e = =y
= EummsAtA e 1] T
L U - LT T T Hili
EEEENEI dersape Sais - 1] “meeabchiiphe T TEEEEN

HFT THH_WINLD

oo

Operation index

One receive operation

Diving here displays a Process Window
Diving here displays a Variable Window

Q00

TotalView displays all receive operations maintained by the IBM MPI library. You
should set the environment variable MP_EUIDEVELOP to the value DEBUG if you
want blocking operations to be visible; otherwise, the library only maintains non-block-
ing operations. For more details on the MP_EUIDEVELOP environment variable, con-
sult the IBM Parallel Environment Operations and Use manual.

Unexpected Messages

The Unexpected messages portion of the Message Queue Window shows
information for retrieved and enqueued messages that are not yet matched
with a receive operation.

Some MPI libraries such as MPICH only retrieve already received messages
as a side effect of calls to functions such as MPI_Recv() or MPI_Iprobe(). (In
other words, while some versions of MPI may know about the message, the
message may not yet be in a queue.) This means that TotalView can’t list a
message until after the destination process makes a call that retrieves it.

Pending Send Operations
TotalView displays each pending send operation in the Pending sends list.

MPICH does not normally keep information about pending send opera-
tions. However, when you configure MPICH, you can tell it to maintain a list

=

o1
w
]
—+
)
>
«Q
c
©
0
Q
=
=
o

MPI Debugging
Troubleshooting

of them. Start your program under TotalView’s control and use mpirun —
ksq, or —-KeepSendQueue to see these messages.

Depending on the device for which MPICH was configured, blocking send
operations may or may not be visible. However, if TotalView doesn’t display
them, you can see that these operations occurred because the call is in the
stack backtrace.

If you attach to an MPI program that isn’t maintaining send queue informa-
tion, TotalView displays the following message:

Pending sends : no information available

If you can’t successfully start TotalView on MPI programs, check the follow-

ing:

m Can you successfully start MPICH programs without TotalView?

The MPICH code contains some useful scripts that let you verify that you
can start remote processes on all of the machines in your machines file.
(See tstmachines in mpich/util.)

m You won’t get a message queue display if you get the following warning:
The symbols and types in the MPICH library used by
TotalView to extract the message queues are not as
expected in the image <your image name>. This is probably
an MPICH version or configuration problem.

You need to check that you are using MPICH Version 1.1.0 or later and that
you have configured it with the -debug option. (You can check this by
looking in the config.status file at the root of the MPICH directory tree).

m Does the TotalView Debugger Server (tvdsvr) fail to start?
tvdsvr must be in your PATH when you log in. Remember that TotalView
uses rsh to start the server, and that this command doesn’t pass your cur-
rent environment to remotely started processes.

m Make sure you have the correct MPI version and have applied all required
patches. See the TotalView Release Notes for up-to-date information.

m Under some circumstances, MPICH kills TotalView with the SIGINT signal.
You can see this behavior when you use the Group > Delete command to
restart an MPICH job.

CLl: dfocus g ddelete

If TotalView exits and terminates abnormally with a Killed message, try set-
ting the TV::ignore_control_c variable to true.

Debugging OpenMP Applications

TotalView supports many OpenMP C and Fortran compilers. Supported
compilers and architectures are listed in the TotalView Platforms document
and on our Web site.

-

Debugging
OpenMP Programs

Here are some of the features that TotalView supports:

m Source-level debugging of the original OpenMP code.

m The ability to plant breakpoints throughout the OpenMP code, including
lines that are executed in parallel.

m Visibility of OpenMP worker threads.

m Access to SHARED and PRIVATE variables in OpenMP PARALLEL code.

m A stack-back link token in worker threads’ stacks so that you can find
their master stack.

m Access to OMP THREADPRIVATE data in code compiled by the IBM and
Guide, SGI IRIX, and HP Alpha compilers.

The code examples used in this section are included in the TotalView distri-
bution in the examples/omp_simplef file.

On the SGI IRIX platform, you must use the MIPSpro 7.3 compiler or later to debug
OpenMP.

Topics in this section are:

m “Debugging OpenMP Programs” on page 93

m “OpenMP Private and Shared Variables” on page 95

m “OpenMP THREADPRIVATE Common Blocks” on page 96
m “OpenMP Stack Parent Token Line” on page 97

Debugging OpenMP code is very similar to debugging multithreaded code,
differing only in that the OpenMP compiler makes the following special
code transformations:

m The most visible transformation is outlining. The compiler pulls the body
of a parallel region out of the original routine and places it into an out-
lined routine. In some cases, the compiler will generate multiple outlined
routines from a single parallel region. This allows multiple threads to exe-
cute the parallel region.

The outlined routine’s name is based on the original routine’s name.

m The compiler inserts calls to the OpenMP runtime library.

m The compiler splits variables between the original routine and the out-
lined routine. Normally, shared variables are maintained in the master
thread’s original routine, and private variables are maintained in the out-
lined routine.

m The master thread creates threads to share the workload. As the master
thread begins to execute a parallel region in the OpenMP code, it creates
the worker threads, dispatches them to the outlined routine, and then
calls the outlined routine itself.

TotalView OpenMP Features
TotalView makes these transformations visible in the debugging session.
Here are some things you should know:

m The compiler may generate multiple outlined routines from a single par-
allel region. This means that a single line of source code can generate
multiple blocks of machine code inside different functions.

=

o1
w
]
—+
)
>
«Q
c
©
0
Q
=
=
o

Debugging OpenMP Applications

Figure 69: Sample OpenMP
Debugging Session

W‘

m You can’t single step into or out of a parallel region. Instead, set a break-
point inside the parallel region and allow the process to run to it. Once

inside a parallel region, you can single step within it.

m OpenMP programs are multithreaded programs, so the rules for debug-
ging multithreaded programs apply.

Figure 69 shows a sample OpenMP debugging session.

eag_wimpledlphs o Ugeesds)
in cospubs i 2E -\::-I:ul:lJ::
in compubs pa 2 cosguts pa
iR pomprine i, < 2E G oegute_pi
(ST TLE T TAE e pmaitd_pa

in rem tacead rurpemd
in __ kwtTreraferisgisters
in __ hstTransferfspisaters

o OO0

—"“FH."‘“H.....

w
Terend 17 [7) (¥ opge]

s Lymelip 19eq

e

el campabe po (bBhoesd 1.1)
7 I:Itlillurni::pll'.ttr.h- FR=140567]

FE=1&15TTLE
=115 el

n
251 [DwlaE L
AeguLosacs faur tha Frass
VO BuldEel (GIEHTLIE0E)
T0: G008 (1
T1 OuOOS0E (B

L o] MEHH LR . 2al o b w4l ‘f

Furchion comgute_pr_Ii_conguin_pi in owp_segie |

o s

..!?

1
I:EI'EIT‘ PRAAELLTL

¥ yans

| IE

OpenMP master thread

Manager threads
(don’t touch)
Slave Thread Window

[0 cEoMF FARMLLEL
5 wpid = sy gat Uesel piwil
2F OEONF MO FAFALLET
z

call oy et _rs Eieads (4)
call cmg sk Gymamaic | Falaw |

[l EHERED v}

CRONPS REDUCTIOM = Sim)
da 1wl m
xeswd (i - DAd}
sum = wEm + TIx]
Lf (L #q. BADD chen

call cr

1L sad af
eatda

@O “Original” routine name

OpenMP worker threads @ Stack parent token (select or
dlve to view master)

©@ “Outlined” routine name

OpenMP Platform Differences

The following list contains information on platform differences:

m On HP Alpha Tru64 UNIX and on the Guide compilers, the OpenMP
threads are implemented by the compiler as pthreads, and on SGI IRIX as
sprocs. TotalView shows the threads’ logical and/or system thread ID, not

the OpenMP thread number.

m The OpenMP master thread has logical thread ID number 1. The OpenMP

worker threads have a logical thread ID number greater than 1.

Chapter 5: Setting Up Parallel Debugging

m In HP Alpha Tru64 UNIX, the system manager threads have a negative
thread ID; as they do not take part in your OpenMP program, you should
never manipulate them.

m SGI OpenMP uses the SIGTERM signal to terminate threads. Because
TotalView stops a process when the process receives a SIGTERM, the
OpenMP process doesn’t terminate. If you want the OpenMP process to
terminate instead of stop, set the default action for the SIGTERM signal
to Resend.

m When you stop the OpenMP master thread in a PARALLEL DO outlined
routine, the stack backtrace shows the following call sequence:
> The outlined routine called from.
> The OpenMP runtime library called from.
> The original routine (containing the parallel region).

m When you stop the OpenMP worker threads in a PARALLEL DO outlined
routine, the stack backtrace shows the following call sequence:
> Outlined routine called from the special stack parent token line.
> The OpenMP runtime library called from.

m Select or dive on the stack parent token line to view the original routine’s
stack frame in the OpenMP master thread.

o1
w
]
—+
)
>
«Q
c
©
0
Q
=
=
o

OpenMP Private TotalView allows you to view both OpenMP private and shared variables.
and Shared The compiler maintains OpenMP private variables in the outlined routine,
Variables and treats them like local variables. See “Displaying Local Variables and Regis-

ters” on page 232. In contrast, the compiler maintains OpenMP shared vari-
ables in the master thread’s original routine stack frame. However, Guide
compilers pass shared variables to the outlined routine as parameter refer-
ences.

TotalView lets you display shared variables through a Process Window
focused on the OpenMP master thread or through one of the OpenMP
worker threads, as follows:

1 Select the outlined routine in the Stack Trace Pane; or select the original
routine stack frame in the OpenMP master thread.

2 Dive on the variable name, or select the View > Lookup Variable com-
mand. When prompted, enter the variable name.

CLl: dprint
You will need to set your focus to the OpenMP master thread
first.

TotalView will open a Variable Window displaying the value of the OpenMP
shared variable, as shown in Figure 70 on page 96.

Shared variables are stored on the OpenMP master thread’s stack. When
displaying shared variables in OpenMP worker threads, TotalView uses the
stack context of the OpenMP master thread to find the shared variable.
TotalView uses the OpenMP master thread’s context when displaying the
shared variable in a Variable Window.

=

Figure 70: OpenMP Shared
Variable

OpenMP
THREADPRIVATE
Common Blocks

FII Edr Vies Tapls ‘Windaw

I|_ rh '.|"'1l doubilin F‘nll_ @
Fnles LE, PEUHARTIES | /
) — g rurpinkigha 1]
Fie Effi Wiew Geuip Process Thresd Aciaon Peeri Teols !t/rdul Halp
coocppcantd | o] | M st 01| P) o stag] | o o1 T
i e %“Eﬂ ' 'Ef&ﬂﬂ

5|:-|.|:h. Traze I Frn“
il
tomgile_ga wead L "I
1} :Pl: Lciawt l:Iri'.ll.l. FI' 14100 2
_ﬁrhillwh..l\:\-ﬂ-r F#=1410C '\l.1|I . 1
Chalfl petet, FE=141003s0 ThE { MhaNMEET A |

o B =

| Faqasbern fer Ehn trems

VT () A ([BIRET TR
0 DwbOBOG0L (1)

o Ihmil |:'i"5|:;|

Ml

@ OpenMP shared variables have master thread’s context
Original routine’s stack frame selected
© Stack Frame Pane includes shared variables

You can also view OpenMP shared variables in the Stack Frame Pane by
selecting the original routine stack frame in the OpenMP master thread, or
by selecting the stack parent token line in the Stack Trace Pane of OpenMP
worker threads, as shown in Figure 70.

The HP Alpha Tru64 UNIX OpenMP and SGI IRIX compilers implement
OpenMP THREADPRIVATE common blocks by using the thread local storage
system facility. This facility stores a variable declared in OpenMP
THREADPRIVATE common blocks at different memory locations in each
thread in an OpenMP process. This allows the variable to have different val-
ues in each thread. In contrast, the IBM and Guide compilers use the
pthread key facility.

On SGI, the THREADPRIVATE variables are mapped to the same virtual
address. However, they have different physical addresses.

Here’s how you can view a variable in an OpenMP THREADPRIVATE com-
mon block, or the OpenMP THREADPRIVATE common block itself:

1 In the Threads Pane of the Process Window, select the thread containing
the private copy of the variable or common block you would like to view.

2 In the Stack Trace Pane of the Process Window, select the stack frame that
will allow you to access the OpenMP THREADPRIVATE common block vari-
able. You can select either the outlined routine or the original routine for
an OpenMP master thread. You must, however, select the outlined routine
for an OpenMP worker thread.

Figure 71: OpenMP
THREADPRIVATE Common
Block Variables

OpenMP Stack
Parent Token Line

1%

3 From the Process Window, dive on the variable name or common block
name. Or select the View > Lookup Variable command. When prompted,
enter the name of the variable or common block. You may need to
append an underscore (_) after the common block name.

CLl: dprint

TotalView opens a Variable Window displaying the value of the variable or
common block for the selected thread.

See “Displaying Variables” on page 230 for more information on displaying
variables.

4 To view OpenMP THREADPRIVATE common blocks or variables across all
threads, you can use the Variable Window’s View > Laminate Threads
command. See “Displaying a Variable in All Processes or Threads” on page 270.

Figure 71 shows Variable Windows displaying OpenMP THREADPRIVATE
common blocks. Because the Variable Window has the same thread context
as the Process Window from which it was created, the title bar patterns for
the same thread match. In the laminated views, the values of the common
block across all threads are displayed.

B BTN TS WL B 15l
£ F i) ol =i 0,814
M epl rmal i 5 189S £

= 1 a ke by . - -
Fin B3 Wims Taclhh ‘Wirsos Halp

| orm- sy Fo_eowpne_pant_tened - 11 JIIIIIIN -0

| Tpe Tulr
Thremd 1 1
] roal " B, TO0FES A TS 25— L5
1 Fomp rmal®d (LG E]
Sl rmal®d =L 1M1
gad 1.0
= Feal =k 6, NS TS PO R 26— L5d
1. Foimg rmal®d b.&la
zmpd raal®d =54 109 Fe+11
ead 1 Exs na mebching cmll frmsg
eod 1.4 |

L b L TR e

TotalView inserts a special stack parent token line in the Stack Trace Pane
of OpenMP worker threads when they are stopped in an outlined routine.

When you select or dive on the stack parent token line, the Process Window
switches to the OpenMP master thread, allowing you to see the stack con-
text of the OpenMP worker thread’s routine. (See Figure 72 on page 98.)

This context includes the OpenMP shared variables.

o1
w
]
—+
)
>
«Q
c
©
0
Q
=
=8
o

Figure 72: OpenMP Stack F=] computa_gi 37,

| Eompeibe pi, EPe3A0500
Parent Token Line e

T 1.1 |
g Eloipets InTess, FP=1405FT11)
TaesELavedriver, FR=1415£7719

thiBiase P eld4iGETad |

=

Debugging Global Arrays Applications

Here’s the description contained on the Global Arrays home page (http://
www.emsl.pnl.gov:2080/docs/global/ga.html):

The Global Arrays (GA) toolkit provides a shared memory style program-
ming environment in the context of distributed array data structures
(called “global arrays”). From the user perspective, a global array can be
used as if it was stored in shared memory. All details of the data distribu-
tion, addressing, and data access are encapsulated in the global array
objects. Information about the actual data distribution and locality can
be easily obtained and taken advantage of whenever data locality is
important. The primary target architectures for which GA was developed
are massively-parallel distributed-memory and scalable shared-memory
systems.

GA divides logically shared data structures into “local” and “remote” por-
tions. It recognizes variable data transfer costs required to access the
data depending on the proximity attributes. A local portion of the shared
memory is assumed to be faster to access and the remainder (remote por-
tion) is considered slower to access. These differences do not hinder the
ease-of-use since the library provides uniform access mechanisms for all
the shared data regardless where the referenced data is located. In addi-
tion, any processes can access a local portion of the shared data directly/
in-place like any other data in process local memory. Access to other por-
tions of the shared data must be done through the GA library calls.

GA was designed to complement rather than substitute for the message-
passing model, and it allows the user to combine shared-memory and
message-passing styles of programming in the same program. GA inherits
an execution environment from a message-passing library (w.r.t. pro-
cesses, file descriptors etc.) that started the parallel program.

TotalView supports Global Arrays on the Intel IA-64 platform. The way in
which you debug a Global Arrays program is basically identical to the way
you would debug any other multiprocess program. The one difference is
that you will use the Tools > Global Arrays command to display information
about your global data.

Here are some of the unique activities you can perform:

m Display a list of a program's global arrays.

m Dive from this list of global variables to see the contents of a global array
in either C or Fortran format.

Figure 73: Question Window for
Global Arrays Program

Figure 74: Tools > Global
Arrays Window

m Cast the data so that TotalView will interpret data as a global array han-
dle. This means that TotalView will display the information as a global ar-
ray. Specifically, casting to <GA=> forces the Fortran interpretation; cast-
ing to <ga> forces the C interpretation; and casting to <Ga> tells
TotalView to use the language within the current context.

Within a Variable Window, the commands that operate upon a local array
such as slicing, filtering, obtaining statistics, and visualization also operate
upon global arrays.

The command you would use to start TotalView depends upon your operat-
ing system. For example, here’s an example of starting TotalView upon a
program that would normally be invoked using prun and which would use
three processes:

totalview prun -a -N 3 boltz.x

Before your program starts parallel execution, TotalView asks if you want to
stop the job.

S wem |

Fistmih BORE a6 & pidialls @b
' [0 404 WEIE [0 B (T jo0 now?

b L] | Re

Select Yes if you want to set breakpoints or inspect the program before it
begins execution.

After your program hits a breakpoint, use the Tools > Global Arrays com-
mand to begin inspecting your program’s global arrays. Figure 74 shows
the window that TotalView displays.

CLl: dga

I ¥ies . Windew
= 2 s i Ea A =]

Lh maak [

Meredis -14¢

] T

0 Eype cdyuble | (1291 ET|

Feorbrnm Typs daohis = £ H1- -8 18, 134
o L E

Hirwl1s M5

rido = ™

0 type doohle:[128] [129] [§]

Featomn Tapes dochibe poscisions (6 1T

nmnk

Eredls WIE

T -

G Lype | LEF | LE9]

Fectrem Typa inkege 13, 129

o1
w
]
—+
)
>
«Q
c
©
0
Q
=
=8
o

Debugging Global Arrays Applications

Figure 75:; Fortran and C
Variable Windows

Figure 76: A Fortran Cast

100

The arrays named in this window are displayed using their C and Fortran
type names. Diving on the line containing the type definition tells TotalView
to display Variable Windows containing information about that array. (See
Figure 75.)

LR

Pihs A rertagaes 110, B2
ElLis Ciank

Filtes

Hap
Les| Typs: dgad
fom e douk L s [129] 112
e IO

Filres

-
]
=
-
-]

TS ocoooDE=

After TotalView displays this information, you can use other standard com-
mand and operations upon the array. For example, you can use the slice
and filter operations and the commands that visualize, obtain statistics,
and show the nodes from which the data was obtained.

If you inadvertently dive on a global array variable from the Process Win-
dow, TotalView will not know that it is a component of a global array. If you
do this, you can cast the variable into a global array using either <ga=> for
a C language cast or <GA=> for a Fortran cast. Figure 76 shows a Variable
Window before and after the data was cast.

Chapter 5: Setting Up Parallel Debugging

Debugging PVM (Parallel Virtual Machine)
and DPVM Applications

You can debug applications that use the Parallel Virtual Machine (PVM)
library or the HP Alpha Tru64 UNIX Parallel Virtual Machine (DPVM) library
with TotalView on some platforms. TotalView supports ORNL PVM Version
3.4.4 on all platforms and DPVM Version 1.9 or later on the HP Alpha plat-
form.

o1
w
]
—+
)
>
«Q
c
©
0
Q
=
=
o

See the TotalView Platforms document for the most up-to-date information regarding
your PVYM or DPVM software.

(-

For tips on debugging parallel applications, see “Parallel Debugging Tips” on
page 110.

Topics in this section are:

“Supporting Multiple Sessions” on page 101

“Setting Up ORNL PVM Debugging” on page 101

“Starting an ORNL PVM Session” on page 102

“Starting a DPVM Session” on page 103

‘Automatically Acquiring PYM/DPVM Processes” on page 103
“Attaching to PYM/DPVM Tasks” on page 104

Supporting Multi- When you debug a PYM or DPVM application, TotalView becomes a PYM
ple Sessions tasker. This lets it establish a debugging context for your session. You can
run:

m One TotalView PVM or DPVM debugging session for a user and for an ar-
chitecture; that is, different users can’t interfere with each other on the
same machine or same machine architecture.

One user can start TotalView to debug the same PVM or DPVM application
on different machine architectures. However, a single user can’t have mul-
tiple instances of TotalView debugging the same PVM or DPVM session on
a single machine architecture.

For example, suppose you start a PVYM session on Sun 5 and HP Alpha
machines. You must start two TotalView sessions: one on the Sun 5
machine to debug the Sun 5 portion of the PVM session, and one on the
HP Alpha machine to debug the HP Alpha portion of the PVM session.
These two TotalView sessions are separate and don’t interfere with one
another.

m Similarly, in one TotalView session, you can run either a PVYM application
or a DPVM application, but not both. However, if you run TotalView on a
HP Alpha, you can have two TotalView sessions: one debugging PYM and
one debugging DPVM.

Setting Up ORNL To enable PVM, create a symbolic link from the PVM bin directory (which is

PVM Debugging $HOME/pvm3/bin/$PVM_ARCH/tvdsvr) to the TotalView Debugger Server
(tvdsvr). With this link in place, TotalView invokes pvm_spawn() to spawn
the tvdsvr tasks.

o

Starting an ORNL
PVM Session

U1

For example, if tvdsvr is installed in the /opt/totalview/bin directory, enter
the following command:

In -s /opt/totalview/bin/tvdsvr \
$HOME/pvm3/bin/$PVM_ARCH/tvdsvr

If the symbolic link doesn’t exist, TotalView can’t spawn tvdsvr. When
TotalView can’t spawn tvdsvr, it displays the following error:

Error spawning TotalView Debugger Server: No such file

Start the ORNL PVM daemon process before you start TotalView. See the
ORNL PVM documentation for information about the PVYM daemon process
and console program. The following steps outline this procedure.

1 Use the pvm command to start a PVM console session—this command
starts the PVYM daemon. If PYM isn’t running when you start TotalView
(with PVM support enabled), TotalView exits with the following message:

Fatal error: Error enrolling as PVM task:
pvm error

2 If your application uses groups, start the pvmgs process before starting
TotalView. PVYM groups are unrelated to TotalView process groups. For
information about TotalView process groups, refer to “Examining Groups”
on page 180.

3 You can use the —-pvm command-line option to the totalview command.
As an alternative, you can set the TV::pvm variable in a startup file. The
command-line options override the a CLI variable. For more information,
refer to “TotalView Command Syntax” in the TotalView Reference Guide.

4 Set the TotalView directory search path to include the PVM directories.
This directory list must include those needed to find both executable and
source files. The directories you use will vary, but should always contain
the current directory and your home directory.

You can set the directory search path by setting the TV::search_path vari-
able or you can use the File > Search Directory command. Refer to “Setting
Search Paths” on page 50 for more information.

For example, to debug the PVM examples, you can place the following
directories in your search path:

$HOME

$PVM_ROOT/xep
$PVM_ROOT/xep/$PVM_ARCH
$PVM_ROOT/src
$PVM_ROOT/src/$PVM_ARCH
$PVM_ROOT/bin/$PVM_ARCH
$PVM_ROOT/examples
$PVM_ROOT/examples/$PVM_ARCH
$PVM_ROOT/gexamples
$PVM_ROOT/gexamples/$PVM_ARCH

5 Verify that the action taken by TotalView for the SIGTERM signal is appro-
priate. (You can examine the current action by using the Process Win-
dow’s File > Signals command. Refer to “Handling Signals” on page 48 for
more information.)

Starting a DPVM
Session

Automatically
Acquiring PVM/
DPVM Processes

==

PVM uses the SIGTERM signal to terminate processes. Because TotalView
stops a process when the process receives a SIGTERM, the process is not
terminated. If you want the PVM process to terminate, set the action for
the SIGTERM signal to Resend.

Continue with “Automatically Acquiring PYM/DPVM Processes” on page 103.

Starting a DPVM debugging session is similar to starting any other
TotalView debugging session. The only additional requirement is that you
must start the DPVM daemon before you start TotalView. See the DPVM
documentation for information about the DPVYM daemon and its console
program.

1 Use the dpvm command to start a DPVM console session; starting the
session also starts the DPVYM daemon. If DPVM isn’t running when you
start TotalView (with DPVM support enabled), TotalView displays the fol-
lowing error message before it exits:

Fatal error: Error enrolling as DPVM task: dpvm error

2 You can enable DPVM support in two ways. The first uses the TV::dvpm CLI
variable. As an alternative, you can add the -dpvm command-line option
to the totalview command. This option enables DPVM support.

The command-line options override the TvV:dpvm command variable. For
more information on the totalview command, refer to “TotalView Command
Syntax” in the TotalView Reference Guide.

3 Verify that the default action taken by TotalView for the SIGTERM signal is
appropriate. You can examine the default actions with the Process Win-
dow’s File > Signals command in TotalView. Refer to “Handling Signals” on
page 48 for more information.

DPVM uses the SIGTERM signal to terminate processes. Because
TotalView stops a process when the process receives a SIGTERM, the pro-
cess is not terminated. If you want the DPVM process to terminate, set
the action for the SIGTERM signal to Resend.

If you enable PVM support using the TV::pvm variable and you need to use
DPVM, you must use both —-no_pvm and -dpvm command-line options
when you start TotalView. Similarly, when enabling DPVM support us the
TV::dpvm variable, you can must use the —-no_dpvm and —-pvm command-
line options.

You cannot use CLI variables to start both PYM and DPVM.

This section describes how TotalView automatically acquires PVM and
DPVM processes in a PYM or DPVM debugging session. Specifically,
TotalView uses the PVM tasker to intercept pvm_spawn() calls.

When you start TotalView as part of a PYM or DPVM debugging session, it
takes the following actions:

m TotalView makes sure that no other PVM or DPVM taskers are running. If
TotalView finds a tasker on a host that it is debugging, it displays the fol-
lowing message and then exits:

Frey

o1
w
]
—+
)
>
«Q
c
©
0
Q
=
=
o

Attaching to PVM/
DPVM Tasks

Fatal error: A PVM tasker is already running
on host ~“host®
m TotalView finds all the hosts in the PVM or DPVM configuration. Using the

pvm_spawn() call, TotalView starts a TotalView Debugger Server (tvdsvr)
on each remote host that has the same architecture type as the host
TotalView is running on. It tells you it has started a debugger server by
displaying:

Spawning TotalView Debugger Server onto PVM

host “host"

If you add a host with a compatible machine architecture to your PVYM or
DPVM debugging session after you start TotalView, TotalView automatically
starts a debugger server on that host.

After all debugger servers are running, TotalView will intercept every PVM or
DPVM task created with the pvm_spawn() call on hosts that are part of the

debugging session. If a PYM or DPVM task is created on a host with a differ-
ent machine architecture, TotalView ignores that task.

When TotalView receives a PVYM or DPVM tasker event, it takes the following
actions:

1 TotalView reads the symbol table of the spawned executable.

2 If a saved breakpoint file for the executable exists and you have enabled
automatic loading of breakpoints, TotalView loads breakpoints for the
process.

3 TotalView asks if you want to stop the process before it enters the main()
routine.

If you answer Yes, TotalView stops the process before it enters main() (that
is, before it executes any user code). This allows you to set breakpoints in
the spawned process before any user code executes. On most machines,
TotalView stops a process in the start() routine of the crt0.0 module if itis
statically linked. If the process is dynamically linked, TotalView stops it
just after it finishes running the dynamic linker. Because the Process Win-
dow displays assembler instructions, you will need to use the View >
Lookup Function command to display the source code for the main() rou-
tine.

CLl: dlist function-name

For more information on this command, refer to “Finding the Source Code for
Functions” on page 173.

You can attach to a PVM or DPVM task if the task meets the following crite-
ria:

m The machine architecture on which the task is running is the same as the
machine architecture on which TotalView is running.

m The task must be created. (This is indicated when flag 4 is set in the PVYM
Tasks and Configuration Window.)

m The task must not be a PVM tasker. If flag 400 is clear in the PVM Tasks
and Configuration Window, the process is a tasker.

fATh

Figure 77: PVM Tasks and
Configuration Window

m The executable name must be known. If the executable name is listed as
a dash (-), TotalView cannot determine the name of the executable. (This
can occur if a task was not created with the pvm_spawn() call.)

To attach to a PYM or DPVM task, complete the following steps:

1 Select Tools > PVM Tasks command from TotalView’s Root Window,
The PVM Tasks is displayed, as shown in Figure 77. This window displays
current information about PVM tasks and hosts—TotalView automatically
updates this information as it receives events from PVM.

Fim Mo EdE Window Halp |
L FYM Taskh And Copfguration| E
BOST TID FTID PID FLAD EXECITTAE=
(5 1) 40noa [11660 q0 - il
remp AD0OD3 0 BRIE0 4 -

(4 et T 4000x 4000% 178 4 mtil=
Bllassra 200032 4000% [+ 4] & m¥ils
nlhacars 20001 40003 2602 £ mtile

[BOST IFTTD ARCH SPEED
6’_ slhacmre S0000 SmLsaLT 1000
raap 40000 RIR4EE 1O
|
_! al il -
@ Task ID (TID) O Hosts
A Parent TID ® DaemonTID
© UNIX Process ID (PID) ©@ Machine Architecture
O Tasks

Since PVM doesn’t always generate an event that allows TotalView to
update this window, you should use the Windows > Update command to
ensure that you are seeing the most current information.

For example, you can attach to the tasks named xep and mtile in Figure 77
because flag 4 is set. In contrast, you can’t attach to the tvdsvr and -
(dash) executables because flag 400 is set.

2 Dive on a task entry that meets the criteria for attaching to tasks.
TotalView attaches to the task.

3 If the task to which you attached has related tasks that can be debugged,
TotalView asks if you want to attach to these related tasks. If you answer
Yes, TotalView attaches to them. If you answer No, it only attaches to the
task you dove on.

After attaching to a task, TotalView looks for attached tasks that are related
to this task; if there are related tasks, TotalView places them in the same
control group. If TotalView is already attached to a task you dove on, it sim-
ply opens and raises the Process Window for the task.

=

o1
w
]
—+
)
>
«Q
c
©
0
Q
=
=8
o

Reserved Message Tags

TotalView uses PVYM message tags in the range OXDEBO through OxDEBF to
communicate with PVM daemons and the TotalView Debugger Server. Avoid
sending messages that use these reserved tags.

Cleanup of Processes

The pvmgs process registers its task ID in the PVM database. If the pvmgs
process is terminated, the pvm_joingroup() routine hangs because PVYM
won’t clean up the database. If this happens, you must terminate and then
restart the PVM daemon.

TotalView attempts to clean up the TotalView Debugger Server daemons

(tvdsvr), that also act as taskers. If some of these processes do not termi-
nate, you must manually terminate them.

Debugging Shared Memory (SHMEM)
Code

TotalView supports the SGI IRIX logically shared, distributed memory
access (SHMEM) library.

To debug a SHMEM program, follow these steps:

1 Link it with the dbfork library. See “Linking with the dbfork Library” in the
“Compilers and Platforms” chapter of the TotalView Reference Guide.

2 Start TotalView on your program. See Chapter 3, “Setting Up a Debugging
Session,” on page 35.

3 Set at least one breakpoint after the call to the start_pes() SHMEM rou-
tine. (This is illustrated in Figure 78 on page 107.)

You cannot single-step over the call to start_pes().

The call to start_pes() creates new worker processes that return from the
start_pes() call and execute the remainder of your program. The original

process never returns from start_pes(), but instead stays in that routine,
waiting for the worker processes it created to terminate.

Debugging UPC Programs

TotalView lets you debug UPC programs that were compiled using the HP
Compag Alpha UPC 2.0 and the Intrepid (SGI gcc UPC) compilers. This sec-
tion only discusses UPC-specific features of TotalView. It not an introduc-
tion to the UPC language. If you’re looking for an introduction, you’ll find
information at http://www.gwu.edu/~upc.

Figure 78: SHMEM Sample
Session

tat_shussZ |
i wed i

o
wn
(9]
-+
1.1 =
w I 17555414, 5l Lok _shewemi I {in MACM) S
g.1 {135E5414) B in HAIH Q
L= | S1AMBINN G 0] txt shmesmZ. 2 an WALH ;
(2 1 (1ML B in FATH_ C
B L'\.J IHEEET 0] Lot _shwems 3 (in WALM_ o]
(13860} 51 bt _shwesl. 4 gan BAIH_;
Thwas &1 (1747) (41 Bemakpard 1] >
o Edack Fimri =
FF=ETERIBEN, [4 |[Function -HAIR_- i =2
TS TPsESFESfmarill He argmmasics 1 (-F
wkmre FRrapsPESnalll Lezml warisklaw i —_—
= I o [EMATHEEN
3tm 1. bidPs-31
NDEK 187541 -
Comwen. hiccky
- ¥ i
Heegasbess Fec tha Troms
Al o, nessaenann @ ¥
F il i WA ifi 151 _shmimal 190 A
i ErNFAE HEIIGCILIN [41
B AEAL YALUTE, SOR i
| QOMMDH 1) YRLULS
i NN, WEFF
5 GELL WTRRT PRSI
O— & WELATS = BT FEC)
CRLL SYMER BRFATEN AL | Sypchronizs mll FE»
I oM =20
9 Db L = LT WOH_FES (1 -
i CALL SENEE MFAL GET(WORL. VALLES. 1 11 Ot rett walos
1 SIH = 5IH + WOEF Som 1%
13 EMED
] PRINT>. "BE ‘. WY _PE[)." [OWFUTED =, 5EH
= GRLE SINCE BEFRIFD AT
15 1) |

When debugging UPC code, TotalView requires help from a UPC assistant library that

i your compiler vendor provides. You may need to include the location of this library in
your LD_LIBRARY_PATH variable. Etnus also provides assistants that you can use.
You can find these assistants at http://www.etnus.com/Products/TotalView/developers/
index.html

Topics in this section are:

m “Invoking TotalView”
m “Viewing Shared Objects” on page 108
m “Pointer to Shared” on page 109

Invoking Here’s how to invoke TotalView upon UPC programs:

TotalView m When running on an SGI system using the gcc UPC compiler, invoke
TotalView upon your UPC program in the same way as you would invoke
it on most other programs. For example:

totalview prog_upc -a args_to_ foo_upc
m When running on HP Compag SC machines, debug your UPC code in the
same way that you would debug other kinds of parallel code. For exam-
ple:
totalview prun -a -n node _count prog upc \
args_to_p rog_upc

Viewing Shared
Objects

Figure 79: A Sliced UPC Array

R e

Totalview displays UPC shared objects, and will fetch data from the UPC
thread with which it has an affinity. For example, TotalView always fetches
shared scalar variables from thread 0.

The upper-left figure in Figure 79 displays elements of a large shared array.
You can manipulate an examine shared arrays the same as any other array.
For example, you can slice, filter, obtain statistical information on, and so
forth. (For more information on displaying array data, see Chapter 13,
“Examining Arrays,” on page 259) The bottom-right illustration shows a 10-
element slice of this array.

=

Fin Edf Yies Taols Window Hap |
gt comanatie w1 - 21 e]
.l. = :;I.. .:.t .m Lrl' ILmT: LF—I—F.]
Shanasd Eddress TO FH Dx103d4810 -l=
Aliae: Belfe] Wl

Filese

Vulos

. 1t s

Tapit
= mantel_pc emandelbid sl - 2 !
tat SndMOLDNE) Type. aink shared] S) | 2OG)EtEO) i
Samrad Rddrmss: T Al O=l0514F10
Alice [EOR ¥
Filrse

Wirsp

Tales

D BEIRIIDN (1013

(™ |

In this illustration, TotalView displays the value of a pointer-to-shared vari-
able whose target is the array in the Shared Address area. As usual, the
address within the process is shown in the top left of the display.

As the array is shared, it has an additional property: the element’s affinity.
You can display this information if you select the Variable Window’s View >
Node Display command. This command tells TotalView to add a column
that indicates the node associated with the value. This is shown in the
Figure 80 on page 109.

You can also use the Tools > Visualize Distribution command to visualize
this array. For more information on visualization, see “Visualizing Array Data”
on page 130.

Debugging UPC Programs

Figure 80: UPC Variable

Window Showing Nodes o1

wn

P D

Binred Eddresan: T p=3

aliae: Lelie] =,

Filuac -}

Crelax Hode Wslis Q@

; C

(oo 0 DwbDODOND (0} o
of 1 0 CoBOEOs {0}

Loy g o L DIEINE] {0 O

e N N=DMEHNam () Q

(0] 4 0 DepD0OOMND (0} o

_n| 5 1 (wBEDOSN (i) Q

[S 1 Lz DL IE] {0 -

FALATI 1 Mo 9 ‘ E

Figure 81: Laminated UPC
Variable Window

20

i L]
T8
e 1

184
136
104
ik =
1]
0o

Pointer to Shared TotalView understands pointer-to-shared data and displays the compo-
nents of the data, as well as the target of the pointer to shared. For exam-
ple, Figure 82 shows what is displayed:

Figure 82: Pointer to a Shared
Variable

Fin Eib ims Taos windes

Hap |
- ?:W

Walud: THIFLIBxIMILETE -5 (eI00JME (T

TotalView Users Guide: version 6.3 109

Figure 83: UPC Laminated
Variable

Attaching to Pro-
cesses

)

Because the Type field shows the full type name, TotalView is telling you
that this is a pointer to a shared int with a block size of 5.

In this figure, TotalView also displays the upc_threadof ("T0"), the
upc_phaseof ("P1"), and the upc_addrfield (0x0x1001df30) components of
this variable.

In the same way that TotalView normally shows the target of a pointer vari-
able, it also shows the target of a UPC pointer variable. TotalView will fetch
the target of the pointer from the UPC thread with which the pointer has
affinity.

You can update the pointer by selecting the pointer value and editing the

thread, phase, or address values. If the phase is corrupt, you’ll see some-
thing like the following in the Value field:

Value: TO;P6;0x3ffc0003b00 <Bad phase [max 4]> ->
0xc0003c80 (-1073726336)

In this example, the pointer is invalid because the phase is outside the
legal range. TotalView displays a similar message if the thread is invalid.

Since the pointer itself is not shared, you can use the Tools > Laminate
command to display the value from each of the UPC threads.

Fin Edt Hiew

FLotead Walus

mandsl varc -1 Nan no matching ewll

sanidel_uprmandel_upor 0 TOFPL MR e n-1 - 3
aandel_upi-mendel i, 1 1|J.I‘|..|:l.l|:lm'.|m'| BOED) [0 0}
monéwl wprimsndel uper & TR ;O (i A0 [l III }
sandal upcomsndsl wmcr 3 THEPL;IR]IMAR]e - U=3EE1000

Parallel Debugging Tips

This section contains some information that you may find useful when
debugging parallel programs. The topics in this section are:

m ‘Attaching to Processes” on page 110

m “General Parallel Debugging Tips” on page 113
m “MPICH Debugging Tips” on page 115

m “IBM PE Debugging Tips” on page 115

In a typical multiprocess job, you’re interested in what’s occurring in some
of your processes and not as much interested in others. By default,
TotalView tries to attach to all the processes that you program starts. If
there are a lot of processes, there may be considerable overhead involved
in opening and communicating with the jobs.

You can minimize this overhead by using the Group > Attach Subsets com-
SML mand, which displays the dialog box shown in Figure 84.

Figure 84: Group > Attach
Subset Dialog Box

o1
w
]
—+
)
>
«Q
c
©
0
Q
=
=
o

Al ke
o ; =

Fillmin

Cermsnicaiar S

Taking 1o Fank

e Trem. I 3mnil B fou . I
vy b Fasks: Tarki

(=18 Canrel Hep

By selecting the boxes at the left side of the list, you tell TotalView which
processes it should attach to. So, while your program will launch all of
these processes, TotalView will only attach to the processes that you have
selected here.

The four controls underneath the All and the None buttons let you limit
what TotalView automatically attaches to.

m The Communicator control specifies that the processes must be involved
with the communicators that you select. For example, if something goes
wrong that involves a communicator, selecting it from the list tells
TotalView that it should only attach to the processes that use that com-
municator.

m The Talking to Rank control further limits the processes to those that you
name here. Most of the entries in this list are just the process numbers.
Two other entries are useful: All and MPI_ANY_SOURCE.

m The three checkboxes in the Message Type area add yet another qualifier.
Checking a box tells TotalView that it should only display communicators
that are involved with a Send, Receive, or Unexpected messages.

After you’ve found the problem, you can detach from these nodes by
selecting None. In most cases, you would use the All button to set all the
check boxes, then clear the ones that you’re not interested in.

Many applications place the ranks numbers in a variable so they can be

referred to easily. If you do this, you can display the variable in a Variable
Window and then select the Tools > Attach Subset (Array of Ranks) com-
mand to display this dialog box

Frew

Parallel Debugging Tips

Figure 85: Stop Before Going
Parallel Question Dialog Box

Figure 86: File > Preferences:
Parallel Page

112

While you can use the Group > Attach command at any time, you would
probably use it immediately before TotalView launches processes. Unless
you have set preferences otherwise, TotalView will stop and ask if you want
it stop your processes. When selected, the Halt control group check box
also tells TotalView that it stop a process just before it begins executing.
(See Figure 85.)

The commands on the Parallel Page with the File > Preferences Dialog Box
let you control what TotalView will do when your program goes parallel.
(See Figure 86.)

The When a job goes parallel or calls exec() radio buttons have the following
meanings:

m Stop the group: Stops the control group immediately after the processes
are created.

m Run the group: Allows all newly created processes in the control group
to run freely.

m Ask what to do: Asks what should occur. If you select this option,
TotalView will ask if it should start the created processes.

Chapter 5: Setting Up Parallel Debugging

The When a job goes parallel radio buttons have the following meaning:

m Attach to all: TotalView automatically attaches to all processes when
they begin executing.

m Attach to none: TotalView will not attach to any created process when it
begins executing.

m Ask what to do: Asks what should occur. If you select this option,
TotalView opens the same dialog box that is displayed when you select
Group > Attach Subsets. TotalView will then attach to the processes that
you have selected. Note that this dialog box isn’t displayed when you set
the preference. Instead, it controls what will happen when your program
creates parallel processes.

o1
w
]
—+
)
>
«Q
c
©
0
Q
=
=
o

CLl: dset TV::parallel_attach

General Parallel Here are some tips that are useful for debugging most parallel programs:

Debugging Tips m Breakpoint behavior
When you’re debugging message-passing and other multiprocess pro-
grams, it is usually easier to understand the program’s behavior if you
change the default stopping action of breakpoints and barrier break-
points. By default, when one process in a multiprocess program hits a
breakpoint, TotalView will stop all the other processes.
To change the default stopping action of breakpoints and barrier break-
points, you can set TotalView preferences. Information on these prefer-
ences can be found in the online Help. These preferences tell TotalView if
it should allow other processes and threads to continue to run when a
process or thread hits the breakpoint.
These options only affect the default behavior. As usual, you can choose
a behavior for a breakpoint by setting the breakpoint properties in the
File > Preferences’s Action Points Page. See “Setting Breakpoints for Multiple
Processes” on page 280.

m Process synchronization

TotalView has two features that make it easier to get all of the processes
in a multiprocess program synchronized and executing a line of code.
Process barrier breakpoints and the process hold/release features work
together to help you control the execution of your processes. See “Barrier
Points” on page 283.
The Process Window’s Group > Run To command is a special kind of step-
ping command. It allows you to run a group of processes to a selected
source line or instruction. See “Stepping (Part I)” on page 199.

m Using group commands
Group commands are often more useful than process commands.
It is often more useful to use the Group > Go command to restart the
whole application instead of the Process > Go command.

CLl: dfocus g dgo
Abbreviation: G

(-

You would then use the Group > Halt command instead of Process > Halt.

CLl: dfocus g dhalt
Abbreviation: H

The group-level single-stepping commands such as Group > Step and
Group > Next allow you to single-step a group of processes in a parallel.
See “Stepping (Part 1)” on page 199.

CLl: dfocus g dstep
Abbreviation: S

dfocus g dnext
Abbreviation: N

Process-level stepping

If you use a process-level single-stepping command in a multiprocess
program, TotalView may appear to be hung (it continuously displays the
watch cursor). If you single-step a process over a statement that can’t
complete without allowing another process to run and that process is
stopped, the stepping process appears to hang. This can occur, for exam-
ple, when you try to single-step a process over a communication opera-
tion that cannot complete without the participation of another process.
When this happens, you can abort the single-step operation by selecting
Cancel in the Waiting for Command to Complete Window that TotalView
will display. As an alternative, consider using a group-level single-step
command.

CLl: Type Ctrl+C

Etnus receives many bug reports about processes being hung. In almost all cases, the
reason is that one process is waiting for another. Using the Group debugging com-
mands almost always solves this problem.

Determining which processes and threads are executing

The TotalView Root Window helps you determine where various processes
and threads are executing. When you select a line of code in the Process
Window, the Root Window’s Attached Page is updated to show which pro-
cesses and threads are executing that line. See “Displaying Your Program’s
Thread and Process Locations” on page 187.

Viewing variable values

You can view (laminate) the value of a variable that is replicated across
multiple processes or multiple threads in a single Variable Window. See
“Displaying a Variable in All Processes or Threads” on page 270.

Restarting from within TotalView

You can restart a parallel program at any time. If your program runs too
far, you can kill the program by selecting the Group > Delete command.
This command kills the master process and all the slave processes.
Restarting the master process (for example, mpirun or poe) recreates all
of the slave processes. Startup is faster when you do this because

TotalView doesn’t need to reread the symbol tables or restart its server
processes since they are already running.

CLl: dfocus g dkill

MPICH Debugging Here are some debugging tips that apply only to MPICH:

Tips m Passing options to mpirun
You can pass options to TotalView through the MPICH mpirun command.
To pass options to TotalView when running mpirun, you can use the
TOTALVIEW environment variable. For example, you can cause mpirun to
invoke TotalView with the —no_stop_all option as in the following C shell,
example:

setenv TOTALVIEW "“totalview —no_stop_all™
m Using ch_p4

If you start remote processes with MPICH/ch_p4, you may need to change
the way TotalView starts its servers.
By default, TotalView uses rsh to start its remote server processes. This is
the same behavior as ch_p4. If you configure MPICH/ch_p4 to use a dif-
ferent start-up mechanism from another process, you will probably also
need to change the way that TotalView starts the servers.
For more information about tvdsvr and rsh, see “Setting Single-Process Server
Launch Options” on page 62. For more information about rsh, see “Using the
Single-Process Server Launch Command” on page 66.

o1
w
]
—+
)
>
«Q
c
©
0
Q
=
=
o

IBM PE Debugging Here are some debugging tips that apply only to IBM MPI (PE):

Tips m Avoid unwanted timeouts
Timeouts can occur if you place breakpoints that stop other processes
too soon after calling MPI_Init() or MPL_Init(). If you create “stop all”
breakpoints, the first process that gets to the breakpoint stops all the
other parallel processes that have not yet arrived at the breakpoint. This
may cause a timeout.
To turn the option off, select the Process Window’s Action Point >
Properties command while the line with the stop symbol is selected. After
the Properties Dialog Box appears, you should select the Process button
in the When Hit, Stop area and also select Plant in share group.

CLl: dbarrier location —stop_when_hit process

m Control the poe process
Even though the poe process continues under TotalView control, you
should not attempt to start, stop, or otherwise interact with it. Your par-
allel tasks require that poe continue to run. For this reason, if poe is
stopped, TotalView automatically continues it when you continue any
parallel task.

m Avoid slow processes due to node saturation
If you try to debug a PE program in which more than three parallel tasks
run on a single node, the parallel tasks on each node may run noticeably
slower than they would run if you were not debugging them.

=

In general, the number of processes your are running on a node should
be the same as the number of processors in the node.

This becomes more noticeable as the number of tasks increases, and, in
some cases, the parallel tasks may make hardly any progress. This is
because PE uses the SIGALRM signal to implement communications oper-
ations, and AlX requires that debuggers must intercept all signals. As the
number of parallel tasks on a node increases, TotalView becomes satu-
rated and can’t keep up with the SIGALRMSs being sent, thus slowing down
the tasks.

Part Ill: Using the GUI

The two chapters in this part of the Users Guide only contain information
that you’ll need if you’re using TotalView’s GUI.
Chapter 6: Using TotalView’s Windows
Describes using the mouse and the more important Win-
dows.
Chapter 7: Visualizing Programs and Data
Some of TotalView’s commands and tools are only useful if
you're using the GUI. For example, the Visualizer graphically
displays an array’s data.

Part Ill: Using the GUI

118

Table 6: Mouse Button
Functions

Using TotalView’s
Windows

This chapter introduces you to the TotalView interface and

describes:

“Editing Text” on page 127

Using the Mouse Buttons

“Using the Mouse Buttons” on page 119

“Using the Root Window” on page 120

“Using the Process Window” on page 123

“Diving into Objects” on page 124

“Resizing and Positioning Windows and Dialog Boxes” on page 126

“Saving the Contents of Windows” on page 128

TotalView uses the buttons on your three-button mouse as follows:

Button Action Purpose

Left Select Selects or edits object,
scrolls in windows and

panes

Middle Paste Writes information
previously copied or cut
into the clipboard

Dive Displays more

information or replaces
window contents

Right Context Displays a menu with

menu commonly used
commands

How to Use It

Move the cursor over the object and
click the button.

Move the cursor to where you will be
inserting the information and click the
button; not all windows support
pasting.

Move the cursor over an object, then
click the middle mouse button.

Move the cursor over an object and
click the button.

Most windows and panes have
context menus; dialog boxes do not
have context menus.

In most cases, a single-click selects what’s under the cursor and a double-
click dives on the object. However, if the field is editable, TotalView goes
into its edit mode where you can alter the selected item's value.

In some places such as the Stack Trace Pane, selecting a line tells TotalView
that it should perform an action. In this pane, TotalView dives on the
selected routine. (In this case, diving means that TotalView finds the
selected routine and show it in the Source Pane.)

In the line number area of the Source Pane, a left mouse click sets a break-
point at that line. TotalView shows you that it has set a breakpoint by dis-
playing a icon instead of a line number.

Selecting the icon a second time deletes the breakpoint. If you
change any of the breakpoint’s properties are if you had created an evalua-
tion point—this is indicated by an [ZZ¥ icon—selecting the icon disables
it. For more information on breakpoints and evaluation points, refer to
Chapter 14, “Setting Action Points,” on page 273.

Using the Root Window

The Root Window appears when you start TotalView. If you do not enter a
program name when starting TotalView, it is the only window that appears.
If you indicate a program name, TotalView also open a Process Window
containing the program’s source code.

The Root Window contains the following four tabbed pages:

m Attached: Displays a list of all the processes and threads being de-
bugged. Initially—that is, before your program begins executing—the
Root Window just contains the name of the program being debugged. As
processes and threads are created, TotalView adds them to this list. As-
sociated with each is a name, location (if a remote process), process ID,
status, and a list of executing threads for each process. It also shows the
thread ID, status, and the routine being executed in each thread.

Figure 87 on page 121 shows the Attached Page for an executing multi-
threaded multiprocess program.

Notice the triangles on the left. If a triangle is pointing right, you can click
on it to display the process’s threads. If it is pointing down, clicking on it
conceals this thread information.

When debugging a remote process, TotalView displays an abbreviated ver-
sion of the host name on which the process is running in brackets ([]).
The full host name appears in brackets in the title bar of the Process Win-
dow. In Figure 88 on page 121, the process is running on the machine
dewey.etnus.com. This name is abbreviated in the Root Window. This fig-
ure also describes the contents of the columns in this window.

When you dive on a line in this window, TotalView displays the source for
the process or thread in a Process Window.

Figure 87: Root Window

Attached Page Fia B View Tooh ‘ndew Ha |
sttaches | Unatarhes] Goup | Len |
= 1 ISEEE) T Fork_Lrcgphlphs (7 thcesds) dl |
1.1 s T in _ ssledt
1.E m T in __seleck
1.3 1 T n malack
1. -1 -1} T in __rem thorssad bklack
1-2 -3 T i __vem_1dls
1.=3 {=3) T in __roes_Lils
1. -4 {-dp T n o= 1cla
p = 95 T rn-rt_l.ﬂ:ﬁl._:l.l 1 |7 Ehrsass|
Lr i | HETI) T rnrl_:mi.hlllﬂ 1.1 T thresdsi
4.1 Ly T in __ gl
4 F 2y T i _geleck
L [T i __aslect
4 =1 =1 T in __Tom tharesd hlack
4. -3 (-3 T in __yom_Lidls
&, =3 =<1} T in __rem_vile
4. 4 |- T i rem idls "
[- | AL T Frot TremBlahs 5 (7 Fhrasss]]
L=

Figure 88: Root Window
Showing Remote

o
C
@,
5
Q@
=
a
o)
=
(72}

teg |
b 1 {SHEES T — | fork LeagATE 3 thoressda) '}
= - Fl b o Fork_LeogalE L (7 thosmds)
2.1 [ly E in kacnel
BEE Ay T in wait s whils
2 [SHL in kernal
E & oRSE T Fork_LepfIE 1.1 13 thossda)
3 ERST) T Pk, _LewgmaEs 3 (1 theesda)
1 NI A dewey wé)p T Snfndie il foas Serryk VALTOAT IO _[F
3 [PITANFAdswey) T Al e e a3 hes e B e eyl VAL TRRT T OH_TF
1 ily & in heriml
6— & E LM o an . select
E|X [=5 L zn ksrral
[] RETS DA dAwry ak)l T Srif et e Mes e Bnr ek WAL TIRTTOH_IF
T X el fewey_ evs T il e T ot m e b pr ok VAL TE AT (W _IF
[NR

(6] (7]
@ Collapse/expand toggle O Thread list
@ Process ID (PID) ® Thread ID (TID/SYSTID)
© Thread status © Remote process location
O Program name

m Unattached: Displays processes over which you have control. If you can’t
attach to one of these processes, TotalView displays it in gray. Figure 89
on page 122 shows the Unattached Page.

Diving on processes in this pane tells TotalView to attach to them.

m Groups: Lists the groups used by your program. The top pane in Figure 90
on page 122 lists all of your program’s groups. This list includes all the
groups that TotalView creates and all that you create using the CLI. When
you select a group in the top pane, the group’s members are displayed in
the bottom pane.

¥y

Using the Root Window

Figure 89: Root Window
Unattached Page

mlism SiTiis opm: 1 precsessss. £ ectachabile
LMOE 5 cab)
T-'-:Fli] Tehi

inkzwpid whrus com: 1E processes. 13 attachakls

.-bm.-lum.-'m.r.un-:u as lilh'lull:mn-ll.l.u."f-:'.
fh.l.l! ﬂl:ﬂ-l.l.ﬂll.rl E_ﬂ!.f—lt:mllmﬁn |

Figure 90: Root Window Groups
Page

:m‘i 'P-Cll:kdl:‘.-
£ !Iu.: ar
nuh:;l.-m:l.-mﬂ a Mlﬁ!

ln'l.p.l..'l'l'l I'.‘_.hrll Inrq: |H:|

1=ep T
15105} T
5L} T
15118} T
fmpmy T
f i1 o

m Log: Contains a log of the debugging actions. (See Figure 91.) This infor-
mation is sometimes useful when analyzing the behavior of misbehaving
multiprocess/multithreaded programs.

Figure 91: Root Window Log
Page

fEsaeE
tiftiig
% 'gﬂz L
ii

%19
55"5%{

i
n.%;
i

FEizE
i

I appaare
] mrad

I aboppsd . FRop Sagaal

Hepdddadadadadal s i
EAEEARECSEREEREZ IS

B et v b e . B LU O O
i bl | Rl KO B 0 RS 0

E;
3

122 Chapter 6: Using TotalView’s Windows

Figure 92: Process Window

Using the Process Window

The Process Window, which is shown in Figure 92, contains the code for the
process or thread you’re debugging, as well as other related information.
This window contains five panes of information. The large scrolling list in the
middle of the Process Window is the Source Pane. (The contents of these
panes are discussed later in this section.)

4
o T
Fils W al Achon Paim Tll:-ll L Jails
| | | F-H.'I...‘lml' m- | M= 1' 1'a
SEREEE L -
5 i EE—Thaamd \d {] [Fapped) «Trece Trgs & .
i Timcs o S Frami C
6 Tad | £ mapite_pi. FPeldid Fuarthon = emba_pi ' 1B compute_gifdl (28
== coEpotE pu rema 1.1] B 7 S
_E=sFarticipets InTeas. FP=14L00131 Q
5 BrLEST, FE=141037718
Lr i 14100 B é
Stack Trace 5
Pane o
v =
TL DxEffdredfedidddie (-704]
r) i i S i g ‘ J.l (%
Fanciion computa_p®_{f_rowpnis_pi noorm_tsple? o I
0 ¢ Tey ta faces Pour thieads -
C zell cmp swt rus bhresds £4)
7 £ cxll cap set dyramac | Fulas.)
- Source Pane
I_'._'-"I R h'l.".ﬁl.l.r
5 yid = omp gqui _thoess ooy,
ok LI INZ i'h.l'.\.l.l.l:l
ﬁ LA FARALLFL D SSRHED (Wi
o [PINRE ACRUTTION. S sl
2l deri = 1. n
8 —p T =W " (4 - 0 5
q il = Fim v LA}
L] i e 00} then
k] cmll crmah
L] #red Af
1 ki
¥ BN BME PARALLTL S0
| _.‘_E-‘ P o= ¥ * nm
praat #, “compubsd py e Pt
in At
41 el
42 i
=l = —— ==
) o - i AErlicn Foniz of -
i REEHISSREN \ction Points e
T] Pane ol
L T
L T A e bhressd bleck
10 E T i rocw tols
-4 LF riem Lidle
) i s Prnnafarkardsbnis]

As you examine the Process Window, notice the following:

m The thread ID shown in the Root Window and in the process’s Threads
Pane is the TotalView-assigned logical thread ID (TID) and system-as-
signed thread ID (SYSTID). On systems such as HP Alpha Tru64 UNIX
where the TID and SYSTID values are the same, TotalView displays only
the TID value.

In other windows, TotalView uses the value pid.tid to identify a process’s
threads.

=

Figure 93: Line Numbers, with
Stop Icon and PC Arrow

The Threads Pane shows the list of threads that currently exist in the pro-
cess. When you select a different thread in this list, TotalView updates the
Stack Trace Pane, Stack Frame Pane, and Source Pane to show the infor-
mation for that thread. When you dive on a different thread in the thread
list, TotalView finds or opens a new window displaying information for that
thread.

The number in the Threads Pane title (@ in Figure 92 on page 123) is the
number of threads that currently exist in the process.

The Stack Trace Pane shows the call stack of routines that the selected
thread is executing. You can move up and down the call stack by clicking
on the routine’s name (stack frame). When you select a different stack
frame, TotalView updates the Stack Frame and Source Panes to show the
information about the routine you just selected.

The Stack Frame Pane displays all of a routine’s parameters, its local vari-
ables, and the registers for the selected stack frame.

The information displayed in the Stack Trace and Stack Frame Panes re-
flects the state of the process when it was last stopped. This means that
the information they are displaying is not up-to-date while the thread is
running.

The left margin of the Source Pane displays line numbers and action point
icons. You can place a breakpoint at any line whose line number is con-
tained within a box. (See Figure 93.) The box indicates that executable
code was created by the source code.

When you place a breakpoint on a line, TotalView places a STOP icon over
the line number. An arrow over the line number shows the current loca-
tion of the program counter (PC) within the selected stack frame. See
Figure 93.

10349
1040

=
1042
1043

Each thread has its own unique program counter (PC). When you stop a
multiprocess or multithreaded program, the routine displayed in the
Stack Trace Pane for a thread depends on the thread’s PC. Because
threads execute asynchronously, you’ll usually find that threads are
stopped at different places. (When your thread hits a breakpoint, the
TotalView default is to stop all the other threads in the process as well.)

m The Action Points Pane shows the list of breakpoints, evaluation points,
and watchpoints for the process.

Diving into Objects

Diving, which is clicking your middle mouse button on something in a
TotalView window, is one of TotalView’s more distinguishing features.

Table 7: Diving

Figure 94: Nested Dive

-

In some cases, single-clicking preforms a dive. For example, single-clicking on a function
name in the Stack Trace Pane tells TotalView to dive into the function. In other cases,
double-clicking does the same thing. While this may sound confusing, it’s pretty intui-
tive and you’ll be diving without thinking almost instantaneously.

For example, diving on processes and threads in the Root Window is the
quickest way to display a Process Window that contains information about
what you’re diving on. The procedure is simple: dive on a process or thread
and TotalView takes care of the rest. Here’s another example: diving on
variables in the Process Window tells TotalView to display information
about the variable in a Variable Window.

Table 7 describes typical diving operations.

Dive on:
Process or thread

Subroutine

Variable

Pointer

Array element, structure element,
or referenced memory area

Routine in the Stack Trace Pane

Furiion sespl o ad_wdaibas_kack

Information Displayed by Diving:

When you dive on a thread in the Root Window,
TotalView finds or opens a Process Window for that
process. If it doesn’t find a matching window,
TotalView replaces the contents of an existing
window and shows you the selected process.

The source code for the routine replaces the
current contents of the Source Pane—this is called
a nested dive. When this occurs TotalView places a
right angle bracket (=) in the process’s title. Every
time it dives, it adds another angle bracket. See
Figure 94, which follows this table.

A routine must be compiled with source-line
information (usually, with the —g option) for you to
dive into it and see source code. If the subroutine
wasn’t compiled with this information, TotalView
displays the routine’s assembler code.

The contents of the variable appear in a separate
Variable Window.

TotalView dereferences the pointer and shows the
result in a separate Variable Window. Given the
nature of pointers, you may need to cast the result
into something that is more to your liking.

The contents of the element or memory area
replaces the contents that were in the Variable
Window—this is known as a nested dive.

The stack frame and source code for the routine
appear in a Process Window.

o
c
@,
S
@
=
a
S
=
(72]

TotalView tries to reuse windows whenever possible. For example, if you
dive on a variable and that variable is already being displayed in a window,
TotalView pops the window to the top of the display. If you want the infor-
mation to appear in a separate window, use the View > Dive Anew com-

mand.

=

Figure 95: Backward and
Forward Buttons

Using on a process or a thread may not create a new window if TotalView determines
that it can reuse a Process Window. If you really want to see information in two win-
dows, use the Process Window’s Window > Duplicate command.

When you dive into functions in the Process Window or when you are chas-
ing pointers or following structure elements in the Variable Window, you can
move back and forth between your selections by using the forward and back-
ward icons. The location of the two controls is shown in the boxed area in
Figure 95.

GLEH 1 1 [ENEIRTIO]
Theeam 1,1 [A25] [tapper; <Hop Sgnes
Tritw A Sty Frame
resbftEfCTe [L0]| Purctaon “marn” 2
FRsbiFEfimll ETEL UslRFAEROLY (1]
FR=hf FEF ol | sy NebETFFiTe - [hdFET
FE=LELLET 55 || L pal werlghles
FrsbFEEF B | Eaik_toiind Ou PRI (T)
FRsbEEEE40 urgas_ol On{EISIENONTL {1)
r FP=kEFeEr440 NT§_CEunE NeENEEEL {7
If NahTfThes - |
L= LR} Iabmied plsrenl_wil e
;‘.-_:""':l"‘"""' 111 Fonns :
Funilish ==lailEi o vk _liad cas I LR
B fendouty -
a3 - 1] Wy nEw d (hefars sxec] 1 ' n ¢ 1
o

For additional information about displaying variable contents, refer to “Div-
ing in Variable Windows” on page 237.

Other windowing commands that you can use are:

m Window > Duplicate: (Variable Window) Creates a duplicate copy of the
current Variable Window.

m Window > Duplicate Base: (Variable Window) Creates a copy of the cur-
rent Variable Window. Unlike what happens when you use the Window >
Duplicate command, this command retains the dive stack.

m File > Close: Closes an open window.

m File > Close Relatives: Closes windows that are related to the current win-
dow. The current window isn’t closed.

m File > Close Similar: Closes the currently open window and all windows
similar to it. When you have lots of similar windows, this is a great time-
saver.

Resizing and Positioning Windows and
Dialog Boxes

You can resize most of TotalView’s windows and dialog boxes. While
TotalView tries to do the right thing, you can push things to the point where
shrinking doesn’t work very well. Figure 96 on page 127 shows a before and
after look where a dialog box was made too small.

Figure 96: Resizing (and
Sometimes Its Consequences)

_ .
B i [T

Shan Hil, Hap Whean Dare, Shap

= Fp = G

- PIECENN - Prcesn

- T | Actimn Paint Fropertios

SdlEALiEh graig = Eraaipane = Baser - Exakil
W i, Slag e h Dars, 8
= Oimap A G
v Plidn ' PiDCEEy

LDCEIor TR0 |

| o Wa_kbep el Lo L |
I EndBi acfion @i eaae |

F Plarl n gham qims

F Enabis scSon goi

I Plani i rean i

1 —‘ [o | Deiete |
o ——— .
| Cargal | .“'HF' |

Many programmers like to have their windows always appear in the same
position in each session. TotalView has two commands that can help:

m Window > Memorize: Tells TotalView it should remember the position of
the current window. The next time you bring up this window, it’ll be in
this position.

m Window > Memorize All: Tells TotalView it should remember the posi-
tions of just about all of its windows. The next time you bring up any of
the windows displayed when you had used this command, it will be in
the same position.

Most modern window managers such as KDE or Gnome do an excellent job
managing window position. If you are using an older window manager such
as twm or mwm, you may want to select the Force window positions
(disables window manager placement modes) check box option located on
the Options Page of the File > Preferences Dialog Box. This tells TotalView
to manage a window’s position and size. If it isn’t selected, TotalView only
manages a window’s size.

Editing Text

The TotalView field editor lets you change the values of fields in windows or
change text fields in dialog boxes. To edit text:
1 Click the left mouse button to select the text you wish to change. If you

can edit the selected text, it appears within a highlighted rectangle, and
you will see an editing cursor. (See Figure 97 on page 128.)

2 Edit the text and press Return.

o
c
@,
S
@
=
a
S
=
(72]

Figure 97: Editing Cursor

Figure 98: File > Save Pane
Dialog Box

[Slmci Frams
reremr R -
Furction “srace” 1
Ty (TN TR] o
Pl “§h3=
Elmergh steuet bimesali
Lacal varimbles
b
B {E]
old TLoKEeT o TPy {18
Eickat OO0 01
FEa [niXSIERLL {1)
. & - . M

Like other Motif-based applications, you can use your mouse to copy and
paste text within TotalView and to other X Windows applications by using
your mouse buttons.

You can also manipulate text by using Edit > Copy, Edit > Cut, Edit > Paste,
and Edit > Delete.

In most cases, clicking your middle mouse button tells TotalView to dive.
However, if TotalView is displaying an editing cursor, clicking your middle
mouse button tells TotalView to paste information.

Saving the Contents of Windows

You can write an ASCII equivalent to most pages and panes by using the
File > Save Pane command. This command also lets you pipe data to UNIX
shell commands. (See Figure 98.)

w WARTOFIE o Appard TOFip * Sen To Pips

Fipe Corrand E].u-\... 1

| o |
[oK | cn:u| Halp ll

When piping information, TotalView sends what you’ve typed to /bin/sh.
This means that you can enter a series of shell commands. For example,
here is a command that ignores the top five lines of output, compares the
current ASCII text to an existing file, and writes the differences to another
file:

| tail +5 | diff — file > file.diff

Visualizing Programs
and Data

TotalView provides a set of tools that allow you to visualize how your
program is performing and the values of variables. This chapter
describes:

m “Displaying Your Program’s Call Tree” on page 129
m “Visualizing Array Data” on page 130

Other visualization tools are described in the following sections:

m “Using the P/T Set Browser” on page 222
m “Displaying the Message Queue Graph Window” on page 88

Displaying Your Program’s Call Tree

Debugging is an art, not a science. Debugging often means having the
“intuition” to know what a problem means and where to look for it. Locat-
ing a problem is often 90% or more of the effort. TotalView’s call tree is one
tool that helps you get an understanding of what your program is doing so
that you can begin to understand how your program is executing.

Use the Tools > Call Tree command in the Process Window to tell TotalView
to display a Call Tree Window. (See Figure 99 on page 130.)

The call tree is a diagram showing all the currently active routines. These
routines are linked by arrows indicating that one routine is called by
another. TotalView’s call tree is a dynamic call tree in that it displays the call
tree at the time when TotalView creates it. The Update button tells
TotalView to recreate this display.

You’ll find information on using the P/T Set Controls in the top portion of this window
in Chapter 11, “Using Groups, Processes, and Threads,” on page 197.

You can tell TotalView to display a call tree for the processes and threads
specified with the controls at the top of this window. If you don’t touch

=

Figure 99: Tools > Call Tree
Dialog Box

Fecui: M | w70 o |rrEe| |

Bl i | ol prdrod Caivan ('t 4 Lyl e b
[E] redli_loas ZEndrl G (FF| = }
sl
NEPRS § LS
LH
SELINID | (A

!_..':':d]

[—=ail] [—pineai_taaiey |

w» []

|oiren] e fr unk || snore ot jowes |

W E 71

1 L =SS

[k, wmappar] i)
E |.-:... '.al-l T i)
| i | [wmil_m_twhils | l_;
-J._._,“_,.__I J=
F krmp Laymn
[tpstits | Clixisi | nalp |

these controls, TotalView displays a call tree for the group defined in the
icon bar of your Process Window. If TotalView is displaying the call tree for a
multiprocess or multithreaded program, numbers next to the arrows indi-
cate how many times a routine is on the call stack.

As you begin to understand your program, you will see that it has a rhythm
and a dynamic that is reflected in this diagram. As you examine and under-
stand this structure, you will sometimes see things that don’t look right—
which is a subjective response to how your program is operating. These
places are often where you want to begin looking for problems.

Looking at the call tree can also tell you where bottlenecks are occurring.
For example, if one routine is used by many other routines and that routine
controls a shared resource, this thread may be negatively affecting perfor-
mance. For example, in Figure 99, the snore routine might be a bottleneck.
Giving good names to routines helps. For example, if you see lots of rou-
tines in a routine named snore, you've probably designed things to that
routines will be waiting there, so this wouldn’t represent a problem.

Visualizing Array Data

The TotalView Visualizer creates graphic images of your program'’s array
data.

The Visualizer isn’t available on Linux Alpha and 32-bit SGI Irix. It’s available on all
other platforms.

Topics in this section are:

“How the Visualizer Works” on page 131

“Configuring TotalView to Launch the Visualizer” on page 132
“Visualizing Data Manually” on page 134

“Visualizing Data Programmatically” on page 135

“Using the Visualizer” on page 136

“Using the Graph Window” on page 138

“Using the Surface Window” on page 140

“Launching the Visualizer from the Command Line” on page 143

How the Visualizer The Visualizer is a stand-alone program that is integrated with TotalView.
Works This relationship gives you a lot of flexibility:

m If you launch the Visualizer from within TotalView, you can visualize your
program’s data as you are debugging your program.

m You can save the data that would be sent to the Visualizer, and then in-
voke the Visualizer from the command line and have it read this previ-
ously written data.(See Figure 100.)

Figure 100: TotalView Visualizer
Relationships TotalView

Launch Visualizer TotalView
from TotalView wl| Visualizer
»

Launch Visualizer
Save Data from Command Line
to File

Launch Third
Party Visualizer

Y

Third P_arty i)

Visualizer | _ \Ssualllzz_ler
i:' ata File

m Because TotalView is sending a data stream to the Visualizer, you can
even replace our Visualizer with any tool that can read this data.

A

~
<
[%2]

c

L
N,
=
Q

The online Help contains information on adapting a third-party visualizer so that it
can be used with TotalView.

(-

Visualizing your program’s data is a two step process:
1 You select the data that you want visualized.
2 You tell the Visualizer how it should display this data.

TotalView marshals the program’s data and pipes it to the Visualizer. The
Visualizer reads this date and displays it for analysis. (See Figure 101 on
page 132.)

Visualizing Array Data

Figure 101: TotalView
Visualizer Connection

Configuring
TotalView to
Launch the
Visualizer

Figure 102: File > Preferences
Launch Strings Page

132

TotalView: Extracts TotalView Visualizer: Displays the
data from an array array data graphically

_______ 11 Sends data to
ST T D og Visualizer
i

TotalView launches the Visualizer when you select the Tools > Visualize
command from the Variable Window. It will also launch it if or when you use
a $visualize function within an evaluation point and the Tools > Evaluate
Dialog Box.

TotalView lets you set a preference that disables visualization. This lets you
turn off visualization when your program executes code containing evalua-
tion points, without having to individually disable all the evaluation points.

To change the Visualizer launch options interactively, select File >
Preferences, and then select the Launch Strings Tab. (See Figure 102.)

— I Enaiio sisgle $O0ug BEAET ETCH

Cammand. FeC BF - n et tosatanyioWET_BULD St =BT

Tarmaid: i § mcone Ewtaats |

= F Ensbie vauwirsr o

|t | Femugips

] i

i_m-q-ut!-‘.: 4 Detuty |
— Houszi |5_l-EH.|:.-

!_EHIHH._:M—.---?.EJ"T.'-IT.'_- Cmtail |

=t s

Using the commands in this page, you can:

m Customize the command TotalView uses to start a visualizer by entering
the visualizer’s startup command in the Command edit box. Entering in-
formation in this field is discussed a little later in this section.

Chapter 7: Visualizing Programs and Data

m Change the autolaunch option. If you want to disable visualization, clear
the Enable Visualizer Launch check box.

m Change the maximum permissible rank. Edit the value in the Maximum
array rank edit field to save the data exported from the debugger or dis-
play it in a different visualizer. A rank’s value can range from 1 to 16.
Setting the maximum permissible rank to either 1 or 2 (the default is 2)
ensures that the TotalView Visualizer can use your data—the Visualizer
displays only two dimensions of data. This limit doesn’t apply to data
saved in files or to third-party visualizers that can display more than two
dimensions of data.

m Clicking on the Defaults button returns all values to their defaults. This
reverts options to their defaults even if you have used X resources to
change them.

If you disable visualization while the Visualizer is running, TotalView closes
its connection to the Visualizer. If you reenable visualization, TotalView
launches a new Visualizer process the next time you visualize something.

Visualizer Launch Command

You can change the shell command that TotalView uses to launch the Visu-
alizer by editing the Visualizer launch command. (In most cases, the only
reasons you’d do this is if you’re having path problems or you’re running a
different visualizer.) You could also change what’s entered here so that you
can view this information at another time. Here’s an example:

cat > your_Tile
Later, you can visualize this information using either of the following com-
mands:

visualize —persist < your_Tile

visualize —fTile your_fTile
You can preset the Visualizer launch options by setting X resources. These
resources are described on our Web site. For more information, go to
www.etnus.com/Support/docs/.

~
<
[%2]

c

L
N,
=
Q

Data Types That TotalView Can Visualize

The data selected for visualization is called a dataset. Each dataset is tagged
with a TotalView-generated numeric identifier that lets the Visualizer know
whether it is seeing a new dataset or an update to an existing dataset.
TotalView treats stack variables at different recursion levels or call paths as
different datasets.

TotalView can visualize one- and two-dimensional arrays of character, inte-
ger, or floating-point data. If an array has more than two dimensions, you
can visualize part of it using an array slice that creates a subarray having
fewer dimensions. Figure 103 on page 134 shows a three-dimensional vari-
able sliced into two dimensions by selecting a single index in the middle
dimension.

=

Figure 103: A Three-
Dimensional Array Sliced into
Two Dimensions

Visualizing Data
Manually

T e e Tl L e

 Skmbic in tew by ben P9SEen AN AERNY |
Fis Eab Wies Taph Wirdes Halp

i ber_Ey_den Bt wa_biy_lweati] RAK_ARRRY - 11 (11 =ha
jsr] AN I":l.l- peal{ DB, I0, 1y

Sliee [i.dilai)
Faltwr

| -

Helug

=

”.......
RO
| 3 2 Bt g 2 b 3'
B b
s E- .
E
S

&
L

Viewing Data

Different datasets can require different views to display their data. For
example, a graph is more suitable for displaying one-dimensional datasets
or two-dimensional datasets if one of the dimensions has a small extent;
however, a surface view is better for displaying a two-dimensional dataset.

When TotalView launches the Visualizer, one of the following actions will
occur:

m If a Data Window is currently displaying the dataset, the Visualizer raises
it to the top of the desktop. If the window was minimized, the Visualizer
restores it.

m If you haven’t visualized the dataset in this session, the Visualizer
chooses a method based on how well your dataset matches what is best
shown for each kind of visualization method. You can enable and disable
this feature from the Options menu in the Visualizer’s Directory Window.

m If you've previously visualized a dataset but you’ve killed its window, the
Visualizer creates a new Data Window by using the most recent visualiza-
tion method.

Before you can visualize an array, you must:

m Open a Variable Window for the array’s data.

m Stop program execution where the array’s values are set to what you
want them to be when they are visualized.

Figure 104 on page 135 shows an Variable Window containing an array.

You can restrict the data being visualized by editing the Type and Slice
fields. For example, editing the Slice fields limits the amount of data being
visualized. (See “Displaying Array Slices” on page 259.) Limiting the amount
increases the Visualizer’s speed.

After selecting the Variable Window’s Tools > Visualize command, the Visu-
alizer begins executing and then creates its window. The data sent to the
Visualizer isn’t automatically updated as you step through your program.

Instead, you must explicitly update the display by reentering the Tools >
Visualize command.

Figure 104: Variable Window

Visualizing Data
Programmatically

e L5 Tdast TNTTIN T o v T R oy T T |
- saticim arveys_Picheck furtren srraystskewd srrey o

=

Fin Edk Wiew Taols Window Halp

A r lrrl-g,;:.r:hhl:l._iﬁjl"_l.nmiilw-;l_:rl' -1I “_l =i pr i

(st E=IBATH Type isteperEikl]
B AE}

57 M | O=BIERITEST
Esd ELE [DNMMERN) |

TotalView can visualize laminated variables. (See “Visualizing a Laminated
Variable Window” on page 272.) The process or thread index will be one of
the visualized data’s dimensions. This means that you can only visualize
scalar or vector information. If you don’t want the process or thread index
to be a dimension, use a nonlaminated display.

TotalView’s $visualize function allows you add visualization to expressions
in evaluation action points or with expressions entered in the Tools >
Evaluate Window. If you enter this function within an expression, TotalView
will interpret rather than compile the expression, which can greatly
decrease performance. See “Defining Evaluation Points and Conditional Break-
points” on page 286 for information about compiled and interpreted expres-
sions. Adding this function also lets you visualize several different variables
from a single expression or evaluation point.

Using $visualize in an evaluation point lets you animate the changes that
occur in your data because the Visualizer will update the array’s display
every time TotalView reaches the evaluation point. Here’s this function’s
syntax:

$visualize (array [, slice_string])

The array argument names the dataset being visualized. The optional
slice_string argument is a quoted string defining a constant slice expression
that modifies the array parameter’s dataset.

Here are six examples showing how you can use this function. Notice that
the array’s dimension ordering differs in C and in Fortran.

C $visualize(my_array);
$visualize (my_array,”[::2][10:15]);
$visualize (my_array,”[12][:17):
Fortran $visualize (my_array)
$visualize (my array,”(11:16,::2)7)
$visualize (my array,’(:,13)7)
The first example in each programming language group visualizes the entire
array. The second example selects every second element in the array’s

=

~
<
(%2}
c
L
N,
=
Q

Using the
Visualizer

major dimension; it also clips the minor dimension to all elements in the
range. The third example reduces the dataset to a single dimension by
selecting one subarray.

You may need to cast your data so that TotalView will know what the array’s
dimensions are. Here’s a C function declaration that passes a two-dimen-
sional array parameter. Notice that it does not specify the major dimen-
sion’s extent.

void my_procedure (double my array[]1[32])

{ /* procedure body */ }
Here’s how you can cast the array so that TotalView can visualize it. For
example:

$visualize (*(double[32][32]*)my_array);

Sometimes, it’s hard to know what to specify. You can quickly refine array
and slice arguments, for example, by entering $visualize into the Tools >
Evaluate Dialog Box. When you select the Evaluate button, you’ll quickly see
the result. You can even use this technique to display several arrays simul-
taneously.

The Visualizer uses two types of windows:

m Data Windows
These are the windows that display your data. The commands in a Data
Window let you set viewing options and change the way the Visualizer dis-
plays your data.

m A Directory Window
This window lists the datasets that you can visualize. Use this window to
set global options and to create views of your datasets. Commands in this
window let you obtain different views of the same data by opening more
than one Data Window.

The top window in Figure 105 on page 137 is a Directory Window. The two
remaining windows show a surface and a graph view.

Directory Window

The Directory Window contains a list of the datasets you can display. You
can select a dataset by clicking on it. Double-clicking on the dataset tells
the Visualizer to display it. While you can display multiple datasets, you can
only select one dataset at a time.

The View menu lets you select Graph or Surface visualization. Whenever
TotalView sends a new dataset to the Visualizer, the Visualizer updates its
dataset list. To delete a dataset from the list, click on it, display the File
menu, and then select Delete. (It’s usually easier to just close the Visual-
izer.)

Here are the commands contained in the Directory Window’s menu bar:

File > Delete Deletes the currently selected dataset. It removes the
dataset from the dataset list and destroys the Data Win-
dows displaying it.

Figure 105: Sample Visualizer
Windows Fir View Opikm

i o L
Fi=
=
1
b4 &
2 &
P ¥
I pi.) :
10 ’] T m n ¥
0 i .
L] [
e L] L]
L -
L] Ll
L] -
i L
File > Exit Closes all windows and exits the Visualizer.

View > Graph Creates a new Graph Window; see “Using the Graph Win-
dow” on page 138 for more detail.

View > Surface Creates a new Surface Window; see “Using the Surface
Window” on page 140 for more detail.

Options > Auto Visualize
This item is a toggle; when enabled, the Visualizer auto-

matically visualizes new datasets as they are read. Typi-
cally, this option is left on. If, however, you have large
datasets and need to configure how the Visualizer dis-
plays it, you may want to disable this option.

~
<
(%2}
c
L
N,
=
Q

Data Windows

Data Windows display graphic images of your data. Figure 106 on page 138
shows a surface view and a graph view. Every Data Window contains a menu
bar and a drawing area. The Data Window title is its dataset identification.

The Data Window menu commands are as follows:
File > Close Closes the Data Window.

File > Delete Deletes the Data Window'’s dataset from the dataset
list. This also destroys other Data Windows viewing the
dataset.

=

Figure 106: Sample Visualizer
Data Windows

Using the Graph
Window

File > Directory Raises the Directory Window to the front of the desk-
top. If you have minimized the Directory Window, the
Visualizer restores it.

File > New Base Window
Creates a new Data Window having the same visualiza-
tion method and dataset as the current Data Window.

File > Options Pops up a window of viewing options.

The drawing area displays the image of your data. You can interact with the
drawing area to alter the view of your data. For example, if the Visualizer is
showing a surface, you can rotate the graph to view it from different angles.
You can also get the value and indices of the dataset element nearest the
cursor by clicking on it. A pop-up window displays the information. (See
Figure 107 on page 139.)

The Graph Window displays a two-dimensional graph of one- or two-
dimensional datasets. If the dataset is two-dimensional, the Visualizer dis-
plays multiple graphs. When you first create a Graph Window on a two-
dimensional dataset, the Visualizer uses the dimension with the larger
number of elements for the X axis. It then draws a separate graph for each
subarray having the smaller number of elements. If you don’t like this
choice, you can transpose the data.

You probably don’t want to use a graph to visualize two-dimensional datasets with large
extents in both dimensions, as the display will be very cluttered.

You can display graphs with markers for each element of the dataset, with
lines connecting dataset elements, or with both lines and markers as
shown in Figure 108 on page 139. See “Displaying Graphs” on page 140 for
more details. Multiple graphs are displayed in different colors. The X axis of

Figure 107: Rotating and T T

Querying . [

the graph is annotated with the indices of the long dimension. The Y axis
shows you the data value.

Figure 108: Visualizer Graph ~
Data Window e <
5
i0 —
I 5
S
I' 1 Q
05 "
L] & i
L]
il w9 '
¥ .
= #
-05 . .
L] i
.| .
]]
10 e
—_——a

You can scale and translate the graph, or pop up a window displaying the
indices and values for individual dataset elements. See “Manipulating
Graphs” on page 140 for details.

Displaying Graphs
The File > Options Dialog Box lets you control how the Visualizer displays
the graph. (See Figure 109.)

Figure 109: Graph Options
Dialog Box

F Lings

i Paimiy

| :
.5 ¥
>
=
il
|5
|
Ia
B

Here’s what the check boxes in this dialog box mean.

Lines If this is set, the Visualizer displays lines connecting
dataset elements.

Points If this is set, the Visualizer displays markers for dataset
elements.

Transpose If this is set, the Visualizer inverts the X and Y axis of
the displayed graph.

Manipulating Graphs
You can manipulate the way the Visualizer displays a graph by using the fol-

lowing actions:

Scale Press the Control key and hold down the middle mouse
button. Move the mouse down to zoom in on the cen-
ter of the drawing area, or up to zoom out.

Translate Press the Shift key and hold down the middle mouse
button. Moving the mouse drags the graph.
Zoom Press the Control key and hold down the left mouse

button. Drag the mouse button to create a rectangle
that encloses an area. The Visualizer scales the graph
to fit the drawing area.

Reset View Select View > Reset to reset the display to its initial
state.
Query Hold down the left mouse button near a graph marker.

A window pops up displaying the dataset element’s in-
dices and value.

Figure 110 on page 141 shows a graph view of two-dimensional random
data created by selecting Points and clearing Lines in the Data Window’s
Graph Options Dialog Box.

Using the Surface The Surface Window displays two-dimensional datasets as a surface in two

Window or three dimensions. The dataset’s array indices map to the first two
dimensions (X and Y axes) of the display. Figure 111 on page 141 shows a
two-dimensional map, where the dataset values are shown using only the
Zone option. (This demarcates ranges of element values.) For a zone map

Figure 110: Display of Random
Data e
&1
o P BN M
| . 8
| 2 § I- -
2 L & "
mon; 3 ¥, . .
s aa 1 =
t :‘l - ':! L
|*1r\u|'|'[|I Y . -I ."l -
| - . .-i.
fR el g et 8L Ry
-1 & i L}
a1 i 4 E 51071 12 1114
|

with contour lines, turn the Zone and Contour settings on and Mesh and
Shade oOff.

Figure 111: Two-Dimensional
Surface Visualizer Data Display

Bl 5:n ~
B2

21678 =

oarza 8
17183

| TN Q

17 B0 =

ARH N,

1] =}

a2 (@]

You can display random data by selecting only the Zone setting and turning
Mesh, Shade, and Contour off. The display shows where the data is located,
and you can click on the display to get the values of the data points.

Figure 112 on page 142 shows a three-dimensional surface that maps ele-
ment values to the height (Z axis).

Displaying Surface Data
The Surface Window’s File > Options command lets you control how the
Visualizer displays the graph. (See Figure 113 on page 142.)

Eow

Figure 112: Three-Dimensional
Surface Visualizer Data Display

Figure 113: Surface Options
Dialog Box

Fir Viw

F Gaade

F Confpr
F Zme
I fum Reduse

... B |

This dialog box has the following choices:

Mesh

Shade

Contour

Zone

Auto Reduce

If this option is set, the Visualizer displays the surface
as a three dimensional mesh, with the X-Y grid pro-
jected onto the surface. If you don’t set this or the
Shade option, the Visualizer displays the surface in two
dimensions. (See Figure 111 on page 141.)

If this option is set, the Visualizer displays the surface
in three dimensions and shaded either in a “flat” color
to differentiate the top and bottom sides of the sur-
face, or in colors corresponding to the value if the Zone
option is also set. When neither this nor the Mesh op-
tion are set, the Visualizer displays the surface in two
dimensions. (See Figure 111 on page 141.)

If this option is set, the Visualizer displays contour lines
indicating ranges of element values.

If this option is set, the Visualizer displays the surface
in colors showing ranges of element values.

If this option is set, the Visualizer derives the displayed

surface by averaging over neighboring elements in the
original dataset. This speeds up visualization by reduc-

ing the resolution of the surface. Clear this option if
you want to accurately visualize all dataset elements.

The Auto Reduce option allows you to choose between
viewing all your data points—which takes longer to ap-
pear in the display—or viewing the averaging of data
over a number of nearby points.

You can reset the viewing parameters to those used when the Visualizer
first came up by selecting the View > Reset command, which restores all
translation, rotation, and scaling to its initial state and enlarges the display
slightly.

Manipulating Surface Data
The following commands change the display or give you information about
it:

Query Hold down the left mouse button near the surface. A
window pops up displaying the nearest dataset ele-
ment’s indices and value.

Rotate Hold down the middle mouse button and drag the
mouse to freely rotate the surface. You can also press
the X, Y, or Z keys to select a single axis of rotation. The
Visualizer lets you rotate the surface in two dimensions
simultaneously.

While you're rotating the surface, the Visualizer displays
a wire-frame bounding box of the surface and moves it
as your mouse moves.

Scale Press the Control key and hold down the middle mouse

button. Move the mouse down to zoom in on the cen- ~
ter of the drawing area, or up to zoom out. ;
Translate Press the Shift key and hold down the middle mouse S
button. Moving the mouse drags the surface. N
Zoom Press the Control key and hold down the left mouse 8

button. Drag the mouse button to create a rectangle
that encloses the area of interest. The Visualizer then
translates and scales the area to fit the drawing area.
See Figure 114 on page 144.

Launching the To start the Visualizer from the shell, use the following syntax:
Visualizer from visualize [file filename | —persist]
the Command here:
Line where:
—file filename Reads data from filename instead of reading from stan-
dard input.
—persist Continues to run after encountering an EOF on stan-

dard input. If you don’t use this option, the Visualizer
exits as soon as it reads all of the data.

By default, the Visualizer reads its datasets from standard input and exits
when it reads an EOF. When started by TotalView, the Visualizer reads its

prey

Visualizing Array Data

Figure 114: Zooming, Rotating,
About an Axis

103
uEl
0.5

o
-0

N
-0 il
11

data from a pipe, ensuring that the Visualizer exits when TotalView does. If
you want the Visualizer to continue to run after it exhausts all input, invoke
it by using the —persist option.
If you want to read data from a file, invoke the Visualizer with the —file
option:

visualize —file my_data_set_file

The Visualizer reads all the datasets in the file. This means that the images
you see represent the last versions of the datasets in the file.

144 Chapter 7: Visualizing Programs and Data

The Visualizer supports the generic X toolkit command-line options. For
example, you can start the Visualizer with the Directory Window minimized
by using the -iconic option. Your system manual page for the X server or
the X Window System User’s Guide by O’Reilly & Associates lists the generic X
command-line options in detail.

You can also customize the Visualizer by setting X resources in your
resource files or on the command line with the —xrm resource_setting
option. The available resources are described in “TotalView Command Syntax
in the TotalView Reference Guide. Use of X resources to modify the default
behavior of TotalView or the TotalView Visualizer is described in greater
detail on our Web site at www.etnus.com/Support/docs/xresources/
XResources.html.

~
<
[%2]
c
L
N,
=
Q

Visualizing Array Data

146 Chapter 7: Visualizing Programs and Data

Part

I\VV: Using the CLI

While other parts of this book deal with both the GUI and the CLI or with
just the GUI, the chapters in this part deal exclusively with the CLI. Most
CLI commands must have a process/thread focus for what they will be
doing. See Chapter 11: “Using Groups, Processes, and Threads” on page 197 for
more information.

Chapter 8:

Chapter 9:

Seeing the CLI at Work

While you can use the CLI as a stand-alone debugger, using
the GUI is usually easier. Where the CLI shines is in creating
debugging functions that are unique to your program or in
automating repetitive tasks. This chapter presents a few Tcl
macros in which TotalView CLI commands are embedded.

While most of these examples are simple, you are urged to,
at a minimum, skim over this information so you get a feel
for what can be done.

Using the CLI

You can use TotalView’s CLI commands without knowing
much about Tcl, which is the approach taken in this chapter.
Here you will read about how to enter CLI commands and
how the CLI and TotalView interact with one another when
used in a nongraphical way.

Part IV: Using the CLI

148

Seeing the CLI at
Work

The CLI is a command-line debugger that is completely integrated
with TotalView. You can use it and never use the TotalView GUI or you
can use it and the GUI simultaneously. Because the CLI is embedded
within a Tcl interpreter, you can also create debugging functions that
exactly meet your needs. When you do this, you can use these func-
tions in the same way that you use TotalView’s built-in CLI com-
mands.

This chapter contains a few macros that show how the CLI program-
matically interacts with your program and with TotalView. Reading a
few examples without bothering too much with details will give you
an appreciation for what the CLI can do and how you can use it. As
you will see, you really need to have a basic knowledge of Tcl before
you can make full use of all CLI features.

The chapter presents a few macros. In each macro, all Tcl com-
mands that are unique to the CLI are displayed in bold. The macros
in this chapter are for:

m “Setting the EXECUTABLE_PATH State Variable” on page 149
m “Initializing an Array Slice” on page 150

m “Printing an Array Slice” on page 151

m “Writing an Array Variable to a File” on page 152

m “Automatically Setting Breakpoints” on page 153

Setting the EXECUTABLE_PATH State
Variable

The following macro recursively descends through all directories starting at
a location that you enter. (This is indicated by the root argument.) The
macro will ignore directories named in the filter argument. The result is then
set as the value of the CLI EXECUTABLE_PATH state variable.

by

Initializing an Array Slice

150

Usage:
rpath [root] [filter]

IT root is not specified, start at the current
directory. filter is a regular expression that removes
unwanted entries. If it is not specified, the macro
automatically filters out CVS/RCS/SCCS directories.

HHEHER RS

The TotalView search path is set to the result.

proc rpath {{root "."} {filter "/(CVS|RCS|SCCSH/|$)"}}
{

Invoke the UNIX find command to recursively obtain
a list of all directory names below “root™.
set find [split [exec find $root-type d-print] \n]

set npath

Filter out unwanted directories.
foreach path $find {
iT {! [regexp $filter $path]} {

[T 1}

append npath “:
append npath $path

}
}

Tell TotalView to use it.
dset EXECUTABLE_PATH $npath

3
In this macro, the last statement sets the EXECUTABLE_PATH state variable.
This is the only statement that is unique to the CLI. All other statements
are standard Tcl.

The dset command, like most interactive CLI commands, begins with the
letter d. (The dset command is only used in assigning values to CLI state
variables. In contrast, values are assigned to Tcl variables by using the stan-
dard Tcl set command.)

Initializing an Array Slice

The following macro initializes an array slice to a constant value:

array_set (var lower_bound upper_bound val) {
for {set i1 $lower_bound} {$i <= $upper_bound} {incr i}{
dassign $var\($i) $val
¥
¥
The CLI dassign command assigns a value to a variable. In this case, it is
setting the value of an array element. Here is how you use this function:

Chapter 8: Seeing the CLI at Work

dl.<> dprint list3

list3 = {
(1) = 1 (0x0000001)
(2) = 2 (0x0000001)
(3) = 3 (0x0000001)
}

dl.<> array_set list 2 3 99
dl.<> dprint list3

list3 = {
(1) = 1 (0x0000001)
(2) = 99 (0x0000063)
(3) = 99 (0x0000063)
}

Printing an Array Slice

The following macro prints a Fortran array slice. This macro, like other ones
shown in this chapter, relies heavily on Tcl and uses unique CLI commands
sparingly.
proc pf2Dslice {anArray il i2 j1 j2 {i3 1} {j3 1} \
{width 20}} {
for {set i $il} {$i <= $i2} {incr i $i3} {
set row_out """
for {set j $j1} {$J <= $32} {incr j $j3} {
set ij [capture dprint $anArray\($i,$j\)]
set ij [string range $ij \

[expr [string First "=" $ij] + 1] end]
set ij [string trimright $ij]
ifT {[string first "-" $ij] == 1} {
set ij [string range $ij 1 end]}
append 1j " "
append row _out " " \

[string range $ij 0 $width] " *
}

puts $row_out

}
}

The CLI’s dprint command lets you specify a slice. For example, you could specify:
dprint a(1:4,1:4).

After invoking this macro, the CLI prints a two-dimensional slice (i1:i2:i3,
j1:j2:j3) of a Fortran array to a numeric field whose width is specified by the
width argument. This width doesn’t include a leading minus (-) sign.

All but one line is standard Tcl. This line uses the dprint command to
obtain the value of one array element. This element’s value is then cap-
tured into a variable. The CLI capture command allows a value that is nor-
mally printed to be sent to a variable. For information on the difference
between values being displayed and values being returned, see “CLI Out-
put” on page 162.

@
w
(9]
9]
=
>
«Q
—+
Iy
[¢>]
O
L
QD
~+
o
=
=~

Fe

Writing an Array Variable to a File

152

Here are several examples:

dl.<> pf2Dslice a1 41 4

0.841470956802 0.909297406673 0.141120001673-
0.756802499294

0.909297406673-0.756802499294-0.279415488243
0.989358246326

0.141120001673-0.279415488243 0.412118494510-
0.536572933197

-0.756802499294 0.989358246326-0.536572933197-
0.287903308868
dl.<> pf2Dslice a1 4141117

0.841470956802 0.909297406673 0.141120001673-
0.756802499294

0.909297406673-0.756802499294-0.279415488243
0.989358246326

0.141120001673-0.279415488243 0.412118494510-
0.536572933197

-0.756802499294 0.989358246326-0.536572933197-
0.287903308868
dl.<> pf2Dslice a1 41422 10

0.84147095 0.14112000

0.14112000 0.41211849
dl.<> pf2Dslice a 242 42 2 10

-0.75680249 0.98935824

0.98935824-0.28790330
dl.<>

Writing an Array Variable to a File

There are many times when you would like to save the value of an array so
that you can analyze its results at a later time. The following macro writes
array values to a file.

proc save_to file {var fname} {

set values [capture dprint $var]
set T [open $fname w]

puts $f $values
close $f

}

The following shows how you might use this macro. Notice that using the
exec command lets cat display the file that was just written.

dl.<> dprint list3

list3 = {
(1) = 1 (0x00000001)
(2) = 2 (0x00000002)
(3) = 3 (0x00000003)
b

dl.<> save_to_file list3 foo

Chapter 8: Seeing the CLI at Work

dl.<> exec cat foo

list3 = {
(1) = 1 (0x00000001)
(2) = 2 (0x00000002)
(3) = 3 (0x00000003)
}
dl.<>

Automatically Setting Breakpoints

In many cases, your knowledge of what a program is doing lets you make
predictions as to where problems will occur. The following CLI macro
parses comments that you can include within a source file and, depending
on the comment’s text, sets a breakpoint or an evaluation point.

Immediately following this listing is an excerpt from a program that uses
this macro.

make_actions: Parse a source file, and insert

evaluation and breakpoints according to comments.
#

proc make_actions {{filename ““}} {

it {$Filename == ““} {
puts “You need to specify a filename”
error “No filename”

Open the program”s source file and initialize a
few variables.

set fname [set filename]

set fsource [open $fname r]

set lineno O

set incomment O

Look for “signals” that indicate the kind of

action point; they are buried in the comments.
while {[gets $fsource line] '=-1} {

incr lineno

set bpline $lineno

Look for a one-line evaluation point. The
format is ... /* EVAL: some_text */.
The text after EVAL and before the “*/” in
the comment is assigned to “code”.
iT [regexp “/* EVAL: *(.*™)*/” $line all code] {
dbreak $fname\#$bpline —e $code
continue

@
w
(9]
9]
=
>
«Q
—+
Iy
[¢>]
O
L
QD
~+
o
=
=~

Automatically Setting Breakpoints

Look for a multiline evaluation point.
iT [regexp “/* EVAL: *(.*)” $line all code] {
Append lines to “code”.
while {[gets $fsource interiorline] !'=-1} {
incr lineno

Tabs will confuse dbreak.
regsub -all \t $interiorline \
‘ interiorline

1f “*/” is found, add the text to ‘““code”,
then leave the loop. Otherwise, add the
text, and continue looping.
iT [regexp “(-*)*/” $interiorline \
all interiorcode]{
append code \n $interiorcode

break
} else {
append code \n $interiorline
s
s
dbreak $fname\#$bpline —e $code
continue

3
Look for a breakpoint.
if [regexp “/* STOP: .*” $line] {
dbreak $fname\#$bpline
continue

3
Look for a command to be executed by Tcl.
ifT [regexp “/* *CMD: *(.*)*/” $line all cmd] {
puts “CMD: [set cmd]”
eval $cmd
3
3

close $fsource

}

The only similarity between this example and the previous three is that
almost all of the statements are Tcl. The only purely CLI commands are the
instances of the dbreak command that sets evaluation points and break-
points.

The following excerpt from a larger program shows how you would embed
comments within a source file that would be read by the next macro.

struct struct_bit_fields_only {
unsigned 3 : 3;
unsigned 4 : 4;
unsigned 5 : 5;
unsigned 20 : 20;
unsigned 32 : 32;
} sbfo, *sbfop = &sbfo;

154 Chapter 8: Seeing the CLI at Work

int main()

{
struct struct_bit_fields _only *Ibfop = &sbfo;
int i;
int j;
sbfo.f3 = 3;
sbfo.f4 = 4;
sbfo.f5 = 5;
sbfo.f20 = 20;
sbfo.f32 = 32;
/* TEST: Check to see i1f we can access all the
values */
i=i;/* STOP: */
i=1;/* EVAL: if (sbfo.f3 = 3) $stop; */
i=2;/* EVAL: if (sbfo.f4 1= 4) $stop; */
i=3;/* EVAL: if (sbfo.f5 1= 5) $stop; */
return O;
}

The make_actions macro reads a source file one line at a time. As it reads
these lines, the regular expressions look for comments that begin with /
* STOP, /* EVAL, and /* CMD. After parsing the comment, it sets a break-
point at a stop line, an evaluation point at an eval line, or executes a com-
mand at a cmd line.

Using evaluation points can be confusing because evaluation point syntax
differs from that of Tcl. In this example, the $stop command is a command
contained in TotalView (and the CLI). It is not a Tcl variable. In other cases,
the evaluation statements will be in the C or Fortran programming lan-
guages.

@
w
(9]
9]
=
>
«Q
—+
Iy
[¢>]
O
L
QD
~+
o
=
=~

Automatically Setting Breakpoints

156 Chapter 8: Seeing the CLI at Work

Using the CLI

The two components of the Command Line Interface (CLI) are the
Tcl-based programming environment and the commands added to
the Tcl interpreter that allow you to debug your program. This chap-
ter looks at how these components interact and describes how you
specify processes, groups, and threads.

This chapter tends to emphasize interactive use of the CLI rather
than using the CLI as a programming language because many of the
concepts that will be discussed are easier to understand in an inter-
active framework. However, everything in this chapter can be used in
both environments.

Topics discussed in this chapter are:

“Tcl and the CLI” on page 157

“Starting the CLI” on page 159

“CLI Output” on page 162

“Command Arguments” on page 163

“Using Namespaces” on page 164

“Command and Prompt Formats” on page 164

“Built-In Aliases and Group Aliases” on page 165

“Effects of Parallelism on TotalView and CLI Behavior” on page 166
“Controlling Program Execution” on page 167

Tcl and the CLI

The TotalView CLI is built within version 8.0 of Tcl, so TotalView’s CLI com-
mands are built into Tcl. This means that the CLI is not a library of com-
mands that you can bring into other implementations of Tcl. Because the
Tcl you are running is the standard 8.0 version, the TotalView CLI supports
all libraries and operations that run using version 8.0 of Tcl.

Integrating CLI commands into Tcl makes them intrinsic Tcl commands.
This lets you enter and execute all CLI commands in exactly the same way

FEa

The CLI and
TotalView

Figure 115: The CLI and
TotalView

The CLI Interface

as you enter and execute built-in Tcl commands. As CLI commands are also
Tcl commands, you can embed Tcl primitives and functions within CLI com-
mands and embed CLI commands within sequences of Tcl commands.

For example, you can create a Tcl list that contains a list of threads, use Tcl
commands to manipulate that list, and then use a CLI command that oper-
ates on the elements of this list. Or you create a Tcl function that dynami-

cally builds the arguments that a process will use when it begins executing.

The following figure illustrates the relationship between the CLI, the
TotalView GUI, the TotalView core, and your program:

4 _______
% _____ Program being debugged _ _ _
TotalView X Thread 1 .

Process 1
T Thread 2

Thread 1
Process 2<:
Thread 2

Core

The CLI and the GUI are components that communicate with the TotalView
core, which is what actually does the work. In this figure, the dotted arrow
between the GUI and the CLI indicates that you can invoke the CLI from
the GUL. The reverse isn’t true: you can’t invoke the GUI from the CLI.

In turn, the TotalView core communicates with the processes that make up
your program and receives information back from these processes, and
passes them back to the component that sent the request. If the GUI is
also active, the core also updates the GUI's windows. For example, step-
ping your program from within the CLI changes the PC in the Process Win-
dow, updates data values, and so on.

The way in which you interact with the CLI is by entering a CLI or Tcl com-
mand. (As entering a Tcl command does exactly the same thing in the CLI
as it does when interacting with a Tcl interpreter, entering commands and
the command environment won’t be discussed here.) Typically, the effect of
executing a CLI command is one or more of the following:

m The CLI displays information about your program.

m A change takes place in your program’s state.

m A change takes place in the information that the CLI maintains about
your program.

After the CLI executes your command, it displays a prompt. Although CLI
commands are executed sequentially, commands executed by your pro-
gram may not be. For example, the CLI doesn’t require that your program
be stopped when it prompts for and performs commands. It only requires

Figure 116: CLI xterm Window

that the last CLI command be complete before it can begin executing the
next one. In many cases, the processes and threads being debugged con-
tinue to execute after the CLI finished doing what you’ve asked it to do.

Because actions are occurring constantly, state information and other
kinds of messages that the CLI displays are usually mixed in with the com-
mands that you type. You may want to limit the amount of information
TotalView displays by setting the VERBOSE variable to WARNING or ERROR.
(For more information, see the “Variables” chapter in the TotalView Reference
Guide.)

Pressing Ctrl+C while a CLI command is executing interrupts that CLI com-
mand or executing Tcl macro. If the CLI is displaying its prompt, typing
Ctrl+C stops executing processes.

Starting the CLI

You can start the CLI in two ways:

m You can start the CLI from within the TotalView window by selecting the
Tools > Command Line command in the Root and Process Windows. Af-
ter selecting this command, TotalView opens a window into which you
can enter CLI commands.

m You can start the CLI directly from a shell prompt by typing totalviewcli.
(This assumes that the TotalView binary directory is in your path.)

Figure 116 is a snapshot of a CLI window that shows part of a program
being debugged.

......
|
Wrormnli LLLLED
L | T | e
{lizk
= i 40 1
forgrmal |1 = & ERNED
x4 o jram
doa 42 1 = 3
4 dere 1 LLLULL
f ks
e Bkt THE]
ESE sy F ENMEFal. [arra L
futar s
HIH, Pl DRI SR, FRohbSvF dasd | o0 aea FEE
i ot R i FF il [TEoA N PEER g
| eFrogr wyel [HLE
ik _riers e L AT 1, e chapa g it |
= 1]
b
air P 53 DiTToesd | fudhose by Eumn|
af .qllirr. el [HLEC]

If you have problems entering and editing commands, it could be because
you invoked the CLI from a shell or process that manipulates your stty set-
tings. You can eliminate these problems if you use the stty sane CLI com-
mand. (If the sane option isn’t available, you will have to change values
individually.)

=

©
C
@,
5
Q
(s
>
®
O
L

Startup Example

Starting Your
Program

If you start the CLI with the totalviewcli command, you can use all of the
command-line options that you can use when starting TotalView except
those that have to do with the GUI. (In some cases, TotalView displays an
error message if you try. In others, it just ignores what you've done

Here is a very small CLI script:

#

source make actions.tcl

#

dload fork_loop

dset ARGS DEFAULT {0 4 -wp}

dstep

catch {make actions fork loop.cxx} msg
puts $msg

This script begins by loading and interpreting the make_actions.tcl file,
which was described in Chapter 8, “Seeing the CLI at Work,” on page 149. It
then loads the fork_loop executable, sets its default startup arguments,
and then steps one source-level statement.

If you stored this in a file named fork_loop.tvd, here is how you would tell
TotalView to start the CLI and execute this file:

totalviewcli -s fork loop.tvd

Information on TotalView’s command-line options is in the “TotalView Com-
mand Syntax” chapter of the TotalView Reference Guide.

The following example places a similar set of commands in a file that you
would invoke from the shell:

#1/bin/sh

Next line exec. by shell, but ignored by Tcl because: \
exec totalviewcli-s "$0" "$@"

#

source make actions.tcl

#

dload fork_loop

dset ARGS DEFAULT {0 4 -wp}

dstep

catch {make_actions fork loop.cxx} msg

puts $msg

Notice that the only difference is the first few lines in the file. In the second
line, the shell ignores the backslash continuation character while Tcl pro-
cesses it. This means that the shell will execute the exec command while Tcl
will ignore it.

The CLI lets you start debugging operations in several ways. To execute
your program from within the CLI, enter a dload command followed by the
drun command. The following example uses the totalviewcli command to
start the CLI. This is followed by dload and drun commands. As this was
not the first time the file was run, breakpoints exist from a previous ses-
sion.

In this listing, the CLI prompt is “d1.<>". The information preceding the “=" symbol
indicates the processes and threads upon which the current command acts. The prompt
is discussed in “Command and Prompt Formats” on page 164.

% totalviewcli
Copyright 1999-2002 by Etnus, LLC. ALL RIGHTS RESERVED.
Copyright 1999 by Etnus, Inc.
Copyright 1989-1996 by BBN Inc.
dl.<> dload arraysAlpha #load the arraysAlpha program
1
dl.<> dactions # Show the action points
No matching breakpoints were found
dl.<> dlist —n 10 75
75 reall6_array (i, j) = 4.093215 * j+2
76 #endif
77 26 continue
78 27 continue
79
80 do 40 i = 1, 500
81 denorms(i) = x"00000001*
82 40 continue
83 do 42 i1 = 500, 1000
84 denorms(i) = x"80000001*

©
C
@,
5
Q

(s
>
®

O
L

dl.<> dbreak 80 # Add two action points

1

dl.<> dbreak 83

2

dl.<> drun # Run the program to the action point

This two-step operation of loading and then running allows you to set
action points before execution begins. It also means that you can execute
a program more than once. At a later time, you can use the drerun com-
mand to restart your program, perhaps sending it new command-line argu-
ments. In contrast, reentering the dload command tells the CLI to reload
the program into memory (for example, after editing and recompiling the
program). The dload command always creates new processes. This means
that you’ll get a new process each time and the old one will still be around.

The dkill command terminates one or more processes of a program started
by using dload, drun, or drerun. The following example continues where the
previous example left off:

di.<> dkill # kill process
dl.<> drun # runs arraysLINUX from start
dl.<> dlist —e —n 3 # show lines about current spot
79
800> do 40 1 = 1, 500
81 denorms(i) = x"00000001*"

dl.<> dwhat master_array # Tell me about master_array
In thread 1.1:
Name: master_array; Type: integer(100);
Size: 400 bytes; Addr: 0x140821310
Scope: ##arraysAlpha#arrays.F#check fortran_arrays
(Scope class: Any)

o

Address class: proc_static_var

(Routine static variable)
dl.<> dgo # Start program running
dl.<> dwhat denorms # Tell me about denorms
In thread 1.1:
Name: denorms; Type: <void>; Size: 8 bytes;

Addr: 0x1408214b8

Scope: ##arraysAlpha#arrays.F#check fortran_arrays

(Scope class: Any)

Address class: proc_static_var

(Routine static variable)

dl.<> dprint denorms(0) # Show me what’s stored
denorms(0) = 0x0000000000000001 (1)
di.<>

Because information is interleaved, you may not realize that the prompt
has appeared. It is always safe to use the Enter key to have the CLI redis-
play its prompt. If a prompt isn’t displayed after you press Enter, then you
know that the CLI is still executing.

CLI Output

A CLI command can either print its output to a window or return the output
as a character string. If the CLI executes a command that returns a string
value, it also prints the returned string. Most of the time, you won’t care
about the difference between printing and returning-and-printing. Either way,
the CLI displays information in your window. And, in both cases, printed
output is fed through a simple more processor. (This is discussed in more
detail in the next section.)

Here are two cases where it matters whether TotalView directly prints out-
put or returns and then prints it:

m When the Tcl interpreter executes a list of commands, TotalView only
prints the information returned from the last command. It doesn’t show
information returned by other commands.

m You can only assign the output of a command to a variable if the CLI re-
turns a command’s output. You can’t assign output that the interpreter
prints directly to a variable or otherwise manipulate it unless you save it
using the capture command.

For example, the dload command returns the ID of the process object that
was just created. The ID is normally printed—unless, of course, the dload
command appears in the middle of a list of commands. For example:

{dload test program;dstatus}

In this example, the CLI doesn’t display the ID of the loaded program since
dload was not the last command.

When information is returned, you can assign it to a variable. For example,
the next command assigns the ID of a newly created process to a variable:

set pid [dload test program]

Because you can’t assign the output of the help command to a variable,
the following doesn’t work:

set htext [help]

This statement assigns an empty string to htext because help doesn’t
return text; it just prints it.

To save the output of a command that prints its output, use the capture
command. For example, here’s how to place help command output into a
variable:

©
C
@,
5
Q

(s
>
®

O
L

set htext [capture help]

You can only capture the output from commands. You can’t capture the informational
messages displayed by the CLI that describe process state. If you are using the GUI,
TotalView also writes this information to the Root Window’s Log Pane. If it is being
written there, you can use the File > Save Pane command to write this information to
afile.

-

“more” Processing When the CLI displays output, it sends data through a simple more-like pro-
cess. This prevents data from scrolling off the screen before you view it.
After you see the MORE prompt, press Enter to see the next screen of data.
If you type g (followed by pressing the Enter key), the CLI discard any data
it hasn’t yet displayed.
You can control the number of lines displayed between prompts by using

the dset command to set the LINES_PER_SCREEN CLI variable. (For more
information, see the TotalView Reference Guide.)

Command Arguments

The default command arguments for a process are stored in the ARGS(num)
variable, where num is the CLI ID for the process. If you don’t set the
ARGS(num) variable for a process, the CLI uses the value stored in the
ARGS_DEFAULT variable. TotalView sets the ARGS_DEFAULT when you use
the —a option when starting the CLI or the GUI.

The —a option tells TotalView to pass everything that follows on the command line to the
program.

-

For example:
totalviewcli —a argument-1, argument-2, . . .

To set (or clear) the default arguments for a process, you can use dset to
modify the ARGS() variables directly, or you can start the process with the
drun command. For example, here is how you can clear the default argu-
ment list for process 2:

dunset ARGS(2)

The next time process 2 is started, the CLI uses the arguments contained in
ARGS_DEFAULT.

Fy

You can also use the dunset command to clear the ARGS_DEFAULT variable.
For example:

dunset ARGS_DEFAULT

All commands (except drun) that can create a process—including dgo,
drerun, dcont, dstep, and dnext—pass the default arguments to the new
process. The drun command differs in that it replaces the default argu-
ments for the process with the arguments that are passed to it.

Using Namespaces

CLI interactive commands exist within the primary Tcl namespace (::). Some
of the TotalView state variables also reside in this namespace. Seldom used
functions and functions that are not primarily used interactively reside in
other namespaces. These namespaces also contain most TotalView state
variables. (The variables that appear in other namespaces are usually
related to TotalView preferences. The namespaces that TotalView uses are:

TV: Contains commands and variables that you will use
when creating functions. While they can be used inter-
actively, this is not their primary role.

TV:GUI: Contains state variables that define and describe prop-
erties of the user interface such as window placement,
color, and the like.

If you discover other namespaces beginning with TV, you have found a
place containing internal functions and variables. These objects can (and
will) change and disappear, so don’t use them. Also, don’t create
namespaces that begin with TV, as you could cause problems by interfering
with built-in functions and variables.

The CLI's dset command lets you set the value of these variables. You can
have the CLI display a list of these variables by specifying the namespace.
For example:

dset TV::

Command and Prompt Formats

The appearance of the CLI prompt lets you know that the CLI is ready to
accept a command. This prompt lists the current focus, and then displays a
greater-than symbol (=) and a blank space. (The current focus is the pro-
cesses and threads to which the next command applies.) For example:

dl.<> The current focus is the default set for each command,
focusing on the first user thread in process 1.
g2.3> The current focus is process 2, thread 3; commands act

on the entire group.
t1.7> The current focus is thread 7 of process 1.

==

gW3.> All worker threads in the control group containing pro-
cess 3.

p3/3 All processes in process 3, group 3.

You can change the prompt’s appearance by using the dset command to
set the PROMPT state variable. For example:

dset PROMPT “Kill this bug! >~

Built-In Aliases and Group Aliases

Many CLI commands have an alias that allows you to abbreviate the com-
mand’s name. (An alias is one or more characters that Tcl interprets as a
command or command argument.)

The alias command, which is described in the TotalView Reference Guide, lets you create
your own aliases.

After a few minutes of entering CLI commands, you will quickly come to the
conclusion that it is much more convenient to use the command abbrevia-
tion. For example, you could type:

dfocus g dhalt

(This command tells the CLI to halt the current group.) It is much easier to
type:

fgh
While less-used commands are often typed in full, a few commands are

almost always abbreviated. These command include dbreak (b), ddown (d),
dfocus (f), dgo (g), dlist (I), dnext (n), dprint (p), dstep (s), and dup (u).

The CLI also includes uppercase “group” versions of aliases for a number of
commands, including all stepping commands. For example, the alias for
dstep is “s”; in contrast, “S” is the alias for “dfocus g dstep”. (The first com-
mand tells the CLI to step the process. The second steps the control

group.)
There are two ways in which group aliases differ from the kind of group-
level command that you would type:

m They do not work if the current focus is a list. The g focus specifier modi-
fies the current focus, and it can only be applied if the focus contains
just one term.

m They always act on the group, no matter what width is specified in the
current focus. Therefore, dfocus t S does a step-group command.

©
C
@,
5
Q
(s
>
®
O
L

Kinds of IDs

Effects of Parallelism on TotalView and CLI
Behavior

A parallel program consists of some number of processes, each involving
some number of threads. Processes fall into two categories, depending on
when they are created:

m Initial process
A preexisting process from the normal run-time environment (that is, cre-
ated outside TotalView) or one that was created as TotalView loaded the
program.

m Spawned process
A new process created by a process executing under the CLI's control.

TotalView assigns an integer value to each individual process and thread
under its control. This process/thread identifier can be the system identifier
associated with the process or thread. However, it can be an arbitrary value
created by the CLI. Process numbers are unique over the lifetime of a
debugging session; in contrast, thread numbers are only unique while the
process exists.

Process/thread notation lets you identify the component that a command
targets. For example, if your program has two processes, and each has two
threads, four threads exist:

Thread 1 of process 1
Thread 2 of process 1
Thread 1 of process 2
Thread 2 of process 2

You would identify the four threads as follows:

1.1—Thread 1 of process 1
1.2—Thread 2 of process 1
2.1—Thread 1 of process 2
2.2—Thread 2 of process 2

Multithreaded, multiprocess, and distributed program contain a variety of
IDs. Here is some background on the kinds used in the CLI and TotalView:

System PID This is the process ID and is generally called the PID.

Debugger PID This is an ID created by TotalView that lets it identify
processes. It is a sequentially numbered value begin-
ning at 1 that is incremented for each new process.
Note that if the target process is killed and restarted
(that is, you use the dkill and drun commands), the de-
bugger PID doesn’t change. The system PID, however,
changes since the operating system has created a new
target process.

System TID This is the ID of the system kernel or user thread. On
some systems (for example, AlX), the TIDs have no ob-

vious meaning. On other systems, they start at 1 and
are incremented by 1 for each thread.

TotalView thread ID
This is usually identical to the system TID. On some
systems (such as AIX where the threads have no obvi-
ous meaning), TotalView uses its own IDs.

pthread ID This is the ID assigned by the Posix pthreads package.
If this differs from the system TID, it is a pointer value
that points to the pthread ID.

©
C
@,
5
Q
(s
>
®
O
L

Controlling Program Execution

Knowing what’s going on and where you program is executing is simple in a
serial debugging environment. Your program is either stopped or running.
When it is running, an event such as arriving at a breakpoint can occur. This
event tells the debugger to stop the program. Sometime later, you will tell
the serial program to continue executing. Multiprocess and multithreaded
programs are more complicated. Each thread and each process has its own
execution state. When a thread (or set of threads) triggers a breakpoint,
TotalView must decide what it should do about the other threads and pro-
cesses. Some may stop; some may continue to run.

Advancing Debugging begins by entering a dload or dattach command. If you use the

Program dload command, you must use the drun command to start the program

Execution executing. These three commands work at process level and you can’t use
them to start an individual threads. (This is also true for the dkill com-
mand.)

To advance program execution, you enter a command that causes one or
more threads to execute instructions. The commands are applied to a P/T
set. (P/T sets are discussed in Chapters 2 and 11.) Because the set doesn’t
have to include all processes and threads, you can cause some processes
to be executed while holding others back. You can also advance program
execution by increments, stepping the program forward, and you can define
the size of the increment. For example, “dnext 3” executes the next three
statements and then pauses what you’ve been stepping.

Typically, debugging a program means that you have the program run, and
then you stop it and examine its state. In this sense, a debugger can be
thought of as tool that allows you to alter a program’s state in a controlled
way. And debugging is the process of stopping the process to examine its
state. However, the term “stop” has a slightly different meaning in a multi-
process, multithreaded program; in these programs, stopping means that
the CLI holds one or more threads at a location until you enter a command
that tells them to start executing again.

Action Points Action points tell the CLI that it should stop a program’s execution. You can
specify four different kinds of action points:

pr

A breakpoint (see dbreak in the TotalView Reference Guide) stops the process
when the program reaches a location in the source code.

A watchpoint (see dwatch in the TotalView Reference Guide) stops the process
when the value of a variable is changed.

A barrier point (see dbarrier in the TotalView Reference Guide), as its name
suggests, effectively prevents processes from proceeding beyond a point
until all other related processes arrive. This gives you a method for syn-
chronizing the activities of processes. (Note that you can only set a bar-
rier on processes; you can’t set then on individual threads.)

An evaluation point (see dbreak in the TotalView Reference Guidg) lets you pro-
grammatically evaluate the state of the process or variable when execu-
tion reaches a location in the source code. Evaluation points typically do
not stop the process; instead, they perform an action. In most cases, an
evaluation point stops the process when some condition that you spec-
ify is met.

Extensive information on action points can be found in “Setting Action Points” on
page 273.

Each action point is associated with an action point identifier. You use these
identifiers when you need to refer to the action point. Like process and
thread identifiers, action point identifiers are assigned numbers as they are
created. The ID of the first action point created is 1. The second ID is 2,
and so on. These numbers are never reused during a debugging session.

The CLI and TotalView only let you assign one action point to a source
code line, but you can make this action point as complex as you need it to
be. (Setting multiple action points is required by debuggers that limit what
you can do.)

Part V: Debugging

The chapters in this part of the TotalView Users Guide describe how
you actually go about debugging your programs. The preceding sec-
tions describe, for the most part, what you need to do before you
get started with TotalView. In contrast, the chapters in this section
are what TotalView is really about.

Chapter 10: Debugging Programs
Reading this chapter well help you find your way around
your program. It also tells you how to start it under
TotalView’s control, and the ways to step your program’s ex-
ecution. Of course, it also tells you how to halt, terminate,
and restart your program.

Chapter 11: Using Groups, Processes, and Threads
The stepping information in Chapter 10 describes the com-
mands and the different kinds of stepping. In a multipro-
cess, multithreaded program, you may need to finely control
what is executing. This chapter tells you how to do this.

Chapter 12: Examining and Changing Data
As your program executes, you will want to examine what
the value stored in a variable is. This chapter tells you how.

Chapter 13: Examining Arrays
Displaying the information in arrays presents special prob-
lems. This chapter tells how TotalView solves these prob-
lems.

Chapter 14: Setting Action Points
TotalView’s action points let you control how your pro-
grams execute and what happens when your program
reaches statements that you define as important. Action
points also let you monitor changes to a variable’s value.

Part V: Debugging

170

Debugging Programs 1 O

This chapter explains how to perform basic debugging tasks with
TotalView. The topics discussed are:

“Searching and Looking Up Program Elements” on page 171
“Viewing the Assembler Version of Your Code” on page 175
“Editing Source Text” on page 177

“Manipulating Processes and Threads” on page 177
“Executing to a Selected Line” on page 186

“Executing to a Selected Line” on page 186

“Displaying Your Program’s Thread and Process Locations” on page 187
“Continuing with a Specific Signal” on page 188

“Deleting Programs” on page 189

“Restarting Programs” on page 189

“Checkpointing” on page 189

“Fine Tuning Shared Library Use” on page 190

“Setting the Program Counter” on page 194

“Interpreting the Status and Control Registers” on page 195

Searching and Looking Up Program
Elements

TotalView provides several ways for you to navigate and find information in
your source file. Topics in this section are:

m “Searching for Text” on page 172

“Looking for Functions and Variables” on page 172
“Finding the Source Code for Functions” on page 173
“Finding the Source Code for Files” on page 174

u
[
n
m “Resetting the Stack Frame” on page 174

Searching for Text

Figure 117: Edit > Find Dialog
Box

Looking for
Functions and
Variables

Figure 118: View = Lookup
Variable Dialog Box

You can search for text strings in most windows with the Edit > Find com-
mand. After invoking this command, TotalView displays the dialog box
shown in Figure 117.

Fird
[|
J Cane Denpipe | CMECOEN T
| 3 im A - I:l_-'“ w L
[} Krap Dhming
Findd | Clria Haip I'

E’ —

Controls in this dialog box let you perform case-sensitive searches, con-
tinue searching from the beginning of the file if the string isn’t found in the
region beginning at the currently selected line and ending at the last line of
the file, and keep the dialog box up between searches. You can also tell
TotalView if it should search towards the bottom of the file (Down) or the

top (Up).
After you have found a string, you can find another instance of it by using
the Edit > Find Again command.

Having TotalView locate a variable or a function is usually easier than scroll-
ing through your sources to look for it. Do this with the View > Lookup
Function and View > Lookup Variable commands. Figure 118 shows the dia-
log box displayed by these commands.

[|

Frofurad icoga
rhm_mpp«mm_mp rromnam

w Funchiand Fis * Warakis

If TotalView doesn’t find the name and it can find something similar, it dis-
plays a dialog box containing the names of functions that could match.
(See Figure 119 on page 173.)

If the one you want is listed, click on its name and then, select OK to have
it displayed in the Source Pane.

Figure 119: Ambiguous
Function Dialog Box

Finding the Source
Code for Functions

Figure 120: View = Lookup
Function Dialog Box

Figure 121: Undive/Dive
Controls

Pipe_rin byps_nfodoaml che™) i

4 Shims Full palh nares

-".I'.Ii 1 [] | Help

o
The View > Lookup Function command lets you search for a function’s 'U
declaration. Here’s the dialog box displayed after you select this command. o)
c
. . Q
CLI: dlist function-name Q
S
Q
-
<
o
Q
rrues o
I | 2

Fraferd icdpa

|1m_mp--nm_mp e

® Funclian/ Fie o ‘Yariakls

" Cancel Hap |

After locating your function, TotalView displays it in the Source Pane. If you
didn’t compile the function using —g, TotalView displays disassembled
machine code.

When you want to return to the previous contents of the Source Pane, use
the undive icon located in the upper right corner of the Source Pane and
just below the Stack Frame Pane. In the following figure, a square sur-
rounds the undive icon.

Id bkt Und A EAFEL (-1
trckss S (L) !
pits AuNEHEHNESE |

o
T | .jI -
T

You can also use the View > Reset command to discard the dive stack so
that the Source Pane is displaying the PC it displayed when you last
stopped execution.

Figure 122: Ambiguous
Function Dialog Box

Finding the Source
Code for Files

Resetting the
Stack Frame

The File > Edit Source command (see ““Editing Source Text” on page 177 for
details) lets you display a file in a text editor. The default editor is vi. How-
ever, TotalView will use the editor named in an EDITOR environment vari-
able or the editor you name in the Source Code Editor field of the File >
Preferences’s Launch Strings Page.

Another method of locating a function’s source code is to dive into a
source statement in the Source Pane that shows the function being called.
After diving, you'll see the source.

Resolving Ambiguous Names
Sometimes the function name you specify is ambiguous. For example, you
may have specified the name of:

m A static function, and your program contains different versions of it.

m A member function in a C++ program, and multiple classes have a
member function with that name.

m An overloaded function or a template function.

Figure 122 shows the dialog box that TotalView displays when it encounters
an ambiguous function name. You can resolve the ambiguity by clicking on
the function you desire.

J mp e il
il D gL PO P Rl) T DOl Bl R
i arn L gL UG F aiml)] © COFDaEal)El, AT

on | |:=|||:|1| Hap |

You can display a file’s source code by selecting the View > Lookup
Function command and entering the file name in the dialog box shown in
Figure 123 on page 175.

If a header file contains source lines that produce executable code, you
can enter its name here.

After moving around your source code to look at what’s happening in dif-
ferent places, you can return to the executing line of code for the current
stack frame by selecting the View > Reset command. This command places
the PC arrow onto the screen.

Figure 123: View > Lookup
Function Dialog Box

Table 8: Assembler Code
Display Styles

Fiaieradl iliga

|"lr'q:n_m|;:i| sl ingp crosrepim

*® Funclian i Fie o ¥Varakls

| fal" Carcel Halp

This command is also useful when you want to undo the effect of scrolling
or when you move to different locations using, for example, the View >
Lookup Function command.

If the program hasn’t started running, the View > Reset command displays
the first executable line in your main program. This is useful when you are
looking at your source code and want to get back to the first statement
your program will execute.

Viewing the Assembler Version of Your
Code

You can display your program in source form or as assembler. Here are the
commands that you can use:

Source code (Default)
Use the View > Source As > Source command.

Assembler code Use the View > Source As > Assembler command.

Both Source and assembler
Use the View > Source As > Both command.
The Source Pane divides into two parts. The left con-
tains the program’s source code and the right contains
the assembler version of this code. You can set break-
points in either of these panes. Note that setting an ac-
tion point at the first instruction after a source
statement, is equivalent to setting it at that source
statement.

The commands in the following table tell TotalView to display your assem-
bler code by using symbolic or absolute addresses:

Command TotalView Shows

View = Assembler > By Address Absolute addresses for locations and
references; this is the default

View > Assembler > Symbolically Symbolic addresses (function names and
offsets) for locations and references

P

(BN
o
O
D
o
c

(o]

=
>

(o]
o
-
o

(@]
-
<8
3
[%2]

Viewing the Assembler Version of Your Code

You can also display assembler instructions in a Variable Window. For more informa-
E tion, see “Displaying Machine Instructions” on page 236.

The following three figures illustrate the different ways TotalView can dis-
play assembler code. In Figure 124, the second column (the one to the
right of the line numbers) shows the absolute address location. The fourth
column shows references using absolute addresses.

Figure 124: Address Only FUNCI T 810 N fork_loag o e |

(Absolute Addresses) TR B AT e |
D] Bl 563 ke IETi]

D] B0 653 05 xTd gm Bl [B
Dol ELM 56 e =i
BT IS RT MEed arll Edighs_Towaqai)

D] B0 56 1 2 =

Bl 3 a O=Ef {
Coll B R 1= r
Dl B S ah Mxtf

EIF D] B 56 OmE] ompl B do_gogw
D] B4 B3 ad Ol
Ll H W a s 1585
[l TR 9 il
[nd B4 BT Oalis
D] B0 SeR D=
D=l e =i
Ol M ETES O=Td e Sl Ll A D d
Dol B B)
Ea SeTLE U=kl mavl 4 vl . minn

ool B SRA R (=S
=M T l=fc

[l B ETE B Oy ol fo_gequ_irelex, o {

D] B4 BT 20 a5 i|

I |

This next figure shows information symbolically. The second column shows
locations using functions and offsets.

Figure 125: Assembler Only FUNCHEN S i Yok_ioap toie S
(Symbolic Addresses) wraTe(Ful] ST g
ara ke (wodde] « 0217 K]
arorw wouet | slxTil =74 = anzcw [wazd®) +ExTE
ara T e it | 0T [1e1]
BT spopeieodit| =Tl Mesd gull ELghE_lanpi{y
af0pelEolde | «0AT4 03
e lwroidt | «(xT15 I=Ef
ErarE oLt Ul U==F
ST e CEni st | «lRT? M==F
EIF sr w0l) «0ATE 133 empl B _sea g
rroce (woidt | alia Tl el
wroirn (o] ixTae =iz
srat e landd] <xTh 10
apun & Lo | =Ty i
aroie teoLd? | « B4 Td et]
erornfynidd] slxTae [T]
ETLE B (el d | ST a=Td e pnsps {raade) +ivhil
SHE (oL | +(hEn o])
arma e (walde | oaE] 150 TES P ITTI T
erorw v i] aleEl S
wrair e CanLdt | < il 1+ -y
ApT P T AT | + DR ik cupl (s _indie, s
aiw i (ool | o (AES [T i

The final “assembler” figure (see Figure 126 on page 177) shows the split
Source Pane, with one side showing the program’s source code and the
other showing the assembler version. In this example, the assembler is
shown symbolically. How it is shown depends upon whether you've
selected View > Assembler > By Address or View > Assembler >
Symbolically.

176 Chapter 10: Debugging Programs

Figure 126: Both Source and
Assembler (Symbolic Addresses)

Using the Toolbar
to Select a Target

1H]

Figure 127: The Toolbar

Functian araim in Kok _isap. s o

atruch Eissvsl ©eE B EEl

T
5E6 Lars bewd _addi
a5 ink “Euoa

Editing Source Text

The File > Edit Source command lets you examine the current routine in a
text editor. TotalView uses an editor launch string to determine how to start

your editor. TotalView expands this string into a command that TotalView

sends to the sh shell.

The fields within the Launch Strings Page of the File > Preferences Window
let you name the editor and the way TotalView launches the editor. The
online help for this page contains information on setting this preference.

Manipulating Processes and Threads

Topics discussed in this section are:

m “Using the Toolbar to Select a Target” on page 177

m “Stopping Processes and Threads” on page 178

m “Updating Process Information” on page 178

m “Holding and Releasing Processes and Threads” on page 179
m “Examining Groups” on page 180

m “Displaying Groups” on page 182
[|
|
[|
[|
|

(BN
o
O
D
o
c

(o]

=
>

(o]
o
-
o

(@]
-
<8
3
[%2]

“Placing Processes into Groups” on page 182
“Starting Processes and Threads” on page 182
“Creating a Process Without Starting It” on page 183
“Creating a Process by Single-Stepping” on page 183
“Stepping and Setting Breakpoints” on page 184

The Process Window’s toolbar has three groups of buttons. The first group,
which is a single pulldown list, defines the focus of the command selected in
the second group of the toolbar. The third group changes the process and
thread being displayed. Figure 127 shows this toolbar.

Tawas

Pioaaa

Froomss [Wodars) |

Process [Loctdep)| TR Erocess Theed fcyon Paml Teoje osdom Haip
Draup HCarand E 30| Ml | Bied © Slap] Ol | Fun To| Maes | Shgi P | P | Ta| Ta
Gemup (Hhare)

Gy (A BTLETR|

Grup (.o eg]

Stopping
Processes and
Threads

-

|

Updating Process

Information

-

When you are doing something to a multi-process, multi-threaded pro-
gram, TotalView needs to know which processes and threads it should act
upon. In the CLI, you specify this target using the dfocus command. When
using the GUI, you specify the focus using this pulldown. For example, if
you select Thread, and then select the Step button, TotalView steps the
current thread. In contrast, if you select Process Workers and then select
the Go button, TotalView tells all the processes that are in the same work-
ers group as the current thread (this thread is called the thread of interest).

Chapter 11, “Using Groups, Processes, and Threads,” on page 197 fully describes how
TotalView manages processes and threads. While TotalView gives you the ability to con-
trol the precision your application requires, most applications do not need this level of
interaction. In almost all cases, using the controls in the toolbar gives you all the con-
trol you need.

To stop a group, process, or thread, select a Halt command from the
Group, Process, or Thread pulldown menu on the toolbar.

CLl: dhalt
Halts a group, process, or thread. Setting the focus changes the
scope.

The three Halt commands differ in the scope of what they halt. In all cases,
TotalView uses the current thread (which is called the thread of interest or
TOI) to determine what else it will halt. For example, suppose you select
Process > Halt. This tells TotalView to determine the process in which the
TOl is running. It will then halt this process. Similarly, if you select Group >
Share > Halt, TotalView determines what processes are in the share group
the current thread participates in. It then stops all of these processes.

For more information on the Thread of Interest, see “Defining the GOI, POI, and TOI”
on page 197.

When you select the Halt button in the toolbar instead of the commands
within the menubar, TotalView decides what it should stop based on what is
set in the two toolbar pulldown lists.

After entering a Halt command, TotalView updates any windows that can be
updated. When you restart the process, execution continues from the point
where TotalView had stopped the process.

Normally, TotalView only updates information when the thread being exe-
cuted stops executing. You can force TotalView to update a window if you
use the Window > Update command. You’ll need to use this command if
you want to see what a variable’s value is while your program is executing.

When you use this command, TotalView momentarily stops execution so that it can
obtain the information it needs. It then restarts the thread.

Holding and
Releasing
Processes and
Threads

When you are running a multiprocess or multithreaded program, there will
be many times when you will want to synchronize execution to the same
statement. You can do this manually using a hold command, or you can let
TotalView do this by setting a barrier point.

When a process or a thread is held, any command that it receives that tells
it to execute are ignored. For example, assume that you place a hold on a
process in a control group that contains three processes. After you select
Group > Control > Go, two of the three processes will resume executing.
The held process ignores the Go command.

At a later time, you will want to run whatever is being held. Do this using a

Release command. When you release a process or a thread, you are telling

it that it can run. But you still need to tell it to execute, which means that it
is waiting to receive an execution command such as Go, Out, or Step.

Manually holding and releasing processes and threads is useful in these
instances:

m When you need to run a subset of the processes and threads. You can
manually hold all but the ones you want to run.

m When a process or thread is held at a barrier point and you want to run it
without first running all the other processes or threads in the group to
that barrier. In this case, you’d release the process or the thread manu-
ally and then run it.

(BN
o
O
D
o
c

(o]

=
>

(o]
o
-
o

(@]
-
<8
3
[%2]

TotalView can also hold a process or thread if it stops at a barrier break-
point. You can manually release a process or thread being held at a barrier
breakpoint. See “Barrier Points” on page 283 for more information on manu-
ally holding and releasing barrier breakpoint.

When TotalView is holding a process, the Root and Process Windows dis-
play a held indicator, which is the letter H. When TotalView is holding a
thread, it displays the letter h.

Here are four ways to hold or release a thread, process, or group of pro-
cesses:

m You can hold a group of processes with the Group > Hold command.

m You can release a group of processes with the Group > Release com-
mand.

m You can toggle the hold/release state of a process by selecting and clear-
ing the Process > Hold command.

m You can toggle the hold/release state of a thread by selecting and clear-
ing the Thread > Hold command.

CLl: dhold and dunhold
Setting the focus changes the scope.

If a process or a thread is running when you enter a hold or release com-

mand, TotalView stops the process or thread, and then holds it.TotalView
allows you to hold and release processes independently from threads.

Py

Examining Groups

Notice that the Process pulldown menu contains a Hold Threads and a
Release Threads command. While they appear to do the same thing, they
are used in a slightly different way. If you use Hold Threads on a multi-
threaded process, you'll be placing a hold on all threads. This is seldom
what you want. If you then uncheck the Threads > Hold command,
TotalView allows you to release the one you want. This is an easy way to
select one or two threads when your program has a lot of threads. You can
verify that you’re doing the right thing by looking at the thread’s status in
the Root Window’s Attached pane.

CLl: dhold -thread

dhold —process
dunhold -thread

The following table presents examples of using hold commands

Held/Release State

UL

What Can Be Run Using Process > Go

This figure shows a process with three threads. Before you do
anything, all threads within the process can be run.

IRENE

Select the Process > Hold toggle. The button will be
depressed. The blue indicates that you’ve hold the process.
Nothing will run when you select Process > Go.

UL

Go to the Threads menu. Notice that the button next to the
Hold command isn’t selected. This is because the thread hold
state is independent from the process hold state.

Select it. The circle indicate that thread 1 is held. At this
time, there are two different holds on thread 1. One is at
process level, the other is at thread level.

Nothing will run when you select Process > Go.

U4

Go back to the Process menu and reselect the Hold
command.
After you select Process > Go, the 2nd and 3rd threads run.

Ipigl

Select Process > Release Threads. This releases the hold
placed on the first thread by the Thread > Hold command.
After you select Process > Go, all threads run.

When you debug a multiprocess program, TotalView adds processes to
both a control and a share group as the process starts. These groups are
not related to either UNIX process groups or PVM groups. (See Chapter 2,

“Understanding Threads,

groups.)

Processes, and Groups,” on page 15 for information on

Because a program can have more than one control group and more than
one share group, it decides where to place a process based on the type of

system call (fork() or execve()) that created or changed the process. The
two types of process groups are:

Control Group Includes the parent process and all related processes.
A control group includes children that a process forks
(processes that share the same source code as the par-
ent). It also includes forked children that subsequently
call a function such as execve(). That is, a control group
can contain processes that don’t share the same
source code as the parent.

Control groups also include processes created in paral-
lel programming disciplines like MPI.

Share Group Is the set of processes in a control group that share the
same source code. Members of the same share group
share action points.

See Chapter 11, “Using Groups, Processes, and Threads,” on page 197 for a complete
discussion of groups.

(-

TotalView automatically creates share groups when your processes fork
children that call execve() or when your program creates processes that use
the same code as some parallel programming models such as MPI do.

TotalView names processes according to the name of the source program.
Here are the naming rules it uses:

(BN
o
O
D
o
c

(o]

=
>

(o]
o
-
o

(@]
-
<8
3
[%2]

m It names the parent process after the source program.

m The name for forked child processes differs from the parent in that
TotalView appends a numeric suffix (.n). If you’re running an MPI pro-
gram, the numerical suffix is the process’s rank in COMM_WORLD.

m If a child process calls execve() after it is forked, TotalView places a new
executable name within angle brackets (<=>).

In Figure 128, assume that the generate process doesn’t fork any children,
and that the filter process forks two child process. Later, the first child
forks another child and then calls execve() to execute the expr program. In
this figure, the middle column shows the names that TotalView will use.

Figure 128: Example of Control

Groups and Share Groups Process Groups Process Names Relationship
filter parent process #1
| Share Group 1 —I: filter.1 child process #1
g(r)cr;l%)l filter.2 child process #2

Share Group 2 " filter<expr=>.1.1 grandchild process #1

gc:gltjrglz —EShare Group 3 - generate parent process #2

Displaying Groups To display a list of process and thread groups, select the Root Window’s
Groups Tab. (See Figure 129.)

CLl: dptsets

Figure 129: Root Window:;
Groups Page

ol e R A e N —
Amuched | Unafiscnesd| osps | Log |))
Er{l T]
-.! i i.-\.l.l.:'.'rr '.::wl P .:- "|
e _larplldls Cansrel brong 184 /l./’/e
T _LaoplIHTR: Warks s Barags (200
foah,_laeplINifd Shice Qroug XD
arran TG Wackarw Gmaop [#55 .| 4]
AFT 1l,l__IIE.-\. |::-\. -.:!. Eracp !ll-l-]
Clrpgy s bery =
T4 thrwatn an grog 1.1 Lockstsp Geoug A1 53 [
! 1 ini _-.I-in'- .J
13 e} T in —salact
1.4 L1g} T an __ aslect
L T ini TN
i P g TR TN]
@ Name of executable
® Type of process or thread group
© Select a group in the top pane to display members
in the bottom pane
O Group number
When you select a group in the top list pane, TotalView updates the bottom
pane to show the group’s members. After TotalView updates the bottom
pane, you can dive into anything shown there.
Placing Processes TotalView uses your executable’s name to determine the share group the
into Groups program belongs to. If the path names are identical, it assumes they are

the same program. If the path names differ, TotalView assumes they are dif-
ferent even if the filename within the path name is the same and will place
them in different share groups.

Starting Processes To start a process, go to the Process Window and select a Go command
and Threads from the Group, Process, or Thread pulldown menus.

After you select a Go command, TotalView decides what it will run based on
the current thread. It uses this thread, which is called the Thread of Interest
(TOI), to decide what other threads it should run. For example, if you enter
Group > Workers > Go, TotalView continues all threads in the workers
group associated with this thread.

CLl: dfocus g dgo
Abbreviation: G

The commands you will use most often are Group > Go and Process > Go.
The Group > Go command creates and starts the current process and all

-

Creating a Process
Without Starting It

Creating a Process
by Single-Stepping

Table 9: Creating a Process
by Stepping

other processes in the multiprocess program. There are some limitations,
however. TotalView only resumes a process if it:

m Is not being held.
m Already exists and is stopped.
m Is at a breakpoint.

Using a Group > Go command on a process that’s already running starts
the other members of the process’s control group.

CLl: dgo

If the process hasn’t yet been created, a Go commands creates and starts
it. Starting a process means that all threads in the process resume execut-
ing unless you are individually holding a thread.

TotalView disables the Thread = Go command if asynchronous thread control is not
available. If you enter a thread-level command in the CLI when asynchronous thread
controls aren’t available, TotalView will try to perform an equivalent action. For exam-
ple, it will continue a process instead of a thread.

For a single-process program, Process > Go and Group > Go are equiva-
lent. For a single-threaded process, Process > Go and Thread > Go are
equivalent.

(BN
o
O
D
o
c

(o]

=
>

(o]
o
-
o

(@]
=
<8
3
[%2]

The Process > Create command creates a process and stops it before the
first statement in your program executes. If you had linked a program with
shared libraries, TotalView allows the dynamic loader to map into these

libraries. Creating a process without starting it is useful when you need to:

m Create watchpoints or change the values of global variables after a pro-
cess is created, but before it runs.
m Debug C++ static constructor code.

CLl: dstepi
While there is no equivalent to the Process > Create command, exe-
cuting dstepi produces the same effect.

The TotalView single-stepping commands allow you to create a process and
run it to a location in your programs. The single-stepping commands avail-
able from the Process menu are as shown in the following table:

GUI Command CLI Command Creates the process and ...

Process > Step dfocus p dstep Runs it to the first line of the main()
routine.

Process > Next dfocus p dnext Runs it to the first line of the main()
routine; this is the same as Process >
Step.

Process > dfocus p dstepi Stops it before any of your program

Step Instruction executes.

Fy

Stepping and
Setting
Breakpoints

Figure 130: Action Point
Properties and Address Dialog
Boxes

GUI Command CLI Command Creates the process and ...

Process > dfocus p dnexti Runs it to the first line of the main()
Next Instruction routine. this is the same as Process >
Step.
Process = Run To dfocus p duntil Runs it to the line or instruction selected

in the Process Window.

If a group-level or thread-level stepping command creates a process, the
behavior is the same as if it were a process-level command.

Chapter 11, “Using Groups, Processes, and Threads,” on page 197 contains a detailed
discussion of setting the focus for stepping commands.

Several of the single-stepping commands require that you select a source
line or machine instruction in the Source Pane. To select a source line,
place the cursor over the line and click your left mouse button. If you select
a source line that has more than one instantiation, TotalView will try to do
the right thing. For example, if you select a line within a template so you
can set a breakpoint on it, you’ll actually set a breakpoint on all of the tem-
plate’s instantiations. If this isn’t what you want, select the Location button
in the Action Point > Properties Dialog Box to change which instantiations
will have a breakpoint. (See Chapter 10, “Debugging Programs,” on page 171.)

] =r=r .. I 7
& Eraskpart - Base w Evelldls P2
Shas Hi, 8og |
* Gp - o —
-« PrEcan
-r = W Hahd il 4 OS] i8] B =3
B Hoidardoulviee-erl[roae] dosble fed=h
B Fede e Pl [Conel aRer BT S slea
B Hakdacn e aioonss char Ajs
B HaWdd Pl >cis o il Tia L)1
B B Hoisrdara] ke prljcone g il Aj-08
Licaiion sl ine.c B Holdarleig doubles dsliciml lere) doukle £
i !hd.h i on gl W Holdasiarg on g il e setioaral g long il
E Plani n mo gros
il]
o | [I - -
T Al | Mina |
(511 | Canc i

If TotalView cannot figure out which instantiation to set a breakpoint at, it
will display its Address Dialog Box. (See Figure 131 on page 185.)

Figure 131: Ambiguous
Addresses Dialog Box

Stepping into
Function Calls

in

WKiwik
S

[et

Using Stepping Commands

While different programs have different requirements, the most common
stepping mode is to set group focus to Control and the target to Process or
Group. You can now select stepping commands from the Process or Group
menus or use commands in the toolbar.

(BN
o
O
D
o
c

(o]

=
>

(o]
o
-
o

(@]
-
<8
3
[%2]

CLl: dfocusg
dfocus p

Here are some things to remember about single-stepping commands:

m To cancel a single-step command, put the cursor in the Process Window
and select Group > Halt or Process > Halt.

CLl: dhalt

m If your program reaches a breakpoint while stepping over a function,
TotalView cancels the operation and your program stops at the break-
point.

m If you enter a source-line stepping command and the primary thread is
executing in a function that has no source-line information, TotalView
performs an assembler-level stepping command.

When TotalView steps through your code, it steps a line at a time. This

means that if you have more than one statement on a line, a step instruc-
tion executes all of the instructions.

The stepping commands execute one line in your program. If you are using
the CLI, you can use a numeric argument that indicates how many source
lines TotalView should step. For example, here’s the CLI instruction for
stepping three lines:

=

Stepping Over
Function Calls

-

dstep 3

If the source line or instruction contains a function call, TotalView steps
into it. If TotalView can’t find the source code and the function was com-
piled with —g, it displays the function’s machine instructions.

It is possible that you might not realize your program is calling a function.
For example, if you've overloaded an operator, you'll step into the code
that defines the overloaded operator.

If the function being stepped into wasn’t compiled with —g, TotalView will always step
over the function.

The TotalView GUI has eight Step commands and eight Step Instruction
commands. These commands are located on the Group, Process, and
Thread pulldowns. The difference is the focus.

CLl: dfocus ... dstep
dfocus ... dstepi

When you step over a function, TotalView stops execution when the pri-
mary thread returns from the function and reaches the source line or
instruction after the function call.

The TotalView GUI has eight Next commands that execute a single source
line while stepping over functions, and eight Next Instruction commands
that execute a single machine instruction while stepping over functions.
These commands are on the Group, Process, and Thread menus.

CLl: dfocus ... dnext
dfocus ... dnexti

Executing to a Selected Line

If you don’t need to stop execution every time execution reaches a specific
line, you can tell TotalView to run your program to a selected line or
machine instruction. After selecting the line on which you want the pro-
gram to stop, invoke one of the eight Run To commands defined within the
TotalView GUI. These commands are on the Group, Process, and Thread
menus.

CLl: dfocus ... duntil

Executing to a selected line is discussed in greater depth in Chapter 11,
“Using Groups, Processes, and Threads,” on page 197.

If your program reaches a breakpoint while running to a selected line,
TotalView stops at that breakpoint.

Executing to the
Completion of a
Function

If your program calls recursive functions, you can select a nested stack
frame in the Stack Trace Pane. When you do this, TotalView determines
where to stop execution by looking at:

m The frame pointer (FP) of the selected stack frame.
m The selected source line or instruction to determine.

CLl: dup and ddown

You can step your program out of a function by using the Out commands.
The eight commands within the TotalView GUI are located on the Group,
Process, and Thread menus.

CLI: dfocus ... dout

If the source line that is the goal of the Out operation has more than one
statement, TotalView will stop execution just after the routine from which it
just emerged. For example, suppose this is your source line:

routinel; routine2

Suppose you step into routinel, then use an Out command. While the PC
arrow hasn’t moved, the actual PC is just after routinel. This means that if
you use a step command, you will step into routine2.

(BN
o
O
D
o
c

(o]

=
>

(o]
o
-
o

(@]
=
<8
3
[%2]

TotalView’s PC arrow will not move, when the source line only has one
statement on it. The internal PC will, of course, have changed.

You can also return out of several functions at once, by selecting the rou-
tine in the Stack Trace Pane that you want to go to, and then selecting an
Out command.

If your program calls recursive functions, you can select a nested stack
frame in the Stack Trace Pane to indicate which instance you’ll be running
out of.

Displaying Your Program’s Thread and
Process Locations

You can see which processes and threads in the share group are at a loca-
tion by selecting a source line or machine instruction in the Source Pane of
the Process Window. TotalView dims thread and process information in the
Root Window’s Attached Page for share group members if the thread or
process is not at the selected line. TotalView considers a process to be at
the selected line if any of the threads in the process are at that line. Select-
ing a line in the Process Window that is already selected removes the dim-
ming in the Attached Page.

CLl: dstatus

Figure 132: Dimmed Process
Information in the Root Window

The Attached Page reflects the line that you last selected. If you have sev-
eral Process Windows open, the information in the Attached Page will
change depending on the line you selected last in each Process Window.
The display can also change after an operation that changes the process
state or when you issue a Window > Update command.

Figure 132 shows an Attached Page with dimmed process information. In
this example, the parallel program was run to a barrier breakpoint, and one
process (dmpirun<cpi=>.1) was stepped to the next source line.

Hip
G | g |
Ewpamun in _ wsibd i
in __ wuind

1n mEIn

dip dtirrEple L (] theesds
in main

is =

=ikl e 5 1] Thrends
Sapazunicpis. 1 (1 thoasds)

-l

Since the MPI starter process (dmpirun) isn’t in the same share group as
the processes running the cpi program, TotalView doesn’t dim its process
information.

Continuing with a Specific Signal

Letting your program continue after sending it a signal is useful when your
program contains a signal handler. Here’s how you tell TotalView to do this:
1 Select the Process Window’s Thread > Continuation Signal command.
(See Figure 133 on page 189.)
2 Select the signal to be sent to the thread and then select OK.
The continuation signal is set for the thread contained in the current Pro-
cess Window. If the operating system can deliver multi-threaded signals,

you can set a separate continuation signal for each thread. If it can’t, this
command clears continuation signals set for other threads in the process.

3 Continue execution of your program with commands such as Process >
Go, Step, Next, or Detach.

TotalView continues the threads and sends it the specified signals.

You can clear the continuation signal by selecting signal O.

Figure 133: Thread >
Continuation Signal Dialog Box

Cha i P 10 Daflnus thised 'with

1 SIGSEG il
ZiGIER

13 SIGPFE J
4 SI0ALHS
| HGTERM
TEFLT
ILr

Ok Cancai Hap |

Deleting Programs

To delete all the processes in a control group, use the Group > Delete com-
mand. The next time you start the program, for example, by using the
Process > Go command, TotalView creates and starts a fresh master pro-
cess.

CLl: dfocus g dkill

Restarting Programs

You can use the Group > Restart command to restart a program that is run-
ning or one that is stopped but hasn’t exited.

CLl: drerun

If the process is part of a multiprocess program, TotalView deletes all
related processes, restarts the master process, and runs the newly created
program.

The Group > Restart command is equivalent to the Group > Delete com-
mand followed by the Process > Go command.

Checkpointing

On SGI IRIX and IBM RS/6000 platforms, you can save the state of selected
processes and then use this saved information to restart the processes
from the position where they were saved. For more information, see the

(BN
o
O
D
o
c

(o]

=
>

(o]
o
-
o

(@]
-
<8
3
[%2]

Fine Tuning Shared Library Use

Figure 134: Checkpoint and
Restart Dialog Boxes

190

Process Window'’s Tools > Create Checkpoint and Tools > Restart
Checkpoint commands in TotalView’s Help information. (See Figure 134.)

Fine Tuning Shared Library Use

When TotalView encounters a reference to a shared library, it normally reads
in all of that library’s symbols. In some cases, you may need to explicitly
read in a library before TotalView would automatically read it in.

On the other hand, you may not want TotalView to read in and process a
library’s loader and debugging symbols. In most cases, reading these sym-
bols occurs quickly. However, if your program uses large libraries, you can
increase performance by telling TotalView that it shouldn’t read these sym-
bols.

For more information, see:

m “Preloading Shared Libraries” on page 191
m “Controlling Which Symbols TotalView Reads” on page 192

Chapter 10: Debugging Programs

Preloading Shared
Libraries

Figure 135: Tools > Manage
Shared Libraries Dialog Box

Figure 136: Stopping to Set a
Breakpoint Question Box

As your program executes, it can call dlopen() to access code contained in
shared libraries. In some cases, you may need to do something from within
TotalView that requires you to preload the information within the library.
For example, you may need to refer to one of a library’s functions in an
evaluation point or in a Tools > Evaluate command. If you use the func-
tion’s name before TotalView reads the dynamic library, you’ll get an error
message.

Use the Tools > Manage Shared Libraries command to tell TotalView to
open a library. After selecting this command, TotalView displays the follow-
ing dialog box:

Ognamic Likviri e i Sneypsspia
{1 b Y 2 el i EbSeon i LD TIO (P 02 Vel e il phil e 8|15 i

Lol Unicad |

| Cime Help

CLl: ddlopen

This CLI command gives you more ways to control how a library’s
symbols are used than exist in the GUI.

Selecting the Load button tells TotalView to display a file explorer dialog
box that lets you navigate through your computer’s file system to locate
the library. After selecting a library, TotalView reads it and displays a ques-
tion box that lets you stop execution to set a breakpoint:

| Procsss 1 b ioagssd e Dbty rowsbanyiimaiistiony BLITATION B8 _ [ings
B | ctop e proceindo yeu can et sespents 1

=] 1] =

Fan i He |

TotalView may not read in information symbol and debugging information when you
use this command. See “Controlling Which Symbols TotalView Reads” on page 192 for
more information.

o

(BN
o
O
D
o
c

«Q

=
>

(@]
o
-
o

(@]
=
<8
3
w

Controlling Which
Symbols TotalView
Reads

Figure 137: File > Preferences:
Dynamic Libraries Page

When debugging large programs with large libraries, reading and parsing
symbols can impact performance. This section describes how you can min-
imize the impact that reading this information has upon your debugging
session.

Using the preference settings and variables described in this section will always increase
performance. However, for most programs, even large ones, the difference is inconsequen-
tial. If, however, you are debugging a very large program with large libraries, significant
performance improvements can occur.

A shared library contains, among other things, loader and debugging sym-
bols. Typically, loader symbols are read quite quickly. Debugging symbols,
on the other hand, may require considerable processing. TotalView’s
default behavior is, of course, to read all symbols. You can change this
behavior by telling TotalView that it should only read in loader symbols or
even tell it that it should not read in any symbols.

Specifying Which Libraries are Read
After invoking the File > Preferences command, select the Dynamic Libraries
Page.

r 7 Ak e migp when nadeg dynamic Bpraney E._ﬂ-uru |

B |he e AU aichey S the T paih e fosest maich scoen Parts |

- il |

g

| J Lmarce Giengy |
|

| Apses 1| REEES) i

i
| P

Leml i ronger iymbms] oo e Blrmee S

: — WOl P Iy Fotr |

The lower portion of this page lets you enter the names of libraries for
which you need to manage the information that TotalView reads.

When you enter a library name, you can use the * (asterisk) and ? (question
mark) wildcard characters. These characters have their standard meaning.
Here’s what placing entries into these areas does:

all symbols This is TotalView’s default operation. You only need to
enter a library name here if it would be excluded by a
wildcard in the loader symbols and no symbols areas.

==

Figure 138: Load All Symbols
in Stack Context Menu

loader symbols TotalView just reads in loader symbols from these li-
braries. If your program uses a number of large shared
libraries that you will not be debugging, you might set
this to *. You would then enter the names of DLLs that
you need to debug in the all symbols area.

no symbols Normally, you wouldn’t put anything on this list as
TotalView may not be able to create a backtrace
through a library if it doesn’t have these symbols. How-
ever, you can increase performance if you place the
names of your largest libraries here.

When reading a library, TotalView looks at these lists in the following order:

1 all symbols
2 loader symbols
3 no symbols

So, if alibrary is found in more than one area, it does the first thing it is
told to do and ignores any other requests. For example, after TotalView
reads in a library’s symbols, it cannot now honor a request to not load in
symbols, so it ignores a request to not read them.

CLl: dset TV::dll_read_all symbols
dset TV::dll_read_loader_symbols_only
dset TV::dll_read_no_symbols

(BN
o
O
D
o
c

(o]

=
>

(o]
o
-
o

(@]
=
<8
3
[%2]

See the online Help for additional information.
TotalView always reads the loader symbols for shared system libraries.

If your program stops in a library that has not already had its symbols read,
TotalView will read the library’s symbols. For example, if your program
SEGVs in a library, TotalView will read the symbols from that library before it
reports the error.

Reading Excluded Information

While debugging your program, you may find that you do need the symbol
information that you told TotalView that it shouldn’t read. Tell TotalView to
read them by right-clicking your mouse in the Stack Trace Pane and then
select the Load All Symbols in Stack command form the context menu.

Stk Trsce
[T RRTH FRehirFFass=F [
T meia EF=hif[elelE
bc_wisct_mmin Fr=hEffabdb
Land Al Gpnbak is Siack

After selecting this command, TotalView examines all active stack frames
and if finds unread libraries in any frame, reads them in.

CLl: TV:iread_symbols

This CLI command also gives you finer control over how TotalView
reads in library information.

Setting the Program Counter

TotalView lets you resume execution at a different statement than the one
at which it stopped execution by resetting the value of the program
counter (PC). For example, you might want to skip over some code, execute
some code again after changing certain variables, or restart a thread that is
in an error state.

Setting the PC can be crucial when you want to restart a thread that is in an
error state. Although the PC icon in the line number area points to the
source statement that caused the error, the PC actually points to the failed
machine instruction in the source statement. You need to explicitly reset
the PC to the correct instruction. (You can verify the actual location of the
PC before and after resetting it by displaying it in the Stack Frame Pane or
displaying both source and assembler code in the Source Pane.)

In TotalView, you can set the PC of a stopped thread to a selected source
line, a selected instruction, or an absolute value (in hexadecimal). When
you set the PC to a selected line, the PC points to the memory location
where the statement begins. For most situations, setting the PC to a
selected line of source code is all you need to do.

To set the PC to a selected line;

1 If you need to set the PC to a location somewhere in a line of source code,
display the View > Source As > Both command. TotalView responds by
displaying the assembler code.

2 Select the source line or instruction in the Source Pane. TotalView high-
lights the line.

3 Select the Thread > Set PC command. TotalView asks for confirmation,
resets the PC, and moves the PC icon to the selected line.

When you select a line and ask TotalView to set the PC to that line,
TotalView attempts to force the thread to continue execution at that state-
ment in the currently selected stack frame. If the currently selected stack
frame is not the top stack frame, TotalView asks if it can unwind the stack:

This frame is buried. Should we attempt to unwind the
stack?

If you select Yes, TotalView discards deeper stack frames (that is, all stack
frames that are more deeply nested than the selected stack frame) and
resets the machine registers to their values for the selected frame. If you
select No, TotalView sets the PC to the selected line, but it leaves the stack

and registers in their current state. Since you can’t assume that the stack
and registers have the right values, selecting No is almost always the wrong
thing to do.

Interpreting the Status and Control
Registers

The Stack Frame Pane in the Process Window lists the contents of CPU reg-
isters for the selected frame—you might need to scroll past the stack local
variables to see them. To learn about the meaning of these registers, you
need to consult the user’s guide for your CPU and “Architectures” in the
TotalView Reference Guide.

CLl: dprint register
You must quote the initial $ character in the register name; for ex-
ample, dprint \$ril.

For your convenience, TotalView displays the bit settings of many CPU reg-
isters symbolically. For example, TotalView symbolically displays registers
that control rounding and exception enable modes. You can edit the values
of these registers and continue execution of your program. For example,
you might do this to examine the behavior of your program with a different
rounding mode.

(BN
o
O
D
o
c

(o]

=
>

(o]
o
-
o

(@]
-
<8
3
[%2]

Since the registers that are displayed vary from platform to platform, see
“Architectures” in the TotalView Reference Guide for information on how
TotalView displays this information on your CPU. For general information
on editing the value of variables (including registers), refer to “Displaying
Areas of Memory” on page 235.

Interpreting the Status and Control Registers

196 Chapter 10: Debugging Programs

I
Using Groups,
Processes, and 1 1

Threads

While the specifics of how multiprocess, multithreaded programs
execute differ greatly from platform to platform and environment to
environment, all share some general characteristics. This chapter
discusses TotalView’s process/thread model. It also describes the
way in which you tell the GUI and the CLI what processes and
threads it should direct a command to.

The topics discussed in this chapter are:

“Defining the GOI, POI, and TOI” on page 197
“Setting a Breakpoint” on page 198

“Stepping (Part 1)” on page 199

“Using P/T Set Controls” on page 202

“Setting Process and Thread Focus” on page 203
“Setting Group Focus” on page 208

“Stepping (Part 11): Some Examples” on page 219
“Using P/T Set Operators” on page 220

“Using the P/T Set Browser” on page 222

“Using the Group Editor” on page 225

Defining the GOI, POI, and TOI

This chapter consistently uses three related acronyms:

m GOlI, which means Group of Interest
m POI, which means Process of Interest
m TOIl, which means Thread of Interest

These terms are important in TotalView’s process/thread model because
TotalView must determine the scope of what it will do when executing a
command. For example, Chapter 2 introduced the kinds of groups con-
tained within TotalView. For reasons that will become obvious in this chap-
ter, that chapter ignored what happens when you execute a TotalView com-
mand upon a group. For example, what does “stepping a group” actually

Fa

mean? Which processes and threads will TotalView are actually stepped?
What happens to processes and threads that aren’t in this group?

Associated with these three terms is a fourth: arena. The arena is the collec-
tion of processes, threads, and groups that are affected by a debugging
command. This collection is called an arena list.

In the GUI, the arena is most often set using the two pulldown menus in
the toolbar. If you examine the menubar, you’ll see that there are 8 next
commands. The difference between them is the arena; that is, the differ-
ence between the next commands is the processes and threads that are the
target of what the next command runs.

When TotalView executes any action command, the arena decides the
scope of what can run. It doesn’t, however, determine what will run.
Depending on the command, TotalView determines the TOI, POI, or GOI,
and then executes the command’s action upon that thread, process, or
group. For example, assume that you tell TotalView to step the current con-
trol group.

m TotalView needs to know what the TOI is so it can determine what
threads are in the lockstep group—TotalView only allows you to step a
lockstep group.

m The lockstep group is part of a share group.

m This share group is also contained in a control group.

So, by knowing what the TOI is, the TotalView GUI also knows what the GOI
is. This is important because, as you will see, while TotalView now knows
what it will step (the threads in the lockstep group), it also knows what it
will allow to run freely while it is stepping these threads. In the CLI, the P/T
set determines the TOL.

Using the GOI, POI, and TOI will become clearer as you read the rest of this
chapter.

Setting a Breakpoint

You can set breakpoints in your program by selecting the boxed line num-
bers in the Source Code pane of a Process window. A boxed line number
indicates that the line generates executable code. A icon masking a
line number indicates that a breakpoint is set on the line. Selecting the
icon clears the breakpoint.

When a program reaches a breakpoint, it stops. You can let the program
resume execution in any of the following ways:

m Use single-step commands described in “Using Stepping Commands” on
page 185.

m Use the set program counter command to resume program execution at
a specific source line, machine instruction, or absolute hexadecimal
value. See “Setting the Program Counter” on page 194.

m Set breakpoints at lines you choose and allow your program to execute
to that breakpoint. “Setting Breakpoints and Barriers” on page 275.

m Set conditional breakpoints that cause a program to stop after it evalu-
ates a condition that you define, for example “stop when a value is less
than 8. See “Setting Evaluation Points” on page 287.

TotalView provides additional features for working with breakpoints, pro-
cess barrier breakpoints, and evaluation points. For more information, refer
to Chapter 14, “Setting Action Points,” on page 273.

Stepping (Part I)

TotalView’s stepping commands allow you to:

m Execute one source line or machine instruction at a time; for example,
Process > Step in the GUI and dstep in the CLI.

CLl: dstep

m Run to a selected line, which acts like a temporary breakpoint; for exam-
ple, Process > Run To.

CLI: duntil
m Run until a function call returns. For example, Process > Out.
CLl: dout

In all cases, stepping commands operate on the Thread of Interest (TOI). In
the GUI, the TOI is the selected thread in the current Process Window. In
the CLI, the TOl is the thread that TotalView uses to determine the scope of
the stepping operation.

On all platforms except SPARC Solaris, TotalView uses smart single-stepping
to speed up stepping of one-line statements containing loops and condi-
tions, such as Fortran 90 array assignment statements. Smart stepping
occurs when TotalView realizes that it doesn’t need to step through an
instruction. For example, assume that you have the following statements:
integer iarray (1000,1000,1000)
iarray = 0
These two statements define one billion scalar assignments. If your
machine steps every instruction, you will probably never get past this
statement. Smart stepping means that TotalView will single-step through the
assignment statement at a speed that is very close to your machine’s
native speed.

=
=
C
@,
>

«Q
()
=
o
c

e
(%)

Group Width

Process Width

Thread Width

Other topics in this section are:

m “Group Width” on page 200
m “Process Width” on page 200
m “Thread Width” on page 200

TotalView’s behavior when stepping at group width depends on whether
the Group of Interest (GOI) is a process group or a thread group. In the fol-
lowing lists, goal means the place at which things should stop executing.
For example, if you are doing a step command, it is the next line. If it is a run
to command, it is the selected line.

If the GOl is a:

m Process group, TotalView examines the group and identifies which of its
processes has a thread stopped at the same location as the TOI (a match-
ing process). TotalView runs these matching processes until one of its
threads arrives at the goal. When this happens, TotalView stops the
thread’s process. The command finishes when it has stopped all of these
“matching” processes.

m Thread group, TotalView runs all processes in the control group. However,
as each thread arrives at the goal, TotalView just stops that thread; the
rest of the threads in the same process continue executing. The com-
mand finishes when all threads in the GOI arrive at the goal. When the
command finishes, TotalView will stop all processes in the control group.
TotalView doesn’t wait for threads that are not in the same share group as
the TOI since they are executing different code and can never arrive at the
goal.

TotalView’s behavior when stepping at process width (which is the default)
depends on whether the Group of Interest (GOI) is a process group or a
thread group. If the GOl is a:

m Process group, TotalView runs all threads in the process, and execution
continues until the TOI arrives at its goal, which can be the next state-
ment, the next instruction, and so on. Only when the TOI reaches the
goal will TotalView stop the other threads in the process.

m Thread group, TotalView allows all threads in the GOI and all manager
threads to run. As each member of the GOI arrives at the goal, TotalView
stops it; the rest of the threads continue executing. The command fin-
ishes when all members of the GOI arrive at the goal. At that point,
TotalView stops the whole process.

When TotalView performs a stepping command, it decides what it will step
based on the width. Using the toolbar, you specify width using the left-most
pulldown. This pulldown has three items: Group, Process, and Thread.

Stepping at thread width tells TotalView that it should just run that thread.
It does not step other threads. In contrast, process width tells TotalView
that it should run all threads in the process that are allowed to run while
the TOl is stepped. While TotalView is stepping the thread, manager threads
are running freely.

Using “Run To
and duntil
Commands

-

Stepping a thread isn’t the same as stepping a thread’s process because a
process can have more than one thread.

Thread-stepping is not implemented on Sun platforms. On SGI platforms, thread-step-
ping is not available with pthread programs. If, however, your program’s parallelism is
based on SGI’s sprocs, thread-stepping is available.

Thread-level single-step operations can fail to complete if the TOI needs to
synchronize with a thread that isn’t running. For example, if the TOI
requires a lock that another held thread owns, and steps over a call that
tries to acquire the lock, the primary thread can’t continue successfully.
You must allow the other thread to run in order to release the lock. In this
case, you should instead use process-width stepping.

The duntil and “Run To” commands differ from other step commands when
you apply them to a process group. (These commands tells TotalView to
execute program statements until a selected statement is reached.) When
applied to a process group, TotalView identifies all processes in the group
already having a thread stopped at the goal. These are the matching pro-
cesses. TotalView then runs only the nonmatching processes. Whenever a
thread arrives at the goal, TotalView stops its process. The command fin-
ishes when it has stopped all members of the group. This lets you sync up all
the processes in a group in preparation for group-stepping them.

Here is what you should know if you’re running at process width:

Process group If the Thread of Interest (TOI) is already at the goal lo-
cation, TotalView steps the TOI past the line before the
process is run. This allows you to use the Run To com-
mand repeatedly within loops.

Thread group If any thread in the process is already at the goal,
TotalView temporarily holds it while other threads in
the process run. After all threads in the thread group
reach the goal, TotalView stops the process. This allows
you to synchronize the threads in the POI at a source
line.

If you’re running at group width:

Process group TotalView examines each process in the process and
share group to determine if at least one thread is al-
ready at the goal. If a thread is at the goal, TotalView
holds its process. Other processes are allowed to run.
When at least one thread from each of these processes
is held, the command completes. This lets you syn-
chronize at least one thread in each of these processes
at a source line. If you’re running a control group, this
synchronizes all processes in the share group.

Thread group TotalView examines all the threads in the thread group
that are in the same share group as the TOI to deter-
mine if a thread is already at the goal. If it is, TotalView
holds it. Other threads are allowed to run. When all of

Foe

=
=
C
@,
>

«Q
()
=
o
c

e
(%)

Figure 139: The P/T Set
Control in the Process Window

the threads in the TOI's share group reach the goal,
TotalView stops the TOI’s control group and the com-
mand completes. This lets you synchronize thread
group members. If you’re running a workers group, this
synchronizes all worker threads in the share group.
The process stops when the TOI and at least one thread from each process
in the group or process reach the command stopping point. This lets you
synchronize a group of processes and bring them to one location.

You can also run to a selected line in a nested stack frame, as follows:

1 Select a nested frame in the Stack Trace Pane.
2 Select a source line or instruction in the function.
3 Issue a Run To command.

TotalView executes the primary thread until it reaches the selected line in
the selected stack frame.

Using P/T Set Controls

A few TotalView windows have P/T set control elements. For example,
Figure 139 shows the top portion of the Process Window.

THipad
Pioaaa

Frooman [Wirkors)
Process [Lockdepl| FO9 Frocess Thesd Acion Pamd Taolr Wrdow Haip

O up G0 Bkl E 3| Hal | M Slap| Ol | Fun To| hepd | Shogl P | P | Ta| Te
Gmup (Share,

Gy (A BTLETR|

Grup (.o eg]

This pulldown menu differs from the P/T set controls on other elements. On
other windows, there are two pulldowns. However, in the context of the
Process Window, elements from the two pulldowns have been combined
both to eliminate actions that don’t have meaning. When you select a
group and a modifier, you are telling TotalView that when you press one of
the remaining buttons on the toolbar, this element names the focus upon
which TotalView will act. For example, if Thread is selected and you select
Step, TotalView steps the current thread. If Process (workers) is selected
and you select Halt, TotalView halts all processes associated with the cur-
rent threads workers group. If you were running a multiprocess program,
other processes would continue to execute.

Other windows have similar controls. For example:

The first pulldown menu, which is called the Width Pulldown, has three ele-
ments on it: Group, Process, and Thread. Your choices here indicate the
width of the command. For example, if Group is selected, a Go command
continues the group. Which group TotalView will continue is set by the

Figure 140: The P/T Set

Control in the Tools > Evaluate

Window

|

= T -
= - Iraluits |
I_Ll'_u_'l_ Orinip Caring]I—il = 11 jeragzplE] |“|||H|“|||“|“||“]||
Forun Process|w | Shae I HEK /| | AT En |
Enprin Thread ‘Warken
: L -
i LEckemg 5
E = Fanian

choices on the second pulldown menu. The Width Pulldown tells TotalView
where it should look when it tries to determine what it will manipulate. The
second pulldown, which is called the Scope Pulldown, tells TotalView which
processes and threads within the scope defined by the Width Pulldown it
should manipulate. For example, you could tell TotalView to step the
threads defined in the current workers group that are contained in the cur-
rent process.

Finally, the P/T Selector (the third pulldown menu from the left) lets you
change the focus of the action from the currently defined process and
threads to any other process and thread that TotalView controls. That is,
this changes the POl and TOI

The PIT Set expression box on the right allows you to directly enter a P/T set
expression. The focus of what you enter is modified by the other P/T set
controls.

What is selected can be quite complicated when you use the GUI to set
these controls, or when you specify a focus using the CLI.

Setting Process and Thread Focus

While the previous sections have emphasized the GUI, this section and the ones that fol-
low emphasize the CLI. In all cases, the selection of what TotalView runs is based
directly or indirectly on P/T set syntax. While the focus is obvious in the CLI, it is often
buried within the internals of the GUI. Reading the rest of this chapter is important
when you want to have full asynchronous debugging control over your program. Having
this level of control, however, is seldom necessary.

=
=
C
@,
>

«Q
()
=
o
c

e
(%)

When it executes a command, TotalView must decide which processes and
threads it should act on. Most commands have a default set of threads and
processes and, in most cases, you won't want to change the default. In the
GUI, the default is the process and thread in the current Process Window. In
the CLI, this default is indicated by the focus, which is shown in the CLI’s
prompt.

There are times, however, when you’ll need to change this default. This sec-
tion begins a rather intensive look at how you tell TotalView what processes
and threads it should use as the target of a command.

Process/Thread
Sets

Topics in this section are:

m “Process/Thread Sets” on page 204
m “Arenas” on page 205
m “Specifying Processes and Threads” on page 205

All TotalView commands operate on a set of processes and threads. This
set is called a P/T (Process/Thread) set. The right-hand text box in windows
containing P/T set controls lets you construct these sets. In the CLI, you
specify a P/T set as an argument to a command such as dfocus. If you’re
using the GUI, TotalView creates this list for you based on which Process
Window has focus.

Unlike a serial debugger where each command clearly applies to the only
executing thread, TotalView can control and monitor many threads with
their PCs at many different locations. The P/T set indicates the groups, pro-
cesses, and threads that are the target of the CLI command. No limitation
exists on the number of groups, processes, and threads in a set.

A P/T set is a Tcl list containing one or more P/T identifiers. (The next sec-
tion, ‘“Arenas” on page 205, explains what a P/T identifier is.) Tcl lets you cre-
ate lists in two ways:

m You can enter these identifiers within braces ({ }).
m You can use Tcl commands that create and manipulate lists.

These lists are then used as arguments to a command. If you’re entering
one element, you usually do not have to use Tcl’s list syntax.

For example, the following list contains specifiers for process 2, thread 1,
and process 3, thread 2:

{p2.1 p3.2}

If you do not explicitly specify a P/T set in the CLI, TotalView defines a tar-
get set for you. (In the GUI, the default set is determined by the current
Process Window.) This set is displayed as the (default) CLI prompt. (For
information on this prompt, see “Command and Prompt Formats” on

page 164.)

You can change the focus upon which a command acts by using the dfocus
command. If the CLI executes dfocus as a unique command, it changes the
default P/T set. For example, if the default focus is process 1, the following
command changes the default focus to process 2:

dfocus p2

After TotalView executes this command, all commands that follow will
focus on process 2.

In the GUI, you set the focus by displaying a Process Window containing this process.
Do this by using the P+ and P- icons on the toolbar or by making a selection in the
Root Window.

If you begin a command with dfocus, TotalView changes the target for just
the command that follows. After the command executes, TotalView

Arenas

Specifying
Processes and
Threads

restores the old default. The following example shows both of these ways to
use the dfocus command. Assume that the current focus is process 1,
thread 1. The following commands change the default focus to group 2 and
then step the threads in this group twice:

dfocus g2

dstep

dstep
In contrast, if the current focus is process 1, thread 1, the following com-
mands step group 2 and then step process 1, thread 1:

dfocus g2 dstep

dstep
Some commands only operate at the process level; that is, you cannot
apply them to a single thread (or group of threads) in the process but must
apply them to all or to none.

A P/T identifier often indicates a number of groups, processes, and threads.
For example, assume that two threads executing in process 2 are stopped
at the same statement. This means that TotalView places the two stopped
threads into lockstep groups. If the default focus is process 2, stepping this
process actually steps both of these threads.

TotalView uses the term arena to define the processes and threads that are
the target of an action. In this case, the arena has two threads. Many CLI
commands can act on one or more arenas. For example, here is a com-
mand with two arenas:

dfocus {pl p2}
The two arenas are process 1 and process 2.

So, what is the GOI, POI, and TOIl when there is an arena list? In this case,
each arena within the list will have its own GOI, POI, and TOl.

A previous section described a P/T set as being a list, but ignored what the
individual elements of the list are. A better definition is that a P/T set is a
list of arenas, where an arena consists of the processes, threads, and
groups that are affected by a debugging command. Each arena specifier
describes a single arena in which a command will act; the list is just a col-
lection of arenas. Most commands iterate over the list, acting individually
on an arena. Some CLI output commands, however, will combine arenas
and act on them as a single target.

=
=
C
@,
>

«Q
()
=
o
c

e
(%)

An arena specifier includes a width and a TOI. (“Widths” are discussed later
in this section.) In the P/T set, the TOI specifies a target thread, while the
width specifies how many threads surrounding the thread of interest are
affected.

The Thread of Interest (TOI)
The TOl is specified as p.t, where p is the TotalView process ID (PID) and t is
the TotalView thread ID (TID). The p.t combination identifies the POI (Pro-

=

-

cess of Interest) and TOI. The TOl is the primary thread affected by a com-
mand. This means that it is the primary focus for a TotalView command. For
example, while the dstep command always steps the TOI, it can run the rest
of the threads in the POI and step other processes in the group.

In addition to using numerical values, you can also use two special sym-
bols:

m The less-than (<) character indicates the lowest number worker thread in a
process and is used instead of the TID value. If, however, the arena ex-
plicitly names a thread group, < means the lowest numbered member of
the thread group. This symbol lets TotalView select the first user thread,
which may not be thread 1; for example, the first and only user thread
may be thread number 3 on HP Alpha systems.

m A dot (.) indicates the current set. While this is seldom used interactively,
it can be useful in scripts.

Process and Thread Widths
You can enter a P/T set in two ways. If you’re not manipulating groups, the
format is:

[width_letter][pid][.tid]

The next section extends this format to include groups. When using P/T sets, you can
create sets that just width indicators or group indicators or both.

For example, p2.3 indicates process 2, thread 3.

While the syntax seems to indicate that you do not need to enter any ele-
ment, TotalView requires that you enter at least one. Because TotalView will
try to determine what it can do based on what you type, it will try to fill in
what you omit. The only requirement is that when you use more than one
element, you use them in the order shown here.

You can leave out parts of the P/T set if what you do enter is unambiguous.
A missing width or PID is filled in from the current focus. A missing TID is
always assumed to be <. For more information, see “Incomplete Arena Specifi-
ers” on page 218.

The width_letter indicates which processes and threads are part of the arena.
The letters you can use are:

t Thread width

A command’s target is the indicated thread.
p Process width

A command’s target is the process containing the TOI.
g Group width

A command’s target is the group containing the POI.
This indicates control and share groups.

a All processes

A command’s target is all threads in the GOI that are in
the POI.

d Default width

A command’s target depends on the default for each
command. This is also the width to which the default
focus is set. For example, the dstep command defaults
to process width (run the process while stepping one
thread), and the dwhere command defaults to thread
width. Default widths are listed in “Default Arena Widths”
in the TotalView Reference Guide.

You must use lowercase letters to enter these widths.

Figure 141 illustrates how these specifiers relate to one another.

Figure 141: Width Specifiers
All

Control Group

Share Group

Process

Thread

Notice that the “g” specifier indicates control and share groups. This
inverted triangle is indicating that the arena focuses on a greater number of
entities as you move from thread level at the bottom to “all” level at the
top.

=
=
C
@,
>
«Q
()
=
o
c
O
w

As mentioned previously, the TOI specifies a target thread, while the width
specifies how many threads surrounding the TOI are also affected. For
example, the dstep command always requires a TOI, but entering this com-
mand can:

m Step just the TOI during the step operation (single-thread single-step).

m Step the TOI and step all threads in the process containing the TOI (pro-
cess-level single-step).

m Step all processes in the group that have threads at the same PC (pro-
gram counter) as the TOI (group-level single-step).

This list doesn’t indicate what happens to other threads in your program
when TotalView steps your thread. For more information, see “Stepping (Part
1): Some Examples” on page 219.

Foa

Specifier Examples

To save a P/T set definition for later use, assign the specifiers to a Tcl vari-
able. For example:

set myset {g2.3 t3.1}
dfocus $myset dgo

As the dfocus command returns its focus set, you can save this value for
later use. For example:

set save_set [dfocus]

Here are some sample specifiers:

g2.3 Select process 2, thread 3 and set the width to “group”.
t1.7 Commands act only on thread 7 or process 1.
dl.< Use the default set for each command, focusing on the

first user thread in process 1. The “<” sets the TID to
the first user thread.

Setting Group Focus

TotalView has two kinds of groups: process groups and thread groups. Pro-
cess groups only contain processes, and thread groups only contain
threads. The threads in a thread group can be drawn from more than one
process.

Topics in this section are:

“Specifying Groups in P/T Sets” on page 209

“Arena Specifier Combinations” on page 210

“All’ Does Not Always Mean “All”” on page 213

“Setting Groups” on page 214

“Using the ‘g’ Specifier: An Extended Example” on page 215
“Focus Merging” on page 217

“Incomplete Arena Specifiers” on page 218

“Lists with Inconsistent Widths” on page 219

TotalView has four predefined groups. Two of these only contain processes
while the other two only contain threads. As you will see, TotalView also
allows you to create your own groups, and these groups can have elements
that are processes and threads. The predefined process groups are:

m Control Group

Contains the parent process and all related processes. A control group
includes children that were forked (processes that share the same source
code as the parent) and children that were forked but which subsequently
called execve().

Assigning a new value to the CGROUP(dpid) variable for a process changes
that process’s control group. In addition, the dgroups —add command
lets you add members to a group in the CLI. In the GUI, you use the
Group > Edit command.

(-

Specifying Groups

in P/T Sets

==

m Share Group
Contains all members of a control group that share the same executable
image. TotalView automatically places processes in share groups based
on their control group and their executable image.

You can’t change a share group’s members. In addition, dynamically loaded libraries
may vary between share group members.

The predefined thread groups are:

m Workers Group
Contains all worker threads from all processes in the control group. The
only threads not contained in a worker’s group are your operating sys-
tem’s manager threads.

m Lockstep Group
Contains every stopped thread in a share group that has the same PC.
TotalView creates one lockstep group for every thread. For example, sup-
pose two threads are stopped at the same PC. TotalView will create two
lockstep groups. While each lockstep group has the same two members,
they differ in that each has a different TOI. While there are some circum-
stances where this is important to you, you can ignore this distinction in
most cases. That is, while two lockstep groups exist if two threads are
stopped at the same PC, ignoring the second lockstep group is almost
never harmful.
The group ID’s value for a lockstep group differs from the ID of other
groups. Instead of having an automatically and transient integer ID, the
lockstep group ID is pid.tid, where pid.tid identifies the thread with which
it is associated. For example, the lockstep group for thread 2 in process
lis1.2.

In general, if you’re debugging a multiprocess program, the control group
and share group differ only when the program has children that it forked
with by calling execve().

This section extends the arena specifier syntax to include groups.

=
=
C
@,
>
«Q
()
=
o
c
e
(%)

If you do not include a group specifier, the default is the control group. For
example, the CLI only displays a target group in the focus string if you set it
to something other than the default value.

Target group specifiers are most often used with the stepping commands, as they give
these commands more control over what’s being stepped.

Here is how you add groups to an arena specifier:
[width_letter][group_indicator][pid][.tid]

This format adds the group_indicator to the what was discussed in “Specifying
Processes and Threads” on page 205.

In the description of this syntax, everything appears to be optional. But,
while no single element is required, you must enter at least one element.
TotalView will determine other values based on the current focus.

Fey

A Group Letter

A Group Number

A Group Name

Arena Specifier
Combinations

TotalView lets you identify a group by using a letter, number, or name.

You can name one of TotalView’s predefined sets. These sets are identified
by letters. For example, the following command sets the focus to the work-
ers group:

dfocus W
The group letter, which is always uppercase, can be:

C Control group
All processes in the control group.
D Default control group

All processes in the control group. The only difference
between this specifier and the C specifier is that D tells
the CLI that it should not display a group letter within
the CLI prompt.

S Share group

The set of processes in the control group that have the
same executable as the arena’s TOI.

W Workers group
The set of all worker threads in the control group.
L Lockstep group

A set containing all threads in the share group that
have the same PC as the arena’s TOI. If you step these
threads as a group, they will proceed in lockstep.
You can identify a group by the number TotalView assigns to it. For exam-
ple, here is how you set the focus to group 3:

dfocus 3/

Notice the trailing slash. This slash lets TotalView know that you’re specify-
ing a group number instead of a PID. The slash character is optional if
you’re using a group_letter. However, you must use it as a separator when
entering a numeric group ID and a pid.tid pair. For example, the following
example identifies process 2 in group 3:

p3/2

You can name a set that you define. You enter this name with slashes. For
example, here is how you would set the focus to the set of threads con-
tained in process 3 and that are also contained in a group called
my_group:

dfocus p/my_group/3

The following table lists what’s selected when you use arena and group
specifiers to step your program.

Table 10: Specifier
Combinations

-

Specifier Specifies

aC All threads.

as All threads.

aw All threads in all workers groups.

aL All threads.
Every thread is a member of a control group and a member of a share
group and a member of a lockstep group. Consequently, three of
these definitions mean “all threads.”

gC All threads in the Thread of Interest’s (TOI) control group.

gs All threads in the TOI's share group.

gw All worker threads in the control group containing the TOI.

gL All threads in the same share group within the process containing the
TOI that have the same PC and the TOI.

pC All threads in the control group of the Process of Interest (POI). This is
the same as gC.

pS All threads in the process that participate in the same share group as
the TOL.

pwW All worker threads in the POI.

pL All threads in the POl whose PC is the same as the TOI.

tC Very little. These four combinations, while syntactically correct, are

tS meaningless. The t specifier overrides the group specifier. So, for

W example, tw and t both name the current thread.

tL

Stepping commands behave differently if the group being stepped is a process group
rather than a thread group. For example, aC and aS perform the same action while aL

is different.

If you don’t add a PID or TID to your arena specifier, TotalView does it for
you, taking the PID and TID from the current or default focus.

Here are some additional examples. These add PIDs and TIDs to the speci-
fier combinations just discussed:

pwW3
pW3.<

gw3

gL3.2

13

All worker threads in process 3.

All worker threads in process 3. Notice that the focus
of this specifier is the same as the previous example’s.

All worker threads in the control group containing pro-
cess 3. Notice the difference between this and pwa3,
which restricts the focus to one of the processes in the
control group.

All threads in the same share group as process 3 that
are executing at the same PC as thread 2 in process 3.
The reason this is a share group and not a control
group is that different share groups can reside only in
one control group.

Specifies processes and threads in process 3. As the
arena width, POI, and TOI are inherited from the exist-
ing P/T set, the exact meaning of this specifier depends
on the previous context.

Feee

=
=
C
@,
>

«Q
()
=
o
c

e
(%)

While the “/” is unnecessary because no group is indi-
cated, it is syntactically correct.

93.2/3 The 3.2 group ID is the name of the lockstep group for
thread 3.2. This group includes all threads in process
3’s share group that are executing at the same PC as
thread 2.

p3/3 Sets the process to process 3. The Group of Interest
(GOI) is set to group 3. If group 3 is a process group,
most commands ignore the group setting. If group 3 is
a thread group, most commands act on all threads in
process 3 that are also in group 3.

Setting the process with an explicit group should be
done with care, as what you get may not be what you
expect given that commands, depending on their
scope, must look at the TOI, POI, and GOI.

Specifying thread width with an explicit group ID probably doesn’t mean much as the
width means that the focus is on one thread.

In the following examples, the first argument to the dfocus command
defines a temporary P/T set that the CLI command (the last term) will oper-
ate on. The dstatus command lists information about processes and
threads. These examples assume that the global focus was “d1.<” initially.

dfocus g dstatus
Displays the status of all threads in the control group.

dfocus gW dstatus
Displays the status of all worker threads in the control

group.

dfocus p dstatus
Displays the status of all worker threads in the current
focus process. The width here, as in the previous exam-
ple, is process and the (default) group is the control
group; the intersection of this width and the default
group creates a focus that is the same as in the previ-
ous example.

dfocus pW dstatus
Displays the status of all worker threads in the current
focus process. The width is process level and the target
is the workers group.

The following example shows how the prompt changes as you change the
focus. In particular, notice how the prompt changes when you use the C
and the D group specifiers.

di.<> ¥ C
dCl.<
dCi.<> ¥ D
dl.<
dl.<>

‘All’ Does Not
Always Mean “All”

Table 11: a (all) Specifier
Combinations

Two of these li

nes end with “<”. These lines aren’t prompts. Instead, they

are the value returned by TotalView when it executes the dfocus command.

When you use
what runs and

stepping commands, TotalView determines the scope of
what stops by looking at the TOI. This section looks at the

differences in behavior when you use the a (all) arena specifier. Here is what
runs when you use this arena:

Specifier
aC

as

aw

aL

Specifies

All threads.

All threads.

All threads in all workers groups.

All threads.

Every thread is a member of a control group and a member of a share
group and a member of a lockstep group. Consequently, three of
these definitions mean “all threads.”

This is the same information as was presented in “Arena Specifier Combina-

tions” on page
combinations:
faC dgo

f aC duntil

f aS duntil

f aL duntil

210. Here are some combinations and the meaning of these

Runs everything. If you're using the dgo command, ev-
erything after the a is ignored: a/aPizza/17.2, ac, aS, and
aL do the same thing. TotalView runs everything.

While everything runs, TotalView must wait until some-
thing reaches a goal. It really isn’t obvious what this
thing is. Since C is a process group, you might guess
that all processes run until at least one thread in every
participating process arrives at a goal. The reality is
that since this goal must reside in the current share
group, this command completes as soon as all pro-
cesses in the TOI's share group have at least one
thread at the goal. Processes in other control groups
run freely until this happens.

Notice that the TOI determines the goal. If there are
other control groups, they do not participate in the
goal.

This command does the same thing as the f aC until
command because, as was just mentioned, the goals
for f ac until and f aS until are the same, and the pro-
cesses that are in this scope are identical.

While more than one share group can exist in a control
group, these other share groups do not participate in
the goal.

While everything will run, it is again not clear what
should occur. L is a thread group, so you might expect
that the duntil command will wait until all threads in all
lockstep groups arrive at the goal. Instead, TotalView
defines the set of threads that it will run to a goal as
just those thread in the TOI's lockstep group. While

=

=
=
C
@,
>

«Q
()
=
o
c

e
(%)

Setting Groups

there are other lockstep groups, these lockstep groups
do not participate in the goal. So, while the TOI’s lock-
step threads are progressing towards their goal, all
threads that were previously stopped run freely.

f aw duntil While everything will run, TotalView will wait until all
members of the TOI’s workers group arrive at the goal.

There are two broad distinctions between process and thread group behav-
ior:

m When the focus is on a process group, TotalView waits until just one
thread from each participating process arrives at the goal. The other
threads just run, and TotalView doesn’t care where they end up.

When focus is on a thread group, every participating thread must arrive at
the goal.

m When the focus is on a process group, TotalView steps a thread over the
goal breakpoint and continues the process if it isn’t the “right thread.”
When the focus is on a thread group, TotalView holds a thread even if it
isn’t the right thread. It also continues the rest of the process. Of course,
if your system doesn’t support asynchronous thread control, TotalView
treats thread specifiers as if they were process specifiers.

With this in mind, f aL dstep does not step all threads. Instead, it steps only
the threads in the TOI's lockstep group. All other threads run freely until
the stepping process for these lockstep threads completes.

This section presents a series of examples that set and create groups.
Many of the examples use CLI commands that have not yet been intro-
duced. You will probably need to refer to the command’s definition before
you can appreciate what’s occurring. These commands are described in the
TotalView Reference Guide.

If you will only be using the GUI, there’s nothing you need to know in this section as
groups are created graphically there.

Here are some methods for indicating that thread 3 in process 2 is a worker
thread.

dset WGROUP(2.3) $WGROUP(2)
Assigns the group ID of the thread group of worker

threads associated with process 2 to the WGROUP vari-
able. (Assigning a nonzero value to WGROUP indicates
that this is a worker group.)

dset WGROUP(2.3) 1
This is a simpler way of doing the same thing as the
previous example.

dfocus 2.3 dworker 1] o
Adds the groups in the indicated focus to a workers
group.

Using the ‘g’
Specifier: An
Extended Example

dset CGROUP(2) $CGROUP(1)
dgroups —add —g $CGROUP(1) 2
dfocus 1 dgroups —add 2

These three commands insert process 2 into the same

control group as process 1.

dgroups —add —g $WGROUP(2) 2.3
Adds process 2, thread 3 to the workers group associ-
ated with process 2.

dfocus tW2.3 dgroups —add
This is a simpler way of doing the same thing as the

previous example.
Here are some additional examples:

dfocus gl dgroups —add —new thread
Creates a new thread group that contains all the

threads in all the processes in the control group asso-
ciated with process 1.

set mygroup [dgroups —add —new thread
$GROUP ($SGROUP(2))1]
dgroups -remove —g $mygroup 2.3
dfocus g$mygroup/2 dgo
These three commands define a new group containing

all the threads in process 2’s share group except for
thread 2.3 and then continues that set of threads. The
first command creates a new group containing all the
threads from the share group, the second removes
thread 2.3, and the third runs the remaining threads.

The meaning of the g width specifier is sometimes not clear when it is cou-
pled with a group scope specifier. Why have a g specifier when you have
four other group specifiers? Stated in another way, isn’t something like gL
redundant?

The simplest answer, and the reason you’ll most often use g, is that it
forces the group when the default focus indicates something different from
what you want it to be.

Here’s an example that shows this. The first step is to set a breakpoint in a
multithreaded OMP program and execute the program until it hits the
breakpoint:

dl.<> dbreak 35

Loaded OpenMP support library libguidedb 3 8.so :
KAP/Pro Toolset 3.8

1

dl.<> dcont

Thread 1.1 has appeared

Created process 1/37258, named "“tx_omp_guide_IInlI1"

Thread 1.1 has exited

Thread 1.1 has appeared

Thread 1.2 has appeared

Thread 1.3 has appeared

Thread 1.1 hit breakpoint 1 at line 35 in

" _breakpoint_here™

=
=
C
@,
>

«Q
()
=
o
c

e
w

The default focus is d1.<, which means that the CLI is at its default width,
The POl is 1, and the TOl is the lowest numbered nonmanager thread.
Because the default width for the dstatus command is “process,” the CLI
displays the status of all processes. Typing dfocus p dstatus produces the
same output.

dl.<> dstatus
1: 37258 Breakpoint [tx _omp_guide IInl1l]
1.1: 37258.1 Breakpoint PC=0x1000acdO,
[-7tx_omp_IInll.f#35]
1.2: 37258.2 Stopped PC=OxTfFfffrfffrffeef
1.3: 37258.3 Stopped PC=0xd042c944
dl.<> dfocus p dstatus
1: 37258 Breakpoint [tx _omp_guide 1Inl1l]
1.1: 37258.1 Breakpoint PC=0x1000acdO,
[-7tx_omp_IInll.f#35]
1.2: 37258.2 Stopped PC=OxTFfFffffffrrffeef
1.3: 37258.3 Stopped PC=0xd042c944

Here’s what the CLI displays when you ask for the status of the lockstep
group. (The rest of this example will use the f abbreviation for dfocus and st
for dstatus.)

di.<> f L st
1: 37258 Breakpoint [tx_omp_guide_I1Inl1]
1.1: 37258.1 Breakpoint PC=0x1000acdO,
[-7tx_omp_1Inl1_T#35]

This command tells the CLI to display the status of the threads in thread
1.1's lockstep group as this thread is the TOI. The f L focus command nar-
rows the set so that the display only includes the threads in the process
that are at the same PC as the TOI.

By default, the dstatus command displays information at “process” width. This means
that you don’t need to type f pL dstatus.

The next command runs thread 1.3 to the same line as thread 1.1. The next
command then displays the status of all the threads in the process:

di.<> F¥ t1.3 duntil 35
350> write(*,*)"i= ",1,
"thread= " ,omp_get_thread_num()
dli.<> F p dstatus
1: 37258 Breakpoint [tx_omp_guide_I1Inl1l]
1.1: 37258.1 Breakpoint PC=0x1000acdO,
[-7tx_omp_IInll.f#35]
1.2: 37258.2 Stopped PC=OxFFIfrfrfrirffeef
1.3: 37258.3 Breakpoint PC=0x1000acdO,
[-7tx_omp_IInll.f#35]

As expected, the CLI has added a thread to the lockstep group:

Focus Merging

dl.<> ¥ L dstatus
1: 37258 Breakpoint [tx _omp_guide_ I11Inl1]
1.1: 37258.1 Breakpoint PC=0x1000acdO,
[-/7tx_omp_1Inl1_T#35]
1.3: 37258.3 Breakpoint PC=0x1000acdO,
[-/7tx_omp_1Inl1_T#35]

The next set of commands begins by narrowing the width of the default
focus to thread width—notice that the prompt changes—and then dis-
plays the contents of the lockstep group.

di.<> f t
tl.<> f L dstatus
1: 37258 Breakpoint [tx omp_guide 1Inl1]
1.1: 37258.1 Breakpoint PC=0x1000acdO,
[-/7tx_omp_ 1Inl1_f#35]

While the lockstep group of the TOI has two threads, the current focus has
only one thread, and that thread is, of course, part of the lockstep group.
Consequently, the lockstep group in the current focus is just the one thread
even though this thread’s lockstep group has two threads.

If you ask for a wider width (p or g) with L, the CLI displays more threads
from the lockstep group of thread 1.1.

tl.<> ¥ pL dstatus
1: 37258 Breakpoint [tx_omp_guide_I1Inl1]
1.1: 37258.1 Breakpoint PC=0x1000acdO,
[-/7tx_omp_IInl1_T#35]
1.3: 37258.3 Breakpoint PC=0x1000acdO,
[-/7tx_omp_IInl1_T#35]
tl.<> f gL dstatus
1: 37258 Breakpoint [tx_omp_guide_I11Inl1]
1.1: 37258.1 Breakpoint PC=0x1000acdO,
[-/7tx_omp_IInl1_T#35]
1.3: 37258.3 Breakpoint PC=0x1000acdO,
[-/7tx_omp_IInl1_T#35]
tl.<>

=
=
C
@,
>

«Q
()
=
o
c

e
w

If the TOlis 1.1, “L” refers to group number 1.1, which is the lockstep group of thread
1.1.

Because this example only contains one process, the pL and gL specifiers
produce the same result when used with dstatus. If, however, there were
additional processes in the group, you would only see them when you use
the gL specifier.

When you specify more than one focus for a command, the CLI will merge
them together. In the following example, the focus indicated by the
prompt—this focus is called the outer focus—controls the display. Notice
what happens when dfocus commands are strung together:

tl.<> f d
dl.<

Incomplete Arena
Specifiers

dl.<> F tL dstatus
1: 37258 Breakpoint [tx _omp_guide_ I11Inl1]
1.1: 37258.1 Breakpoint PC=0x1000acdO,
[-7tx_omp_1Inl1_f#35]
di.<> ¥ tL f p dstatus
1: 37258 Breakpoint [tx _omp_guide_ I11Inl1]
1.1: 37258.1 Breakpoint PC=0x1000acdO,
[-7tx_omp_1Inl1_f#35]
1.3: 37258.3 Breakpoint PC=0x1000acdO,
[-7tx_omp_1Inl1_f#35]
di.<> ¥ tL ¥ p ¥ D dstatus
1: 37258 Breakpoint [tx _omp_guide_IInl1]
1.1: 37258.1 Breakpoint PC=0x1000acdO,
[-7tx_omp_1Inl1_f#35]
.21 37258.2 Stopped PC=OxTFFIfrfrfrrffeef
1.3: 37258.3 Breakpoint PC=0x1000acdO,
[-7tx_omp_1Inl1_f#35]
di.<> FtL fp f D f L dstatus
1: 37258 Breakpoint [tx _omp_guide_ I11Inl1]
1.1: 37258.1 Breakpoint PC=0x1000acdO,
[-7tx_omp_1Inl1_f#35]
1.3: 37258.3 Breakpoint PC=0x1000acdO,
[-7tx_omp_1Inl1_f#35]

Y

dl.<>

Stringing multiple focuses together may not produce the most readable
result. In this case, it shows how one dfocus command can modify what
another sees and will act on. The ultimate result is an arena that a com-
mand will act on. In these examples, the dfocus command is telling the
dstatus command what it should be displaying.

In general, you do not need to completely specify an arena. TotalView pro-
vides values for any missing elements. TotalView either uses built-in default
values or obtains them from the current focus. Here is how TotalView fills in
missing pieces:

m If you don’t use a width, TotalView uses the width from the current focus.

m If you don’t use a PID, TotalView uses the PID from the current focus.

m If you set the focus to a list, there is no longer a default arena. This
means that you must explicitly name a width and a PID. You can, how-
ever, omit the TID. (If you omit the TID, TotalView defaults to <.)

You can type a PID without typing a TID. If you omit the TID, TotalView
uses its default of “<”, where “<” indicates the lowest numbered worker
thread in the process. If, however, the arena explicitly names a thread
group, < means the lowest numbered member of the thread group.
TotalView doesn’t use the TID from the current focus, since the TID is a
process-relative value.

m A dot before or after the number lets TotalView know if you’re specifying
a process or a thread. For example, “1.” is clearly a PID, while “.7” is
clearly a TID.

If you type a number without typing a dot, the CLI most often interprets
the number as being a PID.

m If the width is t, you can omit the dot. For instance, t7 refers to thread 7.

Lists with
Inconsistent
Widths

m If you enter a width and don’t specify a PID or TID, TotalView uses the
PID and TID from the current focus.
If you use a letter as a group specifier, TotalView obtains the rest of the
arena specifier from the default focus.

m You can use a group ID or tag followed by a “/”. TotalView obtains the rest
of the arena from the default focus.

Of course, focus merging can also influence how TotalView fills in missing
specifiers. For more information, see “Focus Merging” on page 217.

TotalView lets you create lists containing more than one width specifier.
While this can be very useful, it can be confusing. Consider the following:

{p2 t7 g3.4}

This list is quite explicit; all of process 2, thread 7, and all processes in the
same group as process 3, thread 4. However, how should TotalView use this
set of processes, groups, and threads?

In most cases, TotalView does what you would expect it to do: a command
iterates over the list and acts on each arena. If TotalView cannot interpret
an inconsistent focus, it prints an error message.

Some commands work differently. Some use each arena’s width to deter-
mine the number of threads on which it will act. This is exactly what the
dgo command does. In contrast, the dwhere command creates a call graph
for process-level arenas, and the dstep command runs all threads in the
arena while stepping the TOI. It may wait for threads in multiple processes
for group-level arenas. The command description in the TotalView Reference
Guide will point out anything that you need to watch out for.

Stepping (Part II): Some Examples

Here are some examples of things that you’ll probably do using the CLI's
stepping commands:

=
=
C
@,
>
«Q
()
=
o
c
e
(%)

m Step a single thread
While the thread runs, no other thread runs (except kernel manager
threads).

Example: dfocus t dstep

m Step a single thread while the process runs
A single thread runs into or through a critical region.
Example: dfocus p dstep

m Step one thread in each process in the group

While one thread in each process in the share group runs to a goal, the
rest of the threads run freely.

Example: dfocus g dstep

m Step all worker threads in the process while nonworker threads
run

Runs worker threads through a parallel region in lockstep.
Example: dfocus pW dstep

Fry

m Step all workers in the share group
All processes in the share group participate. The nonworker threads run.
Example: dfocus gW dstep

m Step all threads that are at the same PC as the TOI

TotalView selects threads from one process or from the entire share
group. This differs from the previous two bullets in that TotalView uses the
set of threads that are in lockstep with the TOI rather than using the work-

ers group.

Example: dfocus L dstep

In the following examples, the default focus is set to d1.<.

dstep

dfocus W dnext

Steps the TOI while running all other threads in the
process.

Runs the TOI and all other worker threads in the pro-
cess to the next statement. Other threads in the pro-
cess run freely.

dfocus W duntil 37

dfocus L dnext

Runs all worker threads in the process to line 37.

Runs the TOI and all other stopped threads at the same
PC to the next statement. Other threads in the process
run freely. Threads that encounter a temporary break-
point in the course of running to the next statement
usually join the lockstep group.

dfocus gW duntil 37

UNW 37

SL

sl

Using P/T Set Operators

Runs all worker threads in the share group to line 37.
Other threads in the control group run freely.

Performs the same action as the previous command:
runs all worker threads in the share group to line 37.
This example uses the predefined UNW alias instead of
the individual commands. That is, UNW is an alias for
dfocus gW duntil.

Finds all threads in the share group that are at the
same PC as the TOI and steps them all one statement.
This command is the built-in alias for dfocus gL dstep.

Finds all threads in the current process that are at the
same PC as the TOI, and steps them all one statement.
This command is the built-in alias for dfocus L dstep.

At times, you do not want all of one kind of group or process to be in the
focus set. TotalView lets you use the following three operators to manage

your P/T sets:
I

Creates a union; that is, all members of the sets.

Creates a difference; that is, all members of the first set
that are not also members of a second set.

& Creates an intersection; that is, all members of the first
set that are also members of the second set.

For example, here is how you would create a union of two P/T sets:

p3 | L2
A set operator only operates on two sets. You can, however, apply these
operations repeatedly. For example:

p2 | p3 & L2

This statement creates a union between p2 and p3, and then creates an
intersection between the union and L2. As this example suggests, TotalView
associates sets from left to right. You can change this order by using paren-
theses. For example:

P2 | (p3 & pL2)
Typically, these three operators are used with the following P/T set func-
tions:

breakpoint() Returns a list of all threads that are stopped at a break-
point.

error() Returns a list of all threads stopped due to an error.

existent() Returns a list of all threads.

held() Returns a list of all threads that are held.

nonexistent() Returns a list of all processes that have exited or which,
while loaded, have not yet been created.

running() Returns a list of all running threads.

stopped() Returns a list of all stopped threads.

unheld() Returns a list of all threads that are not held.

watchpoint() Returns a list of all threads that are stopped at a watch-
point.

The argument that all of these operators use is a P/T set. You specify this
set in the same way that a P/T set is specified for the dfocus command. For
example, watchpoint(L) returns all threads in the current lockstep group.

The dot (.) operator, which indicates the current set, can be helpful when
you are editing an existing set.

=
=
C
@,
>

«Q
()
=
o
c

e
(%)

The following examples should clarify how you use these operators and
functions. The P/T set that is the argument to these operators is a (all).

f {breakpoint(a) | watchpoint(a)} dstatus
Shows information about all threads that stopped at

breakpoints and watchpoints. The a argument is the
standard P/T set indicator for “all”.

f {stopped(a) - breakpoint(a)} dstatus
Shows information about all stopped threads that are
not stopped at breakpoints.

f {. | breakpoint(a)} dstatus
Shows information about all threads in the current set
as well as all threads stopped at a breakpoint.

Fen

FiGURe 142: A P/T Set Browser
Window

f{g.3 - p6} duntil 577
Runs thread 3 along with all other processes in the
group to line 577. However, do not run anything in pro-
cess 6.

f {($PTSET) & p123}
Uses just process 123 within the current P/T set.

Using the P/T Set Browser

There’s no question that specifying P/T sets can be confusing. As has been
mentioned, there are few programs that need all the power that TotalView’s
P/T set syntax provides. In all cases, however, the ability to previsualize
what the contents of a P/T set will be before you execute the command is
essential. This is what the P/T Set Browser is designed to do. The browser,
which is accessed from the Root Window’s Tool menu, shows the current
state of processes and threads as well as show what is or will be selected
when you specify a P/T set. Figure 142 shows a P/T browser displaying
information about a a multiprocess, multithreaded program.

Fecus: Prodans — M _.! i 'I BT it | ﬂ|
"I |.|-;|.|r..-:.-;.,'.'-|.|r.1-|:.:.-'...-|:.:-. 3 ;':,:.7..;?.7.-.::.7.-.5' B
T s ™™ rgpee [UL
m : 1451 SHopped EI”" |I|| i:
I_E -] BETE S g el : ::
-+ il Mz Al ¥ L
el T {0
[e |l op pasd :I i
ETS Ziop H
Br st :H" i i
=i - = =y, =
|_u;m_| Aeet | Clare | medp ||

The top part of this window contains the standard P/T set controls. (See
“Using P/T Set Controls” on page 202 for more information.) The large area
on the left is a “tree” control where clicking on the “+” shows more infor-
mation, and clicking on a “=" (not shown in this figure) condenses the infor-
mation. Here you will find a list of all your program’s processes and
threads. The information is organized in a hierarchy, with the outermost
level being your program’s control groups. In a control group, information
is further organized by share group, where you are shown the processes
contained in a share group. Finally, if the innermost “+” symbols were
clicked, the browser would show information on the threads within a pro-
cess.

Figure 143: P/T Set Browser
Windows (Part 1)

The control and share group numbers displayed in this window are the
same as those that are displayed in the Groups Page in the Root Window.

The right-hand side contains a graphical depiction of your program’s
threads. In the preceding figure, notice that TotalView has highlighted some
of the threads. These are the threads in the current focus, which in this
case is “1.<”. As you make changes to the P/T set, the threads highlighted
in the right-hand side change, showing you what the scope of a P/T set def-
inition is. The next figures contains a variety of P/T set examples.

oo PRI o [M

F] fori i poa 19 S prém| Geropp 80 =iyl ey rh

(=K

=
1
i
i
1E
1
]
:
i
1
1=l

rp i TR Grpa BT

Fisus: Proddis — HETLET _.| 1 '| e AR

apremcomaners | (I WJQ0L):

O e | a45] Soqpied i i1

» el || 11 01T

A I

| $

0 5 (L
o This P/T set displayed differs from the one in Figure 142

on page 222 in that the Focus pulldown menu is now
set to All. TotalView responds by highlighting all
threads on the right-hand side.

(2] The Focus pulldown menu was changed back to Pro-
cess but the number of processes was limited to 1, 2,
and 3. Before these changes were made, process 3 was
told to go. As you can see, the browser shows those
processes as running.

(3] Thread 3.1 was halted.

(4] Thread 2.4 was selected with the mouse. It doesn’t
matter if it was selected in the left or right-hand sides,
as selecting it causes it to be highlighted in both. After

selecting a thread, you can extend the selection by
clicking your mouse’s left button on another thread

=

[EEY
=
C
@,
>

(@]
()
=
o
c

O
w

Using the P/T Set Browser

Figure 144: P/T Set Browser
Windows (Part 2)

B fori_jcoga &1 C préml Groep (87 e
B fork_ima pAid Shaee Gima (BT

B

2

B
a1
A
aa
a4

SRR
14
EETS
iTAA

BT
sTaETy
BIETRITTE
L

B1

11
1E
1.3
14

EoH A

B fori_jcoga &1 C préml Groep (87
B fork_ima pAid Shaee Gima (BT

CAEE) fret |
& 41430513 Eamnl

BIZTH

H Forl_iog Al S prirml Grop (97 : =iy
3 fork_inapliid Share Gioug (BT

EERLY kil
rATETS Kemied H
o (Y o

d4m
B1ITY
i B

mes

while holding down the Shift key. You can select non-
contiguous threads by holding down the Control key
while clicking your mouse’s left button.

If you are seeing this document online, you’ll notice
that your selection is in gray while the selection indi-
cating the P/T set is in blue.

The P/T set information was modified to show a differ-
ence expression; in this case, thread 1.3 was eliminated
from the set of threads named by “p1.<*.

The elements on the right side are drawn within two boxes. These boxes
represent the control and share groups. Clicking on them tells the browser
to select that group.

224

Chapter 11: Using Groups, Processes, and

sut Using the Group Editor

The visual group editor, which is displayed after you select the Group >
Edit Group command, can simplify the way in which you create named

groups.
Figure 145: Group > Edit m e ——
Group
Eanec] dioug
oo I —
ProrifpiGamiep =

Typs - Froced Groap * Thisad Groap

Greup Mt

lm:uu:l T T I LT I ELED J
[Tork. looeAlshaCantrl Group (11 -'-ET:'.-.:.-:.::.:---“-:.::: ﬁ
4 TR TN
=) el I||||||||| 1[I I
a | =
Cipus | =l |

This dialog box can be divided into two halves. The top half allows you to
add, update, and delete named sets. The bottom half contains controls
that allow you to specify which processes and threads will become part of
the group. These controls are discussed in the previous section.

The controls in the upper portion work generally as you’d expect them to.
The only thing to be careful about is that you must define the group, and
be sure to give the group a name, before you click on the Add button.
Details on using the controls in this dialog box are contained in the online

Help.

=
=
C
@,
>
«Q
()
=
o
c
e
w

Using the Group Editor

226 Chapter 11: Using Groups, Processes, and

Examining and 12
Changing Data

This chapter explains how to examine and change data as you
debug your program. The topics discussed in this chapter are:

“Changing How Data Is Displayed” on page 227

“Displaying Variables” on page 230

“Diving in Variable Windows” on page 237

“Scoping and Symbol Names” on page 239

“Changing the Values of Variables” on page 241

“Changing a Variable’s Data Type” on page 242

“Working with Opaque Data” on page 249

“Changing Types to Display Machine Instructions” on page 249
“Changing Types to Display Machine Instructions” on page 249
“Displaying C+-+ Types” on page 250

“Displaying Fortran Types” on page 252

“Displaying Thread Objects” on page 257

Changing How Data Is Displayed

One of the problems you’ll face is that TotalView, like all debuggers, dis-
plays data in the way that your compiler stored it. The following two sec-
tions let you change the the way TotalView displays this information. These
sections are:

m “Displaying STL Variables” on page 227
m “Changing Size and Precision” on page 229

Displaying STL The C++ STL (Standard Template Library) greatly simplifies the way in

Variables which you can access data. By offering standard and prepackaged ways to
organize data, you do not have to be concerned with the mechanics of the
access method. The only real downside to using the STL is while debug-
ging. This is because the information you are shown is the compiler’s view
of your data rather than the STL's logical view. For example, Figure 146 on
page 228 shows how your compiler sees a map compiled using GNU C++:

=

Changing How Data Is Displayed

Figure 146: An Untransformed
Map

claay Ma tremiin-. (Olmwn)

'_H:l Tred_hisscps--r cless Bb tras Bee- (Priewts Bess clss
TRa_tTes_allowe oless “RhCbree aloe (Fubilio bose ol
_H_lwdai sabgtrge: Oy » ¢ 5 0 (eladdde™ -4 (gl
H_reedn_zours maxe_t L3000 (17}
_H sy compase cluam lsnms zrt 10 0man)
_‘r1ﬁnn' are bl e wtpush Binary_fune. Fobido hess oless)
¢ palkiiieg cehagy WM fDwed or -3

i pasdyregh i chars |3} IArcayd

TotalView comes with a set of transforms that changes how it displays
some STL data. For example, Figure 147 shows the transformed map.

Figure 147: A Transformed Map

{Hmp Elomars|
Ib:m:ll.ll:lﬂl. Ly

CLess hE#LE_SCOURGTEREE. §=r [SEEUCE]

abE Ly Daldd=058 - “Erley
[Mmp Elemar|

ank O=DOAMa0E (25

oless haads_stoingechar, s== [Stqurcs]

JaLELRgy * Ml el - “Ericy
iMap Elemant|

ink JEad 1k

claas hasds stoirgrchar, - [Strucx]

CNLTLmGy " MaDBdd=iesd - “EnLey

TotalView can transform STL vectors, lists, and maps using native and GCC
compilers on IBM AlX, IRIX/MIPS, and HP Tru64 Alpha. It also supports
GCC and Intel’s Version 7 C++ 32-bit compiler running on Red Hat x86
platform.

Figure 148 on page 229 shows an untransformed and transformed list and
vector.

You can create your own transformations. The process for doing this is described in the
i “Creating Type Transformations Guide”.

By default, TotalView transforms these data structures. If you do not want
them transformed, uncheck the View simplified STL containers (and user-

228 Chapter 12: Examining and Changing Data

Figure 148: List and Vector
Transformation

Changing Size and
Precision

Changing How Data Is Displayed

Eat vies Taphs Wirdos
TIFL Al cosmanegnisi - 1 1

sHELN Tvos: cleaw lamtdink, allecatnrdimks »

Tp

Walus

Link bwawtcrk. mllo- clags Lot bwaw.-. . (Frivets buse class
List mliee hjm-.- clums List sllo.-» (lilic hoss cless)
_H_rede v J.;d?_r-:.’.i--;r.r = IdEnS]1EE - (8T

Fin BEr Vies Taolh Windes
TieLwi cremuneieier - 1T INSRININNNNN -
! Type: cheaw l:tl!:.lt.ml.l:n:ulk:- ¥ 'J

Edb Miew Taolh Wirdow

TTE¥acine co-mmanein|os - 1i
] I'.'i,:ll claay 'Hl:t:l'm:.

TFp

Vockar beoedfloak..- clasy Vector be.-. (Privets base o
_Wectar_sllsc .- clams Mactss mle-+ cl
_H_RTECT Tipan =
_I'I_J!u”\: Flicat s

H_mrd_af storege fleat

Fiskd Walus

L

e Tavh Window Hip |

Tt ot 1 N
Ty fhmat] [

A 1 :;. Laat]3|
LELE - [] Flamt |
Bliae: Rl

Filuae

Crafax Wslus

1] 1.1
11 .2
el 1.1

L=

defined transformations) checkbox within the File > Preference’s Options
Page.

CLl: dset TV::ttf { true | false }

In most cases, TotalView does a reasonable job of displaying a variable’s
value. If TotalView’s defaults don’t meet your needs, you can indicate the
precision at which to display simple data types by using the Formatting
Page of the File > Preferences Dialog Box. (See Figure 149 on page 230.)

After selecting one of the data types listed on the left, you can set how
many character positions a value will use when TotalView displays it (Min
Width) and how may numbers it should display to the right of the decimal
place (the Precision). You can also tell TotalView how it should align the
value in the Min Width area and if it should pad numbers with zeros or
spaces.

While the way in which these controls relate and interrelate may appear to
be complex, the Preview area shows you exactly the result of a change.

TotalView Users Guide: version 6.3 229

Figure 149: File > Preferences:
Formatting Page

Lata e I _,I Ciplkars |
B-Dd! s den
16l gt Dl Foswil mn Prangy
_1""" g | Dwcimsl Hesadeciesd Ocls Laars Givngs
o & & A
Saregie Fipod e Wiy 150 Ill.Llulm
Dcaipia Final . ! ' ! T “I‘.tn
Edergan Fua || Precsion |1 —'lll. {26 -'l-lr .: L i |
g | | | Parslie |
Junify T, Al s T Rt
Fighl fig # |
P Seee s |- Epes | Eee Fimaing
Craiils | L W iw Fa Frorte Dk |
Presimss
= {00 GO0EOO0NMa S [165)"
[O | Casisal j Hila

After you play with the controls for a minute or so, what each control does
will be clear. You will probably need to set the Min Width value to a larger
number than you need it to be to see the results of a change. For example,
if the Min Width doesn’t allow a number to be justified, it could appear
that nothing is happening.

CLI: You can set these properties from within the CLI. To obtain a list of

variables that you can set, type:
dset TV::data_format*

Displaying Variables

TotalView displays variables that are local to the current stack frame in the
Process Window’s Stack Frame Pane. For non-simple variables—for exam-
ple, pointers, arrays, and structs—this pane doesn’t show the data;
instead, you need to dive on the variable to bring up a Variable Window that
contains the variable’s information. For example, diving on an array vari-
able tells TotalView to display the entire contents of the array.

Dive on a variable by clicking your middle mouse button on it. If your mouse doesn’t
have a three buttons, you can either single- or double-click on an item, depending upon
context.

If you dive on simple variables or registers, TotalView still brings up a Vari-
able Window. In this case, you’ll see some additional information about the
variable.

Topics in this section are:

m “Displaying Program Variables” on page 231
m “Browsing for Variables” on page 231

“Displaying Local Variables and Registers” on page 232
“Displaying Long Variable Names” on page 234
‘Automatic Dereferencing” on page 234

“Displaying Areas of Memory” on page 235
“Displaying Machine Instructions” on page 236
“Closing Variable Windows” on page 237

Displaying You can display local and global variables by:
Program Variables g piving into the variable in either the Source or Stack Panes.
m Selecting the View > Lookup Variable command. When prompted, enter
the name of the variable.

CLI: dprint variable

A Variable Window appears for the global variable. (See Figure 150.)

Figure 150: Variable Window for g
a Global Variable

iark | Liowg . cearalal L LRSS
Wims Taph ‘Windos Haip
Frek_ b el e el - 1 2 “!_“_ll [

(st SxLADMNEER] Types vt

Tulew: OeiKHOROR (@)

Fin Est

Displaying In many cases, you’re not really interested in just seeing one variable.
Variables in the Instead, you want to see all of the variables in the current block. If you dive
Current Block on a block label within the Stack Frame Pane, TotalView opens a Variable

Window containing just those variables. See Figure 151 on page 232.
You can dive on any variable in this window to see more information.

Browsing for The Process Window’s Tools > Program Browser command displays a win-

Variables dow containing all your executable’s components. By clicking on a library
or program name, you can access all of the variables contained within it.
(See Figure 152 on page 232.)

The window in the upper left corner shows programs and libraries that are
loaded. If you have loaded more than one program with the File > New
Program command, only the currently selected process list will appear. The
center window contains a list of files that make up the program as well as
other related information. Diving again on a line displays a Variable Window
that contains variables and other information related to the file. Figure 153
on page 233 shows three more diving operations.

=

Displaying Variables

Figure 151: Displaying Scoped
Variables

Figure 152: Program Browser
and Variables Window (Part 1)

Displaying Local
Variables and
Registers

232

Himch Frane

funLicen

fosc Slaby
FL TR
FuaiLaby
AunrSlaby

_patch_wp

funr S Lbmcw

FmcTion “srore”
AL
:Il-unE “Ehlaghi=

EE.!-
AN RN E

CmEgms 13 procams 'L

LS L UL
|wtruzt tBameosl)
D00 {0

ik

L1 1Ak TafIEIS
ald cisker 114 BaffTTdred (-13
En larg larg Da N E e bl AP [ITFETT45
tuckas 13 DuiMEBIEE (1)
Block Symbals
&kl crdui
11 tzedn

EL

——————————————————— S =]

2 Hr |
III.'!""ITTH-illll-Illl

“fork_lemAIE

|

LebdbZack h

= bikred_thiceaids knit PSRN {0
bai i Lt OIS0)
et hesing Lt Onirrbinid {1
Ew phhresd cond t [Etruck]
ou_qeard prhresd_moier_t IBEEuct]
E-_l.r:-&llfljlu-] jﬂuﬂil‘ﬁﬁi-ﬂ;_l. 1SEEUER]
] ok la B
da sme LNt u.:-i-n 1]
da_hardls_tysp int NaIISSE 3]
dif_seipa Lt DwDIEE {1 |
da_segw isdes Lk Owinediardid {1 {
| 2 i |

The screen in the upper-left corner shows a Variable Window created by
diving on one of the files in Figure 153 on page 233. The center screen
dives on a block in that subroutine. Finally, the screen in the lower-right
corner shows a variable. (These screens were created using the View > Dive
Anew command.) If you just dived on a line in a Variable Window, the new
contents replace the old contents, and you can use the dive/undive i =
icons to move back and forth.

In the Stack Frame Pane, diving into a formal parameter, local variable, or
register tells TotalView to display a Variable Window. You can also dive into
parameters and local variables in the Source Pane. The displayed Variable

Chapter 12: Examining and Changing Data

Displaying Variables

Figure 153: Program Browser
and Variables Window (Part 2)

Fin Est ims Tacs Windrs Hip |

ko el beriiong i) - 12 [
rigwbels Am scoge Forker [laveg dnkd

Turashlon

ek ld pad ant Bt Alaww
Pack_damn drag Bt Alius
i T -

| ke sl b T R (T - 1.2

siriymBols Ln scogs Ehl

Wedipghles
Faalacan ank Bak hliww

LHSA A DTI— Tark_Jnep, cust fasker (Jmy_int)sRTTaslurns o
[| Fis Esr Vi Toch Wndes Hal
T sk s ceeatortemang mieds eaiimn - 12 i

o e NellMEEbSe) Type: ink
|| nl=s Oe(ODOMNE [E)

.l

Window shows the name, address, data type, and value for the object. (See
Figure 154.)

Figure 154: Diving into Local
Variables and Registers

[im FIOE) Type, Chats
Talow (hedNOFarl ISHB'?H'L_I:r

i deabia ds ' fortyen_ sy BE
Bl B iew Tosts Windew s
Ammg Fecheck_ forire_sartheaed g - 11 m o
lot GaBMNLa¥E Type: integer®e(S1:70) i |
Elace: q:]
Filbar

Lydar Wil

(43|] i

[] ET =001

(=2 1] B OO0

1] 155, | DN Y)

1] FIE | e HOTHMLAN

£ETI T | IndOMILET 5

] LD LA TH] r]

|h:"_ [, Ly T T Iu-

The top-left window shows the result of diving on a register, while the bot-
tom-right window shows the results of diving on an array variable.

CLI: dprint variable

This command lets you view variables and expressions without hav-
ing to select or find them.

TotalView Users Guide: version 6.3 233

Displaying Long
Variable Names

Figure 155: Displaying Long
STL Names

Automatic
Dereferencing

2]

You can also display a local variable by using the View > Lookup Variable
command. When prompted, enter the name of the variable in the dialog
box that appears.

If Variable Windows remain open while a process or thread runs, TotalView
updates the information in these windows when the process or thread
stops. If TotalView can’t find a stack frame for a displayed local variable, it
displays Stale in the pane’s header to warn you that you can’t trust the
data, since the variable no longer exists.

When you debug recursive code, TotalView doesn’t automatically refocus a
Variable Window onto different instances of a recursive function. If you
have a breakpoint in a recursive function, you’ll need to explicitly open a
new Variable Window to see the value of a local variable in that stack frame.

CLl: dwhere, dup, and dprint

You’ll locate the stack frame using dwhere, move to it using dup,
and then display the value using dprint.

If TotalView doesn’t have enough space to display all the characters in a
variable name, it inserts ellipses (...) to indicate that it has truncated the
name. Typically, this occurs when it is displaying demangled C++ names or
STL variables. Figure 155 shows three windows. The top-left Variable Win-
dow contains a series of STL names. The other two windows show what
TotalView displays when you click on the ellipses. Notice that one of the
windows has an Apply button. This indicates that the field is editable.

il TI\!II“ '|'|'|I'|:Il?d||

[] "l.;lll.:.-ui-lf.lrhl |ll|]l|]ll1|lrrh. 1.0
[at Suhiffdfin Type . oless weotertvastordiss, alloeatssit |

Ear

ramlid Typa Talow

Pectar hesscanntar - cLass Weotop b Briunts hinss olns
s '-\.II. Bllac _Bboee sbit _Wedbof sl [Paeblic base £lass

N_a%act tnt weckac ® E=1ES16ED {int_{
_H_Pamaas Lt wackar ® EIMELITEE - jank_§

nmr if_acarsgE LT l\.u- Eap * EAOHEITEE - wne_q

I.E_-I:I.I-_tll. ‘

W TR DR B D0 e], R DT 0 D P e, 00T Gl D W T B T

| Alag .ar_-: |1|
I.-!] - 51 |1H*H1I.Iﬂ| |

| sinar _Warior_sasscvecioront sllocaborins
| »aktaasyetioront, akoEaKal- > > -

—mrns_ sy _uuu_J. -

In most cases, you aren’t interested in the value contained in a pointer
variable. Instead, you want to see what the pointer is pointing to. Using the
controls contained in the File > Preferences’s Pointer Dive Page, you can
tell TotalView if it should automatically dereference pointers. (See

Figure 156 on page 235.)

Figure 156: File > Preferences: s e erms =
Pointer Dive Page
A=+ UPC o ndii O
Aulimdbially daidliEnc e pdnlais wisb vy F T
mn L
ik n il e e |
m——— Lisares ivngu |
fiom e aqpegele Vi (ooel peh) s
e} [z Liinih |
with e m AT Wen =
- | LEH’II ¢ Lirares |
| Ciil b iy wilh Simiede |7)] Para s J
Formn Paimien Forts |
TSP OO R [RIETIRTE AT (iR
Ity lin = Fepumrg |
from on s Es Vs (ooet penhy s | E
il “Diw e 1w AN Wi - |
- Ciefauity I
K | Caial Huld
|

This preference is especially useful when you want to visualize data that is
linked together with pointers, as it can present the data as a unified array.
Because the data appears to be a unified array, you can use TotalView’s
array manipulation commands and the Visualizer to view this data.

Each pulldown list has three settings: No, Yes, and Yes (don’t push). The
meaning for No is obvious: automatic dereferencing will not occur. Both of
the remaining values tell TotalView that it should automatically dereference
pointers. The difference between the two is based on whether you can use
the Back command to see the undereferenced pointer’s value. If you set
this to Yes, you can see the value. Setting it to Yes (don’t push) means you
can’t use the Back command to see the pointer’s value.

CLl: TV::auto_array cast bounds
TV::auto_deref in_all ¢
TV::auto_deref_in_all fortran
TV::auto_deref _initial ¢
TV::auto_deref _initial_fortran
TV::auto_deref nested c
TV::auto_deref nested fortran

The three situations in which automatic dereferencing can occur are:

m When TotalView initially displays a value.
m When you dive on a value within an aggregate or structure.
m When you use the Dive in All command.

Displaying Areas You can display areas of memory in hexadecimal and decimal values. Do
of Memory this by selecting the View > Lookup Variable command and then entering
one of the following in the dialog box that appears:

t

Figure 157: Variable Window for
Area of Memory

Displaying
Machine
Instructions

m A hexadecimal address

When you enter a single address, TotalView displays the word of data
stored at that address.

CLI: dprint address
m A pair of hexadecimal addresses
When you enter a pair of addresses, TotalView displays the data (in word

increments) from the first to the last address. To enter a pair of addresses,
enter the first address, a comma, and the last address.

CLI: dprint address,address

All hexadecimal constants must have a “Ox” prefix. You can use an expression to enter
these addresses.

The Variable Window for an area of memory displays the address and con-
tents of each word. (See Figure 157.)

e Tacly Windos Halp

nmas meoree - 11 WIENEN - -

int BcUBOMOAE] Trps cvaddz[B] [
liea [i]

Ardrenn Falus

e EM DS D AT MRGRAIN AL E (APRET TIFST ITS5009T)

SARL el T Oeo4 MR B RFIH | - 17 LIPS I0T I DS E AP0 |

Il AN DTIEg [MLE DL L | A TG T DN TL §

T L RN DY B Ml TEETEETENTE |- 170 R 0 T

D TTITEI R NTY (S4PEISNLLEG I 5E)
D Pt T Ml | BOITIITATEISTIS0PEA)
hrebal fdwBabc T E4EE |- 18000 1AL S T0E)
Muntia] # 1 FRESEEN |- 14050 10 IR W |

(™

=

TotalView displays the memory area’s starting location at the top of the
window’s data area. In the window, TotalView displays information in hexa-
decimal and decimal.

You can display the machine instructions for entire routines as follows:

m Dive into the address of an assembler instruction in the Source Pane
(such as main+0x10 or 0x60). A Variable Window displays the instruc-
tions for the entire function and highlights the instruction you dived
into.

m Dive into the PC in the Stack Frame Pane. A Variable Window lists the in-
structions for the entire function containing the PC, and highlights the
instruction the PC points to. (See Figure 158 on page 237.)

m Cast a variable to type <code> or array of <code=>, as described in
“Changing Types to Display Machine Instructions” on page 249. (See
Figure 159 on page 237.)

Figure 158: Variable Window

with Machine Instructions

I3t SwDBOMOEH: Type. ooder] $8d] i
alise: | u] =

Cradex Falos

o M TolEEah wfle wll

i (ki1 fif8 aktew el -Blwp)

-] ISUaI08E wkw el Himp)

3 Na®gI1TEal wbwa =Wl Wi

4 Osb3=fiG: Iva w1 B0 chie b

E (eIl bz wH, 64 chuc b

El [edciiIE Laa 1, 10w

T NGNS stw w1, T mp)

Bj s F500900 L3 w10 |

b p— — L — — -

Figure 159: Casting Code

[st S=DBECIecs Type: <widd
Vulen: (efdabltlc (4IA0IGSE

Valies Bubhdablflle rlwins eheh. 1.0.3

[}

Closing Variable When you're finished analyzing the information in a Variable Window, use
Windows the File > Close command to close the window. You can also use the File >
Close Similar command to close all Variable Windows.

sut Diving in Variable Windows

If the variable being displayed in a Variable Window is a pointer, structure,
or array, you can dive into a value shown in the Variable Window. This new
dive, which is called a nested dive, tells TotalView to replace the information
in the Variable Window with information about the selected variable. If this
information contains non-simple data types, you can dive on these data
types. While a typical data structure doesn’t have too many levels, repeat-
edly diving on data lets you follow pointer chains. That is, diving allows you
to see the elements of a linked list.

TotalView remembers your dives. This means you can use the “undive” and
“redive” buttons ;2 as a convenient way to see other dive results.

=

Figure 160: Nested Dives

Displaying Array
of Structure
Elements

Figure 160 shows a Variable Window after diving into a pointer variable
named sp with a type of simple*. The first Variable Window, which is called
the base window, displays the value of sp. (This is the window in the upper left
corner.)

Taods ‘Weredpss
1 drenul copmandREIRep - 17
[at BITPTEN Type: stnus sisples =

]|
Fde it rw Taps hrei b |
i cversers 1 N
4 iak DxPtERMelll Typs strect msple [
Fisld Type Walus
arxt wtrck maspls * Ol WA
aalus int IsIEHANEE [0}
-1 [i Tlsat] &) ALTEY]
1 [i]
g n
3 i
£e vl seledled arvoy (LIS
RCTEY erk | 2| [ArTey] |
i g dasitetl o] gl
I T r-] i

The nested dive window—displayed in the bottom right corner of the fig-
ure—shows the structure referenced by the simple* pointer.

You can manipulate Variable Windows and nested dive windows in the fol-

lowing ways:

m To “undive” from a nested dive, select the left-facing arrow in the upper
right-hand corner of the Variable Window. After clicking on the arrow, the
previous contents of the Variable Window appears.

m To “redive” after you “undive,” select the right-facing arrow in the upper
right-hand corner of the Variable Window. After clicking on the arrow,
TotalView performs a previously executed dive operation.

m If you dive into a variable that already has a Variable Window open, the
Variable Window pops to the top of the window display.

m If you have performed several nested dives and want to create a new
copy of the base window, select the Window > Duplicate Base command.

m If you select the Window > Duplicate command, a new Variable Window
appears that is a duplicate of the current Variable Window. It differs inter-
nally as it has an empty dive stack.

The View > Dive In All command (which is also available when you right-
click on a field) allows you to display an element in an array of structures as
if it were a simple array. For example, suppose you have the following For-
tran definition:
type embedded_array
real r
integer, pointer :: ia(:)
end type embedded_array

Figure 161: Displaying a
Fortran Structure

type(embedded_array) ea (3)

After selecting an r element, select the View > Dive In All command,
TotalView displays all three r elements of the ea array as if it were a single
array. (See Figure 161.)

diwwisall .ml-hl.l:"lr:qruu

Fin E3f Wims Teols Windos snip |
ll ivsrl i!b'uurrnllr_ulwiu -T11 l“lll"““l |
flice: Lo}k A

oy
U diveinal],

- -"r.r . -
T sk EM view Toshs Winrs Hal
L
o SN overe mosvmste_srayvescyns - 10 JEIREININN -
= = (ot SwIEHoMD [Sperse| Type roal=dgd] i
L Flepw: [:)
Falimr
Ry
B PG e Y
1. MEES&RE]
L. 1957807

L]

The View > Dive in All command can also display the elements of C array of
structures as arrays. Figure 162 on page 240 shows TotalView displaying a
unified array of structures and a multidimensional array in a structure.

As TotalView’s array manipulation commands (which are described in Chapter 8) work
on what’s displayed and not what is stored in memory, you can operate on an array cre-
ated by this command in the same manner as any other array. For example, you can
visualize the array, obtain statistics about it, filter elements in it, and so on.

Scoping and Symbol Names

Many CLI and some GUI commands have arguments whose elements are
variables and other things found in your program. TotalView assigns a
unique name to all of your program’s element based on the scope in which
the element exists. A scope defines what part of a program knows about a
symbol. For example, the scope of a variable that is defined at the begin-
ning of a subroutine is all statements in the subroutine. The variable’s
scope does not extend outside of this subroutine. A program consists of
scopes. Of course, a block contained in the subroutine could have its own
definition of the same variable. This would hide the definition in the enclos-
ing scope.

All scopes are defined by your program’s structure. Except for the most
trivial program, scopes are embedded in other scopes. The exception is, of

=

Scoping and Symbol Names

Figure 162: Displaying C
Structures and Arrays

Qualifying Symbol
Names

240

Su sl Cosfresiritpe_dimy - 11
5t EBRTEREINT Thpe ;P?.H:l' Simgele 18]
allee

Fasld Thpe Fulos

L] SEriarh &Ligile 18 LEuEt]
Ere s siruck mzsple ¢ Dl FERLA) <b [ukou
TELoS ant LS HICLE (0]

;M-m;l;;;nmh g1

n.— oo an DERTEREIMD |Spares] 'E'-'p-e Il'.l-inlil' 1njEdl
Flicw 1]l :
Falber

!
A

Fid Esi Wims Tapls Windew

e s e T _--.-_..".__ e
i onnt Dkl PESEN |Spaiss 'Frp! Il.i'u:l. aarple = i0]

Zlace

Erelex Telue

0| P - (wbrock samgla)
1] B HERINEN - (wtruct wampls)
BEPRERE0 -0 {abrmob simplas)
DB - |ebruat simple)
B FHE -0 (wkruck imgle)
BTN -3 (witruck samgls]

T FRETEO - atrmat s1mgpls)
;

v {BTEoar Simple)
B TP < {mbiruck aimgla)

ey P L e
O YL - S
| é

L

course, the top-most scope. Every element in a program is associated with
a scope.

Whenever you tell the CLI or the GUI to execute a command, TotalView
consults the program’s symbol table to discover what object you are refer-
ring to—this process is known as symbol lookup. A symbol lookup is per-
formed with respect to a particular context, and each context uniquely
identifies the scope to which a symbol name refers.

The way you describe a scope is similar to the way you specify a file. The
scopes in a program form a tree, with the outermost scope, which is your
program, as the root. At the next level are executable files and dynamic
libraries; further down are compilation units (source files), procedures,
modules, and other scoping units (for example, blocks) supported by the
programming language. Qualifying a symbol is equivalent to describing the
path to a file in UNIX file systems.

A symbol is fully scoped when you name all levels of its tree. The following
example shows how this is done. It also indicates parts that are optional.

[#executable-or-lib#][file##][procedure-or-line##]symbol
The pound sign (#) separates elements of the fully qualified name.

Chapter 12: Examining and Changing Data

-

Because of the number of different kinds of things that can appear in your program, a
formal specification of what can appear and the order in which things can appear com-
plicated, and, unreadable. After you see the name, in the Stack Frame Pane, you’ll
know a variable’s scoped name.

TotalView interprets the components as follows:

m Just as file names need not be qualified with a full path, you do not need
to use all levels in a symbol’s scoping tree.

m If a qualified symbol begins with #, the name that follows indicates the
name of the executable or shared library (just as an absolute file path be-
gins with a directory immediately within the root directory). If you omit
the executable or library component, the qualified symbol doesn’t begin
with #.

m The source file’s name may appear after the (possibly omitted) execut-
able or shared library.

m Because programming languages typically do not let you hame blocks,
that portion of the qualifier is specified using the letter b followed by a
number indicating which block. For example, the first unnamed block is
named #b1l, the second as #b2, and so on.

You can omit any part of the scope specification that TotalView doesn’t
need to uniquely identify the symbol. Thus, foo#x identifies the symbol x in
the procedure foo. In contrast, #foo#x identifies either procedure x in exe-
cutable foo or variable x in a scope from that executable.

Similarly, #foo#tbar#x could identify variable x in procedure bar in execut-
able foo. If bar were not unique within that executable, the name would be
ambiguous unless you further qualified it by providing a file name. Ambigu-
ities can also occur if a file-level variable (common in C programs) has the
same name as variables declared within functions in that file. For instance,
bar.c#x refers to a file-level variable, but the name can be ambiguous when
there are different definitions of x embedded in functions occurring in the
same file. In this case, you would need to say bar.c#bl#x to identify the
scope that corresponds to the “outer level” of the file (that is, the scope
containing line 1 of the file).

Changing the Values of Variables

You can change the value of any variable or the contents of any memory
location displayed in a Variable Window by selecting the value and typing
the new value. In addition to typing a value, you can also type an expres-
sion. For example, you can enter 1024*1024 as shown in Figure 163 on
page 242. You can include logical operators in all TotalView expressions.

CLl: set my_var [expr 1024*1024]
dassign int8_array(3) $my_var

If a value is displayed in bold in the Stack Frame Pane, you can edit the
value.

P

Figure 163: Using an
Expression to Change a Value

T P A e ptrn e)
u R e vy (i1 = L
Fin Est Wies Tools ‘Windows Help ||
BN coveeches sovun svopierit ey~ W~ |
iar SIDMITAH Type ietegor-AL1k F |
4lice: (i) |
Frltec
Erelax Walie=
111 1 g Om OO)
] U (s RSN ISLE NG LS |
] RIS | B ISTEHBTRHAI (I |
'_Il bl . - -
ST -
Bl
{Tl e
L]
= wi OQuSIUETIE Typs inkwsges 0[] 50}

Blice 11
Filrai

T Tnlza
11 DG00I

While TotalView does not let you directly change the value of bit fields, the
Tools > Evaluate Window lets you assign a value to a bit field. See “Evaluat-
ing Expressions” on page 298. Similarly, you cannot directly change the value
of fields in nested structures; you must first dive into the value. When
TotalView displays a value in bold, it is ready to be edited.

CLl: Tcl lets you use operators such as & and | to manipulate bit fields
on Tcl values.

Changing a Variable’s Data Type

The data type declared for the variable determines its format and size
(amount of memory). For example, if you declare an int variable, TotalView
displays the variable as an integer.

Topics in this section are:

“Displaying C Data Types” on page 243
“Pointers to Arrays” on page 243
‘Arrays” on page 243

“Typedefs” on page 244

“Structures” on page 244

“Unions” on page 245

“Built-In Types” on page 245

“Type Casting Examples” on page 248

You can change the way TotalView displays data in the Variable Window by

editing its data type. This is known as casting. TotalView assigns types to all
data types, and in most cases, they are identical to their programming lan-
guage counterparts.

m When a C variable is displayed in TotalView, the data types are identical
to C type representations, except for pointers to arrays. TotalView uses a
simpler syntax for pointers to arrays. (See “Pointers to Arrays” on
page 243.)

m When Fortran is displayed in TotalView, the types are identical to Fortran
type representations for most data types including INTEGER, REAL,
DOUBLE PRECISION, COMPLEX, LOGICAL, and CHARACTER.

If the window contains a structure with a list of fields, you can edit the data
types of the fields listed in the window.

When you edit a data type, TotalView changes how it displays the variable in the cur-
rent window. Other windows listing the variable do not change.

-

Displaying C Data TotalView’s syntax for displaying data is identical to C Language cast syntax

Types for all data types except pointers to arrays. That is, you should use C Lan-
guage cast syntax for int, short, unsigned, float, double, union, and all
named struct types. In addition, TotalView has a built-in type called
<string=. Unless you tell it otherwise, it maps char arrays into this type.

TotalView types are read from right to left. For example, <string=*[20]* is a
pointer to an array of 20 pointers to <string=.

Table 12 shows some common data types.
Table 12: Common Types

Data Type String Meaning

int Integer

int* Pointer to integer

int[10] Array of 10 integers

<string> Null-terminated character string

<string=>** Pointer to a pointer to a null-terminated character string
<string=>*[20]* Pointer to an array of 20 pointers to null-terminated strings

You can also enter C Language cast syntax verbatim in the type field for any
type.
The following sections discuss the more complex types.

Pointers to Arrays Suppose you declared a variable vbl as a pointer to an array of 23 pointers
to an array of 12 objects of type mytype_t. The C language declaration for
this is:
mytype t (*(C*vb)[23]) [12];

Here is how you would cast the vbl variable to this type:
(mytype_t (™) [23D[12])vbl

The TotalView cast for vbl is:
mytype t[12]*[23]*

Arrays Array type names can include a lower and upper bound separated by a
colon (:).

Py

Typedefs

Structures

See Chapter 12, “Examining and Changing Data,” on page 227 for a detailed discus-
sion of arrays.

By default, the lower bound for a C or C++ array is 0, and the lower bound
for Fortran is 1. In the following example, an array of ten integers is
declared in C and then in Fortran:

int a[10];

integer a(l10)
The elements of the array range from a[0] to a[9] in C, while the elements of
the equivalent Fortran array range from a(1) to a(10).

When the lower bound for an array dimension is the default for the lan-
guage, TotalView displays only the extent (that is, the number of elements
in the dimension). Consider the following Fortran array declaration:

integer a(1:7,1:8)

Since both dimensions of the array use the default lower bound for Fortran,
which is 1, TotalView displays the data type of the array by using only the
extent of each dimension, as follows:

integer(7,8)
If an array declaration doesn’t use the default lower bound, TotalView dis-
plays both the lower bound and upper bound for each dimension of the
array. For example, in Fortran, you would declare an array of integers with

the first dimension ranging from -1 to 5 and the second dimension ranging
from 2 to 10, as follows:

integer a(-1:5,2:10)
TotalView displays this in exactly the same way.

When editing an array’s dimension, you can enter just the extent (if using
the default lower bound) or you can enter the lower and upper bounds sep-
arated by a colon.

TotalView also lets you display a subsection of an array, or filter a scalar
array for values matching a filter expression. Refer to “Displaying Array
Slices” on page 259 and “Array Data Filtering” on page 262 for further infor-
mation.

TotalView recognizes the names defined with typedef, and displays these
user-defined types. For example:

typedef double *dptr_t;
dptr_t p_vbl;

TotalView will display the type for p_vbl as dptr_t.

TotalView lets you use the struct keyword as part of a type string. In all
cases, it is usually optional. If you have a structure and another data type
with the same name, however, you must include the struct keyword so that
TotalView can distinguish between the two data types.

Unions

Figure 164: Displaying a Union

Built-In Types

Table 13: Built-in Types

If you name a structure using typedef, the debugger uses the typedef hame
as the type string. Otherwise, the debugger uses the structure tag for the
struct.

For example, consider the structure definition:

typedef struct mystruc_struct {
int field 1;
int field 2;

} mystruc_type;

TotalView displays mystruc_type as the type for struct mystruc_struct.
TotalView displays a union in the same way that it displays a structure.

Even though the fields of a union are overlaid in storage, TotalView displays
the fields on separate lines. (See Figure 164.)

CLI: dprint variable

Fin Est Wims Tapls ‘Window Haip

TSI | | 1] | |

(st SxDBTLELHG Type usdom awerlags b il |

Famdd Typn ¥ulow
i 115 Ty Tl 1]
Lomg] ¥]

int[3)

shart| 4]

When TotalView displays some complex arrays and structures, it displays
the compound object or array types in the Variable Window.

Editing a compound object or array types could yield undesirable results. TotalView will
try very hard to give you what you say, so if you get it wrong, the results are quite
unpredictable. Fortunately, the remedy is quite simple: delete the Variable Window and
start over again.

TotalView provides a number of predefined types. These types are enclosed
in angle brackets (<>) to avoid conflict with types contained in a program-
ming language. You can use these built-in types anywhere you can use ones
defined in your programming language. These types are also useful when
debugging executables with no debugging symbol table information. The
following table lists the built-in types

Type String Language Size Meaning
<address> C void* Void pointer (address)
<char> C char Character
<character=> Fortran character Character

Type String
<code>

<complex>

<complex*8>

<complex*16=>

<double>

<double
precision>
<extended>

<float>

<int>
<integer>
<integer*1>
<integer*2>
<integer*4>
<integer*8=
<logical>
<logical*1>
<logical*2>
<logical*4>
<logical*8>
<long=>
<long long>

Language
C

Fortran

Fortran

Fortran

C
Fortran

C

C

C

Fortran
Fortran
Fortran
Fortran
Fortran
Fortran
Fortran
Fortran
Fortran
Fortran
C

C

Size
architecture-
dependent

complex

complex*8

complex*16

double

double precision

long double

float

int
integer
integer*1
integer*2
integer*4
integer*8
logical
logical*1
logical*2
logical*4
logical*8
long

long long

Meaning

Machine instructions

The size used here is the
number of bytes required to
hold the shortest instruction for
your computer.

Single-precision floating-point
complex number.

complex types contain a real
part and an imaginary part,
which are both of type real.
real*4-precision floating-point
complex number

complex*8 types contain a real
part and an imaginary part,
which are both of type real*4.
real*8-precision floating-point
complex number

complex*16 types contain a real
part and an imaginary part,
which are both of type real*8.
Double-precision floating-point
number

Double-precision floating-point
number

Extended-precision floating-
point number
Extended-precision numbers
must be supported by the target
architecture.

Single-precision floating-point
number

Integer

Integer

One-byte integer

Two-byte integer

Four-byte integer

Eight-byte integer

Logical

One-byte logical

Two-byte logical

Four-byte logical

Eight-byte logical

Long integer

Long long integer

Type String Language Size Meaning

<real> Fortran real Single-precision floating-point
number
NOTE When using a value such
as real, be careful that the
actual data type used by your
computer is not real*4 or real*8
as different results could occur.

<real*4> Fortran real*4 Four-byte floating-point number

<real*8> Fortran real*8 Eight-byte floating-point
number

<real*16> Fortran real*16 Sixteen-byte floating-point
number

<short> C short Short integer

<string=> C char Array of characters

<void> C long Area of memory

The next sections contain more information about the following built-in
types:

m Character Arrays (<string= Data Type)
m Areas of Memory (<void> Data Type)
m Instructions (<code> Data Type)

Character Arrays (<string> Data Type)

If you declare a character array as char vbl[n], TotalView automatically
changes the type to <string>[n]; that is, a null-terminated, quoted string
with a maximum length of n. This means that TotalView will display an array
as a quoted string of n characters, terminated by a null character. Similarly,
TotalView changes char* declarations to <string=* (a pointer to a null-ter-
minated string).

Since most C character arrays represent strings, the <string=> type can be
very convenient. If this isn’t what you want, you can edit the <string> back
to a char (or char[n]) to display the variable as you declared it.

Areas of Memory (<void> Data Type)

TotalView uses the <void> type for data of an unknown type, such as the
data contained in registers or in an arbitrary block of memory. The <void>
type is similar to the int in the C language.

If you dive into registers or display an area of memory, TotalView lists the
contents as a <void> data type. Furthermore, if you display an array of
<void> variables, the index for each object in the array is the address, not
an integer. This address can be useful in displaying large areas of memory.

If desired, you can change a <void= into another type. Similarly, you can
change any type into a <void> to see the variable in decimal and hexadec-
imal formats.

Type Casting
Examples

Instructions (<code> Data Type)

TotalView uses the <code> data type to display the contents of a location
as machine instructions. Thus, to look at disassembled code stored at a
location, dive on the location and change the type to <code=. To specify a
block of locations, use <code>[n], where n is the number of locations
being displayed.

This section contains three type casting examples:

m Displaying Declared Arrays
m Displaying Allocated Arrays
m Displaying the argv Array

Displaying Declared Arrays

TotalView displays arrays in the same way as it displays local and global
variables. In the Stack Frame or Source Pane, dive into the declared array. A
Variable Window displays the elements of the array.

CLI: dprint array-name

Displaying Allocated Arrays
The C language uses pointers for dynamically allocated arrays. For exam-
ple:
int *p = malloc(sizeof(int) * 20);
Because TotalView doesn’t know that p actually points to an array of inte-
gers, here is how you would display the array:
1 Dive on the variable p of type int*.
2 Change its type to int[20]*.
3 Dive on the value of the pointer to display the array of 20 integers.

Displaying the argv Array

Typically, argv is the second argument passed to main(), and it is either a
char **argv or char *argv[]. Suppose argv points to an array of three point-
ers to character strings. Here is how you can edit its type to display an
array of three pointers:

1 Select the type string for argv.
CLl: dprint argv

2 Edit the type string using the field editor commands. Change it to:
<string=>*[3]*

CLl: dprint (<string=*\[3\]*)argv

3 To display the array, dive into the value field for argv. (See Figure 165 on
page 249.)

Figure 165: Editing argv

- Fig Em ‘wisw Tedl ‘Windos Hig I
b

= g e

ety Ry 11

st SuxffFErTEreeriana) Tops cotrimg: ** ETH Ehep 2
Talzw: (eibedad - O=i0dEeted *Ferk LsophIX" |Jl"
| T A
Fik Efl yew Todk WAoo oty |
fork_lnag e raineend - 11 o -

ot DefffICTErEerme fpe CsRxamgs =[3) *
Yelus [ePiEHwidsl]l -» |iskrorgs &[0 0

Tork_pap oo manemys - | | =l
it OB Mbfwidolll Twps l:lliu'.q! =| ¥|
{5

Elapal

s |

fl— il OxfIEHE T, -

SiEp 3

L]
ki

Working with Opaque Data

An opaque type is a data type that isn’t fully specified, is hidden, or whose
declaration is deferred. For example, the following C declaration defines
the data type for p as a pointer to struct foo, which is not yet defined:

struct foo;
struct foo *p;

When TotalView encounters this kind of information, it may indicate that
foo’s data type is <opaque=. For example:

struct foo <opaque>

Changing the Address of Variables

You can edit the address of a variable in a Variable Window. When you edit
the address, the Variable Window shows the contents of the new location.

You can also enter an address expression, such as 0x10b8 — 0x80.

Changing Types to Display Machine
Instructions

Here is how you can display machine instructions in a Variable Window:

Ees

Classes

Figure 166: Displaying C++
Classes That Use Inheritance

1 Select the type string at the top of the Variable Window.

2 Change the type string to be an array of <code> data types, where n indi-
cates the number of instructions to be displayed. For example:

<code=>[n]
TotalView displays the contents of the current variable, register, or area of
memory as machine-level instructions.

The Variable Window (shown in Figure 158 on page 237) lists the following
information about each machine instruction:
Address The machine address of the instruction.
Value The hexadecimal value stored in the location.
Disassembly The instruction and operands stored in the location.

Offset+Label The symbolic address of the location as a hexadecimal
offset from a routine name.

You can also edit the value listed in the Value field for each machine instruc-
tion.

Displaying C++ Types

TotalView displays C++ classes and accepts class as a keyword. When you
debug C++, TotalView also accepts the unadorned name of a class, struct,
union, or enum in the type field. TotalView displays nested classes that use
inheritance, showing derivation by indentation.

Some C+++ compilers do not output accessibility information. In these cases, TotalView
can not display this information.

For example, Figure 166 displays an object of a class c.

Fin ESf bims Taph Window

{st BxIITECITIO] Trpes class © [T
ramlid Taps Yalos
wlaas A (LR AT TN

] alass i IMErCoal biss oleds)

b wel stringi ® (2 X0 D011 E230 b wules
chtnhls iwoablas|i] # el NIOOLLCE che @ bkl j
d_wml BETANGT = MxlS0MEERE -+ 4 Tnlae”

f £lass € (Bl cLEbs)

x il shringi ® Dn X3 DO 5D “¢ walum"
ihtahle ivtable:|1] = UnlSSENLME (e bial o -
£_wnl cwtrimg: * NelENENEM -3 “c Tmles”

R
K,
_— _— o o - =]

The definition is as follows:

Changing Class
Types in C++

Figure 167: C—+++ Type Cast to
Base Class Question Window

class b {

char * b_val;
public:

b {b_val = “b value*“;}
}:

class d : virtual public b {
char * d_val;
public:
d(Q {d_val = *“d value*;}
}:

class e {
char * e _val;
public:
e() {e_val = “e value*“;}

};

class c : public d, public e {
char * c_val;

public:
c() {c_val = “c value*;}

};

TotalView tries to display the correct data when you change the type of a
Variable Window as it and you move up or down the derivation hierarchy.

If a change in the data type also requires a change in the address of the
data being displayed, TotalView asks you about changing the address. For
example, if you edit a Variable Window’s Type field from class c to class e,
TotalView displays the following dialog box.

I:i.llqu Chakh C L6 s Dakd Cliad Cldss & ingdies & thafgd 16 |l's Sdedisda

Do wpi wewnd Tmd ol Ve Lo e s 3

o | e

Selecting Yes tells TotalView to change the address to ensure that it dis-
plays the correct base class member. Selecting No tells TotalView to display
the memory area as if it were an instance of the type to which it is being
cast, leaving the address unchanged.

Similarly, if you change a data type in the Variable Window because you
want to cast a base class to a derived class, and that change requires an
address change, TotalView asks that you confirm the address change. For
example, Figure 168 on page 252 shows the dialog posted if you cast from
class e to class c.

Figure 168: C+++ Type Cast to
Derived Class Question Window

Displaying Fortran
Common Blocks

Displaying Fortran
Module Data

' I:H]Il.g FiEm Clatik @ 10 A5 Setvel Cladd claan £ Nagaies @ thiigd 10 le sddrias

Do tpe vt b a1

_¥a | | o |

Displaying Fortran Types

TotalView allows you to display FORTRAN 77 and Fortran 90 data types.
Topics in this section are:

m “Displaying Fortran Common Blocks” on page 252

m “Displaying Fortran Module Data” on page 252

m “Debugging Fortran 90 Modules” on page 254

m “Fortran 90 User-Defined Types” on page 255

m “Fortran 90 Deferred Shape Array Types” on page 255
m “Fortran 90 Pointer Types” on page 256

m “Displaying Fortran Parameters” on page 256

For each common block defined within the scope of a subroutine or func-
tion, TotalView creates an entry in that function’s common block list. The
Stack Frame Pane displays the name of each common block for a function.
The names of common block members have function scope, not global
scope.

CLI: dprint variable-name

If you dive on a common block name in the Stack Frame Pane, TotalView
displays the entire common block in a Variable Window, as shown in
Figure 169 on page 253.

The top-left pane shows a common block list in a Stack Frame Pane. The
bottom right window shows the results of diving on the common block to
see its elements.

If you dive on a common block member name, TotalView searches all com-
mon blocks in the function’s scope for a matching member name and dis-
plays the member in a Variable Window.

TotalView tries to locate all data associated with a Fortran module and pro-
vide a single display that contains all of it. For functions and subroutines

Figure 169: Diving into a
Common Block List in the Stack
Frame Pane

LW LLNEEgsL™d | 1
HATTEE_NFARY . (integac (LDOD)
LOZAL Var a9
CONFL & AFRET I [cesp laortLE (LI §
COmP_KRARY 17 06 owplectd (1801)
Gammen blacks
FETT, 1C oo,
Regisssrs Por the Frass *o_a: Ll *“"_ el
‘Wirdrs Ha
w0 (eDIOROTE [Ep e e ——— o
ko1 U T DL T i o v e ftan_ stk lfses - 11 IIII = B
SymBols Ln comEon hlook jees il |
Turashlon
dersirEs aritasgec (2D Cher ey
LS _Array ErERyR T E) kTl
—F =

| Atatic ih"..r_..-ﬁ.':'n_n.u_' 'm""r'-h".rrn:-h'_"'" HTrT=rT =y
Fie EMl Vims Tool ‘Wiwios Hil |
“ Ty Foctmck_Ririran_ sy bR essiesoms - 11 [0 -

it {10800
L] =

(et MeledeR il Type
SLace

E.-
el R i e B
-;' BTty s Fcaci_iariran_mvayseinime onmve_stay - 11 N | -
_:-' (me Unl@Ecidals Typs antoges(bp]
ol .. Slice f:]
: Filbet
Eredex . Taluw
1 FIPAMIND § T PRSI |
121 AIFAE0A i De RO |
Ell ELAZEEAMG €Dl EcDiin)
i ELTNITUM ¢ L T AR |
iE] 1 [OSSO
161 -EEATAEIEET (GBI] |
i Lot

defined in a module, TotalView adds the full module data definition to the
list of modules displayed in the Stack Frame Pane.

CLl: dprint variable-name

TotalView only displays a module if it contains data. Also, the amount of information
that your compiler gives TotalView may restrict what’s displayed.

Although a function may use a module, TotalView doesn’t always know if
the module was used or what the true names of the variables in the module
are. If this happens, either:

m Module variables appear as local variables of the subroutine.

m A module appears on the list of modules in the Stack Frame Pane that
contains (with renaming) only the variables used by the subroutine.

Alternatively, you can view a list of all the known modules by using the
Tools > Fortran Modules command. Like in any Variable Window, you can
dive through an entry to display the actual module data, as shown in
Figure 170 on page 254.

Displaying Fortran Types

Figure 170: Fortran Modules

Window

Debugging
Fortran 90
Modules

254

1 Elack Fiamm
Dive on module Purtdon “etall testacrays®
name to see Wl 100 CODNOME)
Variable | e {Mockeliah
Wlndqw Reglangrs Cor 1 Fiiies
containing
module a1y
variables © a2 Fln B Yies . Wirde

| | 1 1] ii."l.'_l

Ectzlas From proces

Iriwers
setep_miduls
Farmmatar mzduls
L1187

it _meduls
pl_ierelon_madilely
_bpE_rendom_sodulelr
hpf_rendes widuleld
F_vmavd o _ s S 231
Al _ievdon_wadulelq
bpE_rendom_wodulelc

Symbaole in moduls stoff

Turzshles
arcl raEd®l ||, mllocwishils PAreay) [Mamllccwss
ared read+ @[], allopatahle Arragi [Uanlinoess
arid real*d]) aklosateble [ACEay) (Uaallocens
typl type(wbogpeci(., ellocatekls [Arcay) [(Ueslioccets

Dive on module

. wt. : - mllpcabskls 1% 1 [Oamli it
variable to see a oD (e acd {3 allocatable (Ariell (mallocace
Variable
prndoss v o o e

B FIDaiep WU ey e e TP - 10
(et MEADIToRGA] Tope Cpped SEOEFER))
heveal Typs Cops (MEOPFER) (25
Sleem: (2
Type Ealies
1l by e | THIFTELR) I1Skeuck|
FLAES wrems LOAICAL 4 (1800} A
TR WEAL_§ [1E00) AFEaT
TEER FEAL_Fi: b, pedater DeEyadc8 -+ [HERL
padd g dchmrs |6 TArcay)
2] & (WTKIFFEE) [Skocuck]
FLAES srors LI0TCAL_d (1900} TArEsr)
=13 FENL_§ [LE03 TALTHF)
—_—————_ P

If you are using the SUNPro compiler, TotalView can only display module data if you
force it to read the debug information for a file that contains the module definition or a
module function. For more information, see “Finding the Source Code for Functions” on
page 173.

Fortran 90 and Fortran 95 let you place functions, subroutines, and vari-
ables inside modules. These modules can then be included elsewhere using
a USE command. When doing this, the names in the module become avail-
able in the using compilation unit, unless you exclude them with a USE
ONLY statement, or rename them. This means that you don’t need to
explicitly qualify the name of a module function or variable from the For-
tran source code.

When debugging this kind of information, you will need to know the loca-
tion of the function being called. Consequently, TotalView uses the follow-
ing syntax when it displays a function contained in a module:

modulename ™~ functionname

Chapter 12: Examining and Changing Data

Fortran 90 User-
Defined Types

Figure 171: Fortran 90 User-
Defined Type

Fortran 90
Deferred Shape
Array Types

You can also use this syntax in the File = New Program and View > Lookup
Variable commands.

Fortran 90 also introduced the idea of a contained function that is only vis-
ible in the scope of its parent and siblings. There can be many contained
functions in a program, all using the same name. If the compiler gave
TotalView the function name for a nested function, TotalView displays it
using the following syntax:

parentfunction() ~containedfunction

CLl: dprint module_name‘variable_name

A Fortran 90 user-defined type is similar to a C structure. TotalView displays
a user-defined type as type(name), which is the same syntax used in Fortran
90 to create a user-defined type. For example, here is a code fragment that
defines a variable typ2 of type(whopper):
TYPE WHOPPER
LOGICAL, DIMENSION(ISIZE) :: FLAGS
DOUBLE PRECISION, DIMENSION(ISIZE) :: DPSA

DOUBLE PRECISION, DIMENSION(:), POINTER :: DPPA
END TYPE WHOPPER

TYPE(WHOPPER), DIMENSION(:), ALLOCATABLE :: TYP2
TotalView displays this code as shown in Figure 171.

Wiess Tapls Windos Haip
riiilu:p uruﬁmuﬁ'-'-,-;-ﬂ_up;n[:mq =11 |.|.|.|.l:|.l|l I
NeRETTIR] Topes bpped elaggei |]
| HELES] I Yalus
T 15 Fisph ol =4 { 10040 3 [Tpat L
- BT vesall *8 1 100 i T |
il irpe real *Hi : j _paznter LACTy]

Fortran 90 allows you to define deferred shape arrays and pointers. The
actual bounds of the array are not determined until the array is allocated,
the pointer is assigned, or, in the case of an assumed shape argument to a
subroutine, the subroutine is called. TotalView displays the type of deferred
shape arrays as type(:).

When TotalView displays the data for a deferred shape array; it displays the
type used in the definition of the variable and the actual type that this
instance of the variable has. The actual type is not editable since you can
achieve the same effect by editing the definition’s type. The following
example shows the type of a deferred shape rank 2 array of real data with
runtime lower bounds of -1 and 2, and upper bounds of 5 and 10:

=

Displaying Fortran Types

Type: real(:,:)
Actual Type: real(-1:5,2:10)
Slice: (:,:)

Fortran 90 Pointer A Fortran 90 pointer type allows you to point to scalar or array types.

Types TotalView implicitly handles slicing operations that set up a pointer or
assumed shape subroutine argument so that indices and values it displays
in a Variable Window are the same as you would see in the Fortran code.

For example:
integer, dimension(10), target :: ia
integer, dimension(:), pointer :: ip
do 1 = 1,10
1a(i) = 1
end do

ip => i1a(10:1:-2)
After diving through the ip pointer, TotalView displays the window shown in

Figure 172.
Figure 172: Fortran 90 Pointer = : et PN VL G
Value (] Filn Est ¥iss Tecls Ehlw : Heip
ey AIOSWAL N BIA - 11 4P

ar BPIITEaclll Tope INTHEER 4010)
Alicte: (i}
Frltec f

0)
ST .
| LY 4 s | st DsTiiTlesd) Typs. INTRGER_il 1)
{51 5 i e NHDONBEATS | : y e [
| i P d fnLu:]s'::':E: iI:I'I.I'Il.-_h._ll'g.l
171 T i IxIMEINETT | Filkmr
9—: s
| Ladas Walis
4 E [BB
] L]
(4] & o B RBIROTGE)
4 LR T
| T | =N
v
F |

Target array ia

Pointer ip into array ia
Address of ip(1)

Values reflect slice

~Jelol

Notice that the address displayed is not that of the array’s base. Since the
array’s stride is negative, array elements that follow are at lower absolute
addresses. Consequently, the address displayed is that of the array element
having the lowest index. This may not be the first displayed element if you
used a slice to display the array with reversed indices.

Displaying Fortran A Fortran PARAMETER defines a named constant. Most compilers do not

Parameters generate information that TotalView can use to determine what a
PARAMETER’s value is. This means that you must make a few changes to
your program if you want to see this kind of information.

256 Chapter 12: Examining and Changing Data

If you’re using Fortran 90, you can define variables in a module that you ini-
tialize to the value of these PARAMETER constants. For example:

INCLUDE “PARAMS.INC”

MODULE CONSTS
SAVE
INTEGER PI_C = PI

END MODULE CONSTS

The PARAMS.INC file will contain your parameter definitions. You would
then use these parameters to initialize variables in a module. After you
compile and link this module into your program, the value of these parame-
ter variables are visible.

If you’re using Fortran 77, you could achieve the same results if you make
the assignments in a common block and then include the block in main().
You could also use a block data subroutine to access this information.

Displaying Thread Objects

On HP Alpha Tru64 UNIX and IBM AIX systems, TotalView can display infor-
mation about mutexes and conditional variables. In addition, TotalView can
display information on read/write locks and data keys on IBM AlX. You can
obtain this information by selecting the Tools > Thread Objects command.
After selecting this command, TotalView displays a window that will either
contain two tabs (HP Alpha) or four tabs (IBM). Figure 173 on page 258
shows some AIX examples.

Diving on a any line in these windows displays a Variable Window contain-
ing additional information about the item.

Here are some things you should know:

m If you're displaying data keys, many applications initially set keys to 0
(the NULL pointer value). TotalView doesn’t display a key’s information,
however, until a thread sets a non-NULL value to the key.

m If you select a thread ID in a data key window, you can dive on it using
the View = Dive Thread and View = Dive Thread New commands to dis-
play a Process Window for that thread ID.

The online Help contains considerable information on the contents of
these windows.

Displaying Thread Objects

Figure 173: Thread Objects
Page on an IBM AIX machine

T30 I 30 E TG

Oe=iF DO L (O w0 D2 £ 6
(i DO A5 10 0ETL £ 70
(= EEI 0L 10801 e

e e H

258 Chapter 12: Examining and Changing Data

Examining Arrays 13

This chapter explains how to examine and change data as you
debug your program. You will learn about the following:

m “Examining and Analyzing Arrays” on page 259

m “Displaying a Variable in All Processes or Threads” on page 270

m “Visualizing Array Data” on page 272

Examining and Analyzing Arrays

TotalView can quickly display very large arrays in Variable Windows. An array
can be the elements that you’ve defined in your program or it can be an
area of memaory that you’ve cast into an array.

If an array overlaps nonexistent memaory, the initial portion of the array is
correctly formatted. If memory isn’t allocated for an array element,
TotalView displays Bad Address in the element’s subscript.

Topics in this section are:

m “Displaying Array Slices” on page 259

m “Array Data Filtering” on page 262

m “Sorting Array Data” on page 267

m “Obtaining Array Statistics” on page 267

Displaying Array TotalView lets you display array subsections by editing the slice field in an

Slices array’s Variable Window. (An array subsection is called a slice.) The slice
field contains placeholders for all array dimensions. For example, here is a
C declaration for a three-dimensional array:

integer an_array[10][20][5]

Because this is a three-dimensional array, the initial slice definition is
[IEIE]- This lets you know that the array has three dimensions and that
TotalView is displaying all array elements.

=

Here is a deferred shape array definition for a two-dimensional array vari-
able:

integer, dimension (:,:) :: another_array
Its TotalView slice definition is (:,:).

As you can see, TotalView displays as many colons (:) as there are array
dimensions. For example, the slice definition for a one-dimensional array (a
vector) is [:] for C arrays and (:) for Fortran arrays.

CLl: dprint an_array\[n:m,p:q\]
dprint an_array(n:m,p:q)

Using Slices and Strides
A slice definition has the following form:

lower_bound:upper_bound:stride

(The stride tells TotalView that it should skip over elements and not display
them. Adding a stride to a slice tells TotalView to display every stride element
of the array, starting at the lower_hound and continuing through the
upper_hound, inclusive.

For example, a slice of [0:9:9] used on a 10-element C array tells TotalView
to display the first element and last element, which is the ninth element
beyond the lower bound.

If the stride is negative and the upper bound is greater than the lower
bound, TotalView lets you view a dimension with reversed indexing. That is,
TotalView treats the slice as if it were:

[ub : Ib : stride]
CLl: dprint an_array(n:m:p,g:r:s)

For example, the following definition tells TotalView to display an array
beginning at its last value and moving to its first:

[::-1]
In contrast, Fortran 90 requires that you explicitly enter the upper and

lower bounds when you’re reversing the order in which it displays array ele-
ments.

Because the default value for the stride is 1, you can omit the stride (and
the colon that precedes it) if your stride value is 1. For example, the follow-
ing two definitions display array elements 0 through 9:

[0:9:1]

[0:9]
If the lower and upper bounds are the same, just use a single number. For
example, the following two definitions tell TotalView to display array ele-
ment 9:

[9:9:1]
[°]

The lower_bound, upper_bound, and stride can only be constants. They cannot beex-
i pressions.
Example 1 Aslice declaration of [::2] for a C or C++ array (with a default lower bound
of 0) tells TotalView to display elements with even indices of the array: 0, 2,
4, and so on. However, if this were defined for a Fortran array (where the
default lower bound is 1), TotalView displays elements with odd indices of
the array: 1, 3, 5, and so on.

Example 2 Figure 174 displays a slice of (::9,::9). This definition displays the four cor-
ners of a 10-element by 10-element Fortran array.

skelly €T

Figure 174: Slice Displaying

i ; L EMEE P
the Four Corners of an Array Fie ERE e Takda Wcdlem Hal
ten_by_ten iiwsan_zy, derepeienadail_aemay - 11 T -
jar SxldlNoll] Types ivbegeed DO, W0H |
Slipd CiiBupsd)
Faliwr
Erelex Falis
1113 0 O RFEOI00E |
{10, 1) ER (T Ty
11 1) 08 (ST §
{10, 105 8 | Bl RH0E R
¥
P

Example 3 You can use a stride to invert the order and skip elements. For example,
here is a slice that begins with the upper bound of the array and display
every other element until it reaches the lower bound of the array: (::-2).
Thus, using (::-2) with a Fortran integer(10) array tells TotalView to display
the elements 10, 8, 6, 4, and 2.

Example 4 You can simultaneously invert the array’s order and limit its extent to dis-
play a small section of a large array. Figure 175 shows how to specify a
(2:3,7::-1) slice with an integer*4(-1:5,2:10) Fortran array.

Figure 175: Fortran Array with

N : abic im tan by b, EWOEE El |2 gl
:Enverse Order and Limited Fla £ View Tooh Wndow Haly
xtent ooy e 1 L -
iat BxldNNT Boll] Torpes i LU0, 10
slice CEi ; i=Lk
Faltes
Erelex Tnles
(B Bl O=DEOSS)
. A ¥ (OulEFAENE: |
'} Fl { NafTIEEE
TR B DaiNET)
2 T {O=DRO004T |
] T U KRS |
5T Bl afEHEHTI] ol
42T} B TlaINEE | Y|
=

Array Data
Filtering

After you enter this slice value, TotalView only shows elements in rows 2
and 3 of the array, beginning with column 10 and ending with column 7.

Using Slices in the Lookup Variable Command

When you use the View > Lookup Variable command to display a Variable
Window, you can include a slice expression as part of the variable name.
Specifically, if you type an array name followed by a set of slice descriptions
in the View > Lookup Variable command'’s dialog box, TotalView initializes
the slice field in the Variable Window to this slice descriptions.

If you add subscripts to an array name in the View > Lookup Variable com-
mand’s dialog box, TotalView interprets these subscripts as a slice
description rather than as a request to display an individual value of the
array. As a result, you can display different values of the array by changing
the slice expression.

For example, suppose that you have a 10-element by 10-element Fortran

array named small_array, and you want to display element (5,5). Using the
View > Lookup Variable command, type small_array(5,5). This sets the ini-
tial slice to (5:5,5:5). This is the top-left screen in Figure 176 on page 263.

CLl: dprint small_array(5,5)

You can tell TotalView to display one of the array’s values by enclosing the
array name and subscripts (that is, the information normally included in a
slice expression) within parentheses, such as (small_array(5,5)).

CLl: dprint (small_array(5,5))

In this case, the Variable Window just displays the type and value of the ele-
ment and doesn’t show its array index. This is shown in the center screen
in Figure 176.

Perhaps the most interesting of the screens in Figure 176 on page 263 is
the one in the bottom-right corner. This was created by doing a View >
Lookup Variable with a value of small_array(i,j). Here, TotalView evaluated
the values of i and j before it displayed the window. If you do this, you
should know that the values of i and j are just computed once. This means
that if the values of i and j change, the displayed value will not change.

You can restrict what TotalView displays in a Variable Window by adding a
filter to the window. You can filter arrays of type character, integer, or float-
ing point. Your filtering options are:

m Arithmetic comparison to a constant value

m Equal or not equal comparison to IEEE NANs, INFs, and DENORMSs
m Within a range of values, inclusive or exclusive

m General expressions

When an element of an array matches the filter expression, TotalView
includes the element in the Variable Window display.

Figure 176: Variable Window for

small_array

| Aiehal n tem iy tendipha: {esal]_srespiid d07p] | |
Fin Eif Yips Tools Wndow Hrip

{rwall_srme 1 D3] - 11 i
(st SLAMREsr] Trps Wvbeged a |
0 B |

| Statac an ten oyt 8 ten_by_tensShiemwas al ||
—1—| Fir ES Wew Tl Enoow Hieip |
Ran_by_ 161 T Ian_ By MR PEMALL_AFERY - 11 I 4w ||
lat DxEADMAERIGE, Type: antwgeriil 101 i
Glice {180, ¥0:A05
Filoac

Tulms

skelly €T

Index Yalus

T |-~ inkal in fen by bkl
| Pl Edt Wies Taoh Wirdow
“wmai_anee, f- 11
int BxldIENRIc] Typs inbeger
| DR

Taluin

Topics in this section are:

“Filtering Array Data” on page 263

“Filtering by Comparison” on page 264
“Filtering for IEEE Values” on page 265
“Filtering By a Range of Values” on page 265
“Creating Array Filter Expressions” on page 266
“Using Filter Comparisons” on page 267

Filtering Array Data
The procedure for filtering an array is quite simple: select the Filter field,
enter the array filter expression, and then press Return.

TotalView updates the Variable Window to exclude only the elements that
do not match the filter expression.

TotalView only displays an element if its value matches the filter expression
and the slice operation.

If necessary, TotalView converts the array element before evaluating the fil-
ter expression. The following conversion rules apply:

m If the filter operand or array element type is floating point, TotalView
converts it to a double-precision floating-point value. TotalView trun-
cates extended-precision values to double precision. Converting integer
or unsigned integer values to double-precision values may result in a
loss of precision. TotalView converts unsigned integer values to non-neg-
ative double-precision values.

Table 14: Array Data
Filtering Comparison
Operators

Figure 177: Array Data
Filtering by Comparison

m If the filter operand or the array element is an unsigned integer, TotalView
converts the values to an unsigned 64-bit integer.

m If both the filter operand and array element are of type integer, TotalView
converts the values to type 64-bit integer.

These conversions modify a copy of the array’s elements—they never alter
the actual array elements.

To stop filtering an array, delete the contents of the Filter field in the Vari-
able Window and press Return. TotalView will then update the Variable Win-
dow so that it includes all elements.

Filtering by Comparison
The simplest filters are ones whose formats are:

operator value

where operator is either a C/C++ or Fortran-style comparison operator, and
value is a signed or unsigned integer constant, or a floating-point number.
For example, here’s the filter for displaying all values greater than 100:

> 100
Table 14 lists the comparison operators.

Comparison C/C++ Operator Fortran Operator
Equal == Q.

Not equal 1= .ne.

Less than < At

Less than or equal <= le.

Greater than > gt.

Greater than or equal >= .ge.

Figure 177 shows an array whose filter is “< 0”. This indicates that
TotalView should only display array elements whose value is less than 0
(zero).

Fin B3k Nims Tach Halp

i e T T
o n_by jen E3simn_by_teodti | RAH_ARRRY - [T guiis) -
AT Yol Trps ceal {10, 10, 10} £

Fligd: Liafak)

Falter € 0.0

Eredex Tlows

|

i e e i
[=]
e I
-]
wa
. |
—
[-]

If the value you’re using in the comparison is an integer constant, TotalView
performs a signed comparison. If you add a u or U to the constant,
TotalView performs an unsigned comparison.

SEL Filtering for IEEE Values
You can filter IEEE NaN, infinity, or denormalized floating-point values by
specifying a filter in the following form:

skelly €T

operator ieee-tag
The only comparison operators you can use are equal and not equal.

The ieee-tag represents an encoding of IEEE floating-point values, as
explained in the following table:

Table 15: Array Data

Filtering IEEE Tag Values JEEE T VeI Meaning : : o
$nan NaN (Not a number), either Quiet or Signaling
$nang Quiet NaN
$nans Signaling NaN
$inf Infinity, either Positive or Negative
$pinf Positive Infinity
$ninf Negative Infinity
$denorm Denormalized number, either positive or negative
$pdenorm Positive denormalized number
$ndenorm Negative denormalized number

Figure 178 on page 266 shows an example of filtering an array for IEEE val-
ues. The bottom left Variable Window shows how TotalView displays the
unfiltered array. Notice the NANQ, and NANS, INF, and -INF values. Then
other two windows show filtered displays. The top left window only shows
infinite values. The center window only shows the values of denormalized
numbers.

881 Filtering By a Range of Values
Specify ranges as follows:

[>] low-value : [<] high-value

where low-value specifies the lowest value to include, and high-value specifies
the highest value to include, separated by a colon. The high and low values
are inclusive unless you use < and > symbols. If you specify a > before
low-valug, the low value is exclusive. Similarly, a < before high-value makes it
exclusive.

low-value and high-value must be constants of type integer, unsigned integer,
or floating point. The data type of low-value must be the same as the type of
high-value, and low-value must be less than high-value. If low-value and
high-value are integer constants, you can append a u or U to the value to
force an unsigned comparison. Figure 179 on page 266 shows a filter that

pe

Examining and Analyzing Arrays

Figure 178: Array Data
Filtering for IEEE Values

0
|
‘

Fie Edi weew Toah Window

R ¥ P

Filrar
Wallua

1ol demaieal | rad
=1 @ 3e-d5 «demormal i ged

Whrelpes

Fileae

Credex Wmlus

=1 Al e 45 ¢

v ol i L el iy - 11
|st BELBOLITE Typs REALLRD i
Aliae: L)

1.0l ¥e-idh cderaemal izeds
densrpal tendy

EL

[|

tells TotalView that it should only display values equal to or greater than 64

but less than 512.

Figure 179: Array Data
Filtering by Range of Values

st SldMEE1Rel] Typs
lice
Falter

Tk
R

| BRI LET §

EtequriBl 70

E-:.:‘-:E.il

Creating Array Filter Expressions

The filtering capabilities described in the previous sections are those that
you will most often use. In some circumstances, you may need to create a
more general expression. When you create a filter expression, you're creat-
ing a Fortran or C Boolean expression that TotalView evaluates for every
element in the array or the array slice. For example, here is an expression
that displays all array elements whose contents are greater than 0 and less
than 50 or greater than 100 and less than 150.

266

Chapter 13: Examining Arrays

($value > 0 && $value < 50) ||
($value > 100 && $value < 150)

Here’s the Fortran equivalent:

($value .gt. O && $value .I1t. 50) .or.
($value .gt. 100 .and. $value .1t.150)

$value is a special TotalView variable that represents the current array ele-
ment. You can now use this value when creating expressions.

skelly €T

Notice also the use of the and and or operators within the expression. The
way in which TotalView computes the results of an expression is identical
to the way it computes values at an evaluation point. For more informa-
tion, see “Defining Evaluation Points and Conditional Breakpoints” on page 286.

You cannot use any of the IEEE tag values described in “Filtering for IEEE Values” on
page 265 in these kinds of expressions.

-

881 Using Filter Comparisons
TotalView lets you filter array information in a variety of ways. This means
that you can do the same thing in more than one way. For example, the fol-
lowing two filters display the same array items:

> 100
$value > 100

Similarly, the following expression displays the same array items:

>0:<100

$value > 0 && $value < 100
The only difference is that the first method is easier to type than the sec-
ond. In general, you'd only use the second method when you’re creating
more complicated expressions.

Sorting Array Data TotalView lets you sort the displayed array data into ascending or descend-
ing order. (It does not, of course, sort the actual data.)

If you select the Variable Window’s View > Sort > Ascending command,
TotalView places all of the array’s elements in ascending order. (See
Figure 180 on page 268 for an example.)

As you would expect, View > Sort > Descending places array elements into
descending order. The View > Sort = None command returns the array to
its original order.

The sort commands only manipulate the displayed elements. This means
that if you limit the number of elements by defining a slice or a filter,
TotalView only sorts the result of the filtering and slicing operations.

Obtaining Array The Tools > Statistics command displays a window containing information
Statistics about your array. Figure 181 on page 268 shows an example.

=

Examining and Analyzing Arrays

Figure 180: Sorted Variable
Window

Figure 181: Array Statistics
Window

268

Fin Edb bims Taph Window

Hep

g P heck_farlian, smay sil 14 TWO_D_AARAY - 11 L
iar SxlLAMEINAN Type kevtegeedlD, 10

Slicd Liaak
Falter

1
z
b
=
=
¥
v

s P iG]

|}

e e
4

Tt o U o e s o ¥
1
]
3
-

b
d

i

deuty le pracizaniliil,
Elicas
Filter

o Tk Imen

TerE Count Lm0

ful 163498 ITMELTE
Hanomum]

e Y o1

L] i 1499eHTeR 1L
LL=T 50 DT4P9ETLIEE

stasdard Devimtian: T ETAB4I18LEM
Farst Quartzls i

Third Qusptils Els 149 T7E11ES
Boded BadjeEnt il

Tpper Bdjecent o 1|

Aadl Caont =

Erdinity Gt 1
Oenarmaliced Grink 1

Chackaom Hed

&l

g

If you have added a filter or a slice, these statistics only describe the infor-
mation currently being displayed; they do not describe the entire unfiltered
array. For example, if 90% of an array’s values are less than 0 and you filter
the array to show only values greater than zero, the median value will be
positive even though the array’s real median value is less than zero.

The statistics TotalView displays are as follows:

m Checksum
A checksum value for the array elements.

m Count
The total number of displayed array values. If you're displaying a floating-
point array, this number doesn’t include NaN or Infinity values.

m Denormalized Count
A count of the number of denormalized values found in a floating-point
array. This includes both negative and positive denormalized values as
defined in the IEEE floating-point standard. Unlike other floating-point
statistics, these elements participate in the statistical calculations.

Chapter 13: Examining Arrays

m Infinity Count
A count of the number of infinity values found in a floating-point array.
This includes both negative and positive infinity as defined in the IEEE
floating-point standard. These elements don’t participate in statistical
calculations.

m Lower Adjacent
This value provides an estimate of the lower limit of the distribution. Val-
ues below this limit are called outliers. The lower adjacent value is the first
guartile value minus 1.5 times the difference between the first and third
quartiles.

m Maximum
The largest array value.

m Mean
The average value of array elements.

m Median
The middle value. Half of the array’s values are less than the median, and
half are greater than the median.

® Minimum
The smallest array value.

m NaN Count
A count of the number of NaN values found in a floating-point array. This
includes both signaling and quiet NaNs as defined in the IEEE floating-
point standard. These elements don’t participate in statistical calcula-
tions.

m Quartiles, First and Third
Either the 25th or 75th percentile values. The first quartile value means
that 25% of the array’s values are less than this value and 75% are greater
than this value. In contrast, the fourth quartile value means that 75% of
the array’s values are less than this value and 25% are greater.

m Standard Deviation
The standard deviation for the array’s values.

m Sum
The sum of all of the displayed array’s values.

m Upper Adjacent
This value provides an estimate of the upper limit of the distribution. Val-
ues above this limit are called outliers. The upper adjacent value is the third
guartile value plus 1.5 times the difference between the first and third
quartiles.

m Zero Count
The number of elements whose value is 0.

skelly €T

Figure 182: Laminated Scalar
Variable

Displaying a Variable in All Processes or
Threads

When you're debugging a parallel program that is running many instances
of the same executable, you usually need to view or update the value of a
variable in all of the processes or threads at once.

Before displaying a variable’s value in all threads or processes, you must
display an instance of the variable in a Variable Window. After TotalView dis-
plays this window, use one of the following commands:

m View > Laminate > Process, Which displays the value of the variable in all
of the processes.

m View > Laminate > Thread, which displays the value of a variable in all
threads within a single process.

You cannot simultaneously laminate across processes and threads in the same Variable
Window.

After using one of these commands, the Variable Window switches to “lami-
nated” mode, and displays the value of the variable in each process or
thread. Figure 182 shows a simple, scalar variable in each of the processes
in an OpenMP program. Notice that the first six have a variable in a match-
ing call frame. The corresponding variable can’t be found for the seventh
thread.

e

Fin Ear

Wiew Taps Window Halp

“sp-ndNpkon e _sFY_BNTH - 11 B
ialtiple] Type: integar -
Frltes
Thirwmd Welun
1 af i B ifjy amll from
2 Zax na matckang call foms

B ut Oel4f07kadc) A (BeclDUBDIN)
LA s (xlEEEI1aTc] o (SecHBORHNE)
LG st Oelai@Ebelol o (P=0DDMD0R

| =

If you decide that you no longer want the pane to be laminated, select the
View > Laminate > None command to delaminate it.

When looking for a matching call frame, TotalView matches frames starting
from the top frame, and considers calls from different memory or stack
locations to be different calls. For example, the following definition of
recurse contains two additional calls to recurse. Each of these generate
nonmatching call frames.
void recurse(int i) {
if (i <=0)
return;

if (&1
recurse(i - 1);
else
recurse(i - 1);

}

If the variables are at different addresses in the different processes or
threads, the address field at the top of the pane displays (Multiple) and the
unique addresses are displayed with each data item, as was shown in
Figure 182 on page 270.

skelly €T

TotalView also allows you to laminate arrays and structures. When you lami-
nate an array, TotalView displays each element in the array across all pro-
cessors. You can use a slice to select elements to be displayed in laminated
windows. Figure 183 shows an example of a laminated array and a lami-
nated structure. You can also laminate an array of structures.

Figure 183: Laminated Array = —————— =

1
and Structure T |
00— =i p
Trpes wiidad =[18]
Elics [1]
|
@— l'.l:
Artachpuhissthlpha 2
1 'i'.i.'l.iltl.l":-'.lrl.hl,lu 3
1 I
dttachivhsethlphn U L Fde e C T e L _‘“:
ACTachiubes chlEh. 1 MAPID_Adw_iniT - 1F—ﬂ]m]l'|__.j -
A tachEub satALpha 1 g =, e 1
e -

S == [T Tep= WRlue

Proceme Abbachfohawtkliplka. I}
bt L] it OxdBHIHE [117 EILIE)

it BxNSEBEI (1)

T3] DaREMED (D)

ot WO (D)

RER_ ool it R0 (0
need_updats e QP0G (0

Procsas Attachdobastlloba 1
bt nt AN [107G
bl _ int DN (15

mEn_ime i Sa MO (D)
man thresh it G P0G (L)
brod_raud Ent BalMHENTED [0}
men_rend it DullEMM (D)]

@ Laminated array
@ Element [0] for each of the processes
© Structure elements for one process

Diving in a You can dive through pointers in a laminated Variable Window, and the dive
Laminated Pane will apply to the associated pointer in each process or thread.

| |

Editing a If you edit a value in a laminated Variable Window, TotalView asks if it
Laminated should apply this change to all of the processes or threads or only the one
Variable in which you made a change. This is an easy way to update a variable in all
m processes.

=

Visualizing a
Laminated
Variable Window

Visualizing Array Data

The TotalView Visualizer lets you create graphic images of array data. This
visualization lets you see your data in one glance and can help you quickly
find problems with your data while you are debugging your programs.

You can execute the Visualizer from within TotalView or you can run it from
the command line to visualize data dumped to a file in a previous TotalView
session.

For information about running the TotalView Visualizer, see Chapter 7,
“Visualizing Programs and Data,” on page 129.

You can export data from a laminated Variable Window to the Visualizer by
using the Tools > Visualize command. When visualizing laminated data, the
process (or thread) index is the first axis of the visualization. This means
that you must use one less data dimension than you normally would. If you
do not want the process/thread axis to be significant, you can use a normal
Variable Window since all of the data must be in one process.

Setting Action Points 14

This chapter explains how to use action points. TotalView supports
four kinds of action points: breakpoints, barrier points, evaluation
points, and watchpoints. A breakpoint stops execution of processes
and threads that reach it. A barrier point synchronizes a set of
threads or processes at a location. An evaluation point causes a code
fragment to execute when it is reached. A watchpoint lets you monitor
a location in memory and stop execution when it changes.

Topics in this chapter are:

‘“Action Points Overview” on page 273

“Setting Breakpoints and Barriers” on page 275

“Defining Evaluation Points and Conditional Breakpoints” on page 286
“Using Watchpoints” on page 292

“Saving Action Points to a File” on page 298

“Evaluating Expressions” on page 298

“Writing Code Fragments” on page 301

Action Points Overview

Actions points allow you to specify an action that TotalView will perform
when a thread or process reaches a source line or machine instruction in
your program. Here are the different kinds of action points that you can
use:

m Breakpoints

When a thread encounters a breakpoint, it stops at the breakpoint. Other
threads in the process will also stop. You can also indicate that you want
other related processes to stop.

Breakpoints are the simplest kind of action point.
m Barrier points

Barrier points are similar to simple breakpoints, differing in that you use
them to synchronize a group of processes or threads. They hold each

Eex

Figure 184: Action Point
Symbols

thread or process that reaches it until all threads or processes reach it.
Barrier points work together with the TotalView hold and release feature.
TotalView supports thread barrier and process barrier points.
m Evaluation points
An evaluation point is a breakpoint that has a code fragment associated
with it. When a thread or process encounters an evaluation point, it exe-
cutes this code.